Relación 6
De Razonamiento automático (2016-17)
Revisión del 03:25 12 dic 2016 de Paupeddeg (discusión | contribuciones)
chapter {* R6: Recorridos de árboles *}
theory R6_Recorridos_de_arboles
imports Main
begin
text {*
---------------------------------------------------------------------
Ejercicio 1. Definir el tipo de datos arbol para representar los
árboles binarios que tiene información en los nodos y en las hojas.
Por ejemplo, el árbol
e
/ \
/ \
c g
/ \ / \
a d f 3
se representa por "N e (N c (H a) (H d)) (N g (H f) (H h))".
---------------------------------------------------------------------
*}
(* ivamenjim marpoldia1 manmorjim1 bowma migtermor wilmorort juacabsou serrodcal pabrodmac ferrenseg rubgonmar paupeddeg*)
datatype 'a arbol = H "'a" | N "'a" "'a arbol" "'a arbol"
value "N e (N c (H a) (H d)) (N g (H f) (H h))"
text {*
---------------------------------------------------------------------
Ejercicio 2. Definir la función
preOrden :: "'a arbol ⇒ 'a list"
tal que (preOrden a) es el recorrido pre orden del árbol a. Por
ejemplo,
preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [e,c,a,d,g,f,h]
---------------------------------------------------------------------
*}
(* ivamenjim marpoldia1 pablucoto bowma fraortmoy migtermor wilmorort lucnovdos serrodcal pabrodmac jeamacpov paupeddeg*)
fun preOrden :: "'a arbol ⇒ 'a list" where
"preOrden (H t) = [t]"
| "preOrden (N t i d) = [t] @ (preOrden i) @ (preOrden d)"
(* danrodcha crigomgom manmorjim1 bowma juacabsou ferrenseg rubgonmar paupeddeg *)
fun preOrden1 :: "'a arbol ⇒ 'a list" where
"preOrden1 (H x) = [x]"
| "preOrden1 (N x i d) = x#preOrden1 i @ preOrden1 d"
value "preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [e,c,a,d,g,f,h]"
value "preOrden1 (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [e,c,a,d,g,f,h]"
(* danrodcha *)
lemma "preOrden a = preOrden1 a"
by (induct a) simp_all
text {*
---------------------------------------------------------------------
Ejercicio 3. Definir la función
postOrden :: "'a arbol ⇒ 'a list"
tal que (postOrden a) es el recorrido post orden del árbol a. Por
ejemplo,
postOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [e,c,a,d,g,f,h]
---------------------------------------------------------------------
*}
(* ivamenjim danrodcha crigomgom marpoldia1 manmorjim1 pablucoto bowma fraortmoy migtermor wilmorort lucnovdos juacabsou serrodcal pabrodmac ferrenseg jeamacpov rubgonmar paupeddeg *)
fun postOrden :: "'a arbol ⇒ 'a list" where
"postOrden (H t) = [t]"
| "postOrden (N t i d) = (postOrden i) @ (postOrden d) @ [t]"
value "postOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [a,d,c,f,h,g,e]"
text {*
---------------------------------------------------------------------
Ejercicio 4. Definir la función
inOrden :: "'a arbol ⇒ 'a list"
tal que (inOrden a) es el recorrido in orden del árbol a. Por
ejemplo,
inOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [a,c,d,e,f,g,h]
---------------------------------------------------------------------
*}
(* ivamenjim crigomgom marpoldia1 pablucoto bowma fraortmoy migtermor wilmorort lucnovdos juacabsou serrodcal pabrodmac ferrenseg jeamacpov rubgonmar paupeddeg*)
fun inOrden :: "'a arbol ⇒ 'a list" where
"inOrden (H t) = [t]"
| "inOrden (N t i d) = (inOrden i) @ [t] @ (inOrden d)"
(* danrodcha manmorjim1 *)
fun inOrden1 :: "'a arbol ⇒ 'a list" where
"inOrden1 (H t) = [t]"
| "inOrden1 (N t i d) = inOrden1 i @ t#inOrden1 d"
value "inOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [a,c,d,e,f,g,h]"
value "inOrden1 (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [a,c,d,e,f,g,h]"
(* manmorjim1 *)
lemma "inOrden t = inOrden1 t"
apply (induct t)
apply auto
done
text {*
---------------------------------------------------------------------
Ejercicio 5. Definir la función
espejo :: "'a arbol ⇒ 'a arbol"
tal que (espejo a) es la imagen especular del árbol a. Por ejemplo,
espejo (N e (N c (H a) (H d)) (N g (H f) (H h)))
= N e (N g (H h) (H f)) (N c (H d) (H a))
---------------------------------------------------------------------
*}
(* ivamenjim danrodcha crigomgom marpoldia1 manmorjim1 pablucoto bowma fraortmoy migtermor wilmorort lucnovdos juacabsou serrodcal pabrodmac ferrenseg jeamacpov rubgonmar paupeddeg *)
fun espejo :: "'a arbol ⇒ 'a arbol" where
"espejo (H t) = H t"
| "espejo (N t i d) = N t (espejo d) (espejo i)"
value "espejo (N e (N c (H a) (H d)) (N g (H f) (H h)))
= N e (N g (H h) (H f)) (N c (H d) (H a))"
text {*
---------------------------------------------------------------------
Ejercicio 6. Demostrar que
preOrden (espejo a) = rev (postOrden a)
---------------------------------------------------------------------
*}
(* ivamenjim migtermor wilmorort juacabsou serrodcal *)
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
have "preOrden (espejo (N x i d)) = preOrden (N x (espejo d) (espejo i))" by simp
also have "... = [x] @ (preOrden (espejo d)) @ (preOrden (espejo i))" by simp
also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)" using h1 h2 by simp
finally show "preOrden (espejo (N x i d)) = rev (postOrden (N x i d))" by simp
qed
(* danrodcha paupeddeg *)
lemma "preOrden (espejo a) = rev (postOrden a)"
by (induct a) simp_all
(* danrodcha crigomgom*)
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
have "preOrden (espejo (N x i d)) = preOrden (N x (espejo d) (espejo i))"
by (simp only: espejo.simps(2))
also have "… = x#preOrden (espejo d) @ preOrden (espejo i)"
by (simp only: preOrden.simps(2))
also have"… = x#rev (postOrden d) @ rev (postOrden i)"
using HIi HId by simp
also have "… = rev (postOrden (N x i d))" by simp
finally show "?P (N x i d)" by simp
qed
(* danrodcha fraortmoy *)
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
show "?P (N x i d)" using HIi HId by simp
qed
(* bowma *)
lemma "preOrden (espejo a) = rev (postOrden a)"
apply (induct a)
apply simp_all
done
(* pablucoto marpoldia1 jeamacpov paupeddeg*)
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume h1: "?P i"
assume h2: "?P d"
have "preOrden (espejo (N x i d)) = preOrden (N x (espejo d) (espejo i))" by simp
also have "... = [x] @ (preOrden (espejo d)) @ (preOrden (espejo i))" by simp
also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)" using h1 h2 by simp
also have "... = [x] @ rev (postOrden i @ postOrden d)" by simp
also have "... = rev ( postOrden i @ postOrden d @ [x] ) " by simp
also have "... = rev (postOrden (N x i d)) " by simp
finally show "?P (N x i d)" by simp
qed
(* bowma *)
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?p a")
proof (induct a)
fix t
show "?p (H t)" by simp
(* Aquí si le diga "preOrden (espejo (H t)) = rev (postOrden (H t))",isabelle dice:
proof (prove)
goal (1 subgoal):
1. preOrden (espejo (H t)) = rev (postOrden (H t))
Introduced fixed type variable(s): 'b in "t__"
No entiendo porqué *)
next
fix t i d
assume H1: "?p i"
assume H2: "?p d"
have "preOrden (espejo (N t i d)) = preOrden (N t (espejo d) (espejo i))" by simp
also have "... = [t] @ (preOrden (espejo d)) @ (preOrden (espejo i))" by simp
also have "... = [t] @ rev (postOrden d) @ rev (postOrden i)" using H1 H2 by simp
finally show "?p (N t i d)" by simp
qed
(* fraortmoy lucnovdos pabrodmac*)
lemma "preOrden (espejo a) = rev (postOrden a)"
by (induct a) auto
(*pabrodmac*)
lemma
fixes a ::"'b arbol"
shows "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "preOrden (espejo (N x i d)) = preOrden(N x (espejo d) (espejo i))" by simp
also have "… = [x]@rev(postOrden d)@rev(postOrden i)" using h1 h2 by simp
also have "… = rev(postOrden (N x i d))" by simp
finally show ?thesis .
qed
qed
(* ferrenseg rubgonmar *)
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x l r
assume H1: "?P l"
assume H2: "?P r"
show "?P (N x l r)"
proof -
have "preOrden (espejo (N x l r)) =
preOrden (N x (espejo r) (espejo l))" by simp
also have "… = x # (preOrden (espejo r) @ preOrden (espejo l))" by simp
also have "… = x # (rev (postOrden r) @ rev (postOrden l))"
using H1 H2 by simp
also have "… = x # rev (postOrden l @ postOrden r)" by simp
also have "… = rev ((postOrden l) @ (postOrden r) @ [x])" by simp
also have "… = rev (postOrden (N x l r))" by simp
finally show ?thesis .
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 7. Demostrar que
postOrden (espejo a) = rev (preOrden a)
---------------------------------------------------------------------
*}
(* ivamenjim crigomgom bowma migtermor wilmorort juacabsou serrodcal *)
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
have "postOrden (espejo (N x i d)) = postOrden (N x (espejo d) (espejo i))" by simp
also have "... = (postOrden (espejo d)) @ (postOrden (espejo i)) @ [x]" by simp
also have "... = rev (preOrden d) @ rev (preOrden i) @ [x]" using h1 h2 by simp
finally show "postOrden (espejo (N x i d)) = rev (preOrden (N x i d))" by simp
(* "?p (N x i d)" más corto *)
qed
(* danrodcha fraortmoy *)
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
show "?P (N x i d)" using HIi HId by simp
qed
(* pablucoto marpoldia1 jeamacpov paupeddeg*)
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume H1: "?P i"
assume H2: "?P d"
have " postOrden (espejo (N x i d)) = postOrden ( N x (espejo d) (espejo i)) " by simp
also have "... = postOrden (espejo d) @ postOrden (espejo i) @ [x] " by simp
also have "... = rev (preOrden d) @ rev (preOrden i) @ [x] " using H1 H2 by simp
also have "... = rev (preOrden d) @ rev (x # preOrden i)" by simp
also have "... = rev (x # preOrden i @ preOrden d)" by simp
also have "... = rev (preOrden (N x i d)) " by simp
finally show "?P (N x i d)" by simp
qed
(* fraortmoy lucnovdos pabrodmac paupeddeg *)
lemma "postOrden (espejo a) = rev (preOrden a)"
by (induct a) auto
(*pabrodmac*)
lemma
fixes a ::"'b arbol"
shows "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "postOrden (espejo (N x i d)) = postOrden(N x (espejo d) (espejo i))" by simp
also have "… =rev(preOrden d)@rev(preOrden i)@[x]" using h1 h2 by simp
also have "… =rev(preOrden (N x i d))" by simp
finally show ?thesis.
qed
qed
(* ferrenseg *)
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x l r
assume H1: "?P l"
assume H2: "?P r"
show "?P (N x l r)"
proof -
have "postOrden (espejo (N x l r)) =
postOrden (N x (espejo r) (espejo l))" by simp
also have "… = postOrden (espejo r) @ postOrden (espejo l) @ [x]" by simp
also have "… = rev (preOrden r) @ rev (preOrden l) @ [x]"
using H1 H2 by simp
also have "… = rev (preOrden l @ preOrden r) @ [x]" by simp
also have "… = rev ([x] @ preOrden l @ preOrden r)" by simp
also have "… = rev (preOrden (N x l r))" by simp
finally show ?thesis .
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 8. Demostrar que
inOrden (espejo a) = rev (inOrden a)
---------------------------------------------------------------------
*}
(* ivamenjim crigomgom bowma migtermor wilmorort juacabsou serrodcal *)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
have "inOrden (espejo (N x i d)) = inOrden (N x (espejo d) (espejo i))" by simp
also have "... = (inOrden (espejo d)) @ [x] @ (inOrden (espejo i))" by simp
also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)" using h1 h2 by simp
finally show "inOrden (espejo (N x i d)) = rev (inOrden (N x i d))" by simp
qed
(* danrodcha *)
theorem "inOrden (espejo a) = rev (inOrden a)"
by (induct a) simp_all
(* danrodcha *)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
show "?P (N x i d)" using HIi HId by simp
qed
(* pablucoto marpoldia1 jeamacpov paupeddeg *)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x) " by simp
next
fix x i d
assume HI1: "?P i"
assume HI2: "?P d"
have " inOrden (espejo (N x i d)) = inOrden ( N x (espejo d) (espejo i) )" by simp
also have "... = inOrden (espejo d) @ [x] @ inOrden (espejo i) " by simp
also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)" using HI1 HI2 by simp
also have "... = rev (x # inOrden d ) @ rev (inOrden i)" by simp
also have "... = rev ( inOrden i @ x # inOrden d) " by simp
also have "... = rev (inOrden (N x i d))" by simp
finally show "?P (N x i d)" by simp
qed
(* lucnovdos pabrodmac paupeddeg *)
theorem "inOrden (espejo a) = rev (inOrden a)"
by (induct a) auto
(* pabrodmac *)
lemma
fixes a ::"'b arbol"
shows "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "inOrden (espejo (N x i d)) = inOrden(N x (espejo d) (espejo i))" by simp
also have "… =rev(inOrden d)@[x]@rev(inOrden i)" using h1 h2 by simp
also have "… =rev(inOrden (N x i d))" by simp
finally show ?thesis .
qed
qed
(* ferrenseg *)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume H1: "?P l"
assume H2: "?P r"
show "?P (N x l r)"
proof -
have "inOrden (espejo (N x l r)) =
inOrden (N x (espejo r) (espejo l))" by simp
also have "… = inOrden (espejo r) @ [x] @ inOrden (espejo l)" by simp
also have "… = rev (inOrden r) @ [x] @ rev (inOrden l)"
using H1 H2 by simp
also have "… = rev (inOrden l @ [x] @ inOrden r)" by simp
also have "… = rev (inOrden (N x l r))" by simp
finally show ?thesis .
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 9. Definir la función
raiz :: "'a arbol ⇒ 'a"
tal que (raiz a) es la raiz del árbol a. Por ejemplo,
raiz (N e (N c (H a) (H d)) (N g (H f) (H h))) = e
---------------------------------------------------------------------
*}
(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto migtermor marpoldia1 wilmorort lucnovdos juacabsou serrodcal ferrenseg paupeddeg *)
fun raiz :: "'a arbol ⇒ 'a" where
"raiz (H x) = x"
| "raiz (N x i d) = x"
value "raiz (N e (N c (H a) (H d)) (N g (H f) (H h))) = e"
text {*
---------------------------------------------------------------------
Ejercicio 10. Definir la función
extremo_izquierda :: "'a arbol ⇒ 'a"
tal que (extremo_izquierda a) es el nodo más a la izquierda del árbol
a. Por ejemplo,
extremo_izquierda (N e (N c (H a) (H d)) (N g (H f) (H h))) = a
---------------------------------------------------------------------
*}
(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto migtermor marpoldia1 wilmorort lucnovdos juacabsou serrodcal pabrodmac ferrenseg jeamacpov paupeddeg *)
fun extremo_izquierda :: "'a arbol ⇒ 'a" where
"extremo_izquierda (H x) = x"
| "extremo_izquierda (N x i d) = extremo_izquierda i"
value "extremo_izquierda (N e (N c (H a) (H d)) (N g (H f) (H h))) = a"
(* bowma *)
fun extremo_izquierda_1 :: "'a arbol ⇒ 'a" where
"extremo_izquierda_1 (H t) = t"
| "extremo_izquierda_1 (N t i d) = hd (inOrden (N t i d))"
(* ivamenjim *)
(* Metaejercicio de demostración. Llamando teorema_13 al teorema del ejercicio 13 *)
lemma "extremo_izquierda a = extremo_izquierda_1 a"
by (induct a, simp_all add: aux_ej12_1 teorema_13)
text {*
---------------------------------------------------------------------
Ejercicio 11. Definir la función
extremo_derecha :: "'a arbol ⇒ 'a"
tal que (extremo_derecha a) es el nodo más a la derecha del árbol
a. Por ejemplo,
extremo_derecha (N e (N c (H a) (H d)) (N g (H f) (H h))) = h
---------------------------------------------------------------------
*}
(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto migtermor marpoldia1 wilmorort lucnovdos juacabsou pabrodmac serrodcal ferrenseg jeamacpov paupeddeg *)
fun extremo_derecha :: "'a arbol ⇒ 'a" where
"extremo_derecha (H x) = x"
| "extremo_derecha (N x i d) = extremo_derecha d"
value "extremo_derecha (N e (N c (H a) (H d)) (N g (H f) (H h))) = h"
(* bowma *)
fun extremo_derecha_1 :: "'a arbol ⇒ 'a" where
"extremo_derecha_1 (H t) = t"
| "extremo_derecha_1 (N t i d) = last (inOrden (N t i d))"
(* ivamenjim *)
(* Metaejercicio de demostración. Llamando teorema_12 al teorema del ejercicio 12 *)
lemma "extremo_derecha a = extremo_derecha_1 a"
by (induct a, simp_all add: aux_ej12_1 teorema_12)
text {*
---------------------------------------------------------------------
Ejercicio 12. Demostrar o refutar
last (inOrden a) = extremo_derecha a
---------------------------------------------------------------------
*}
(* danrodcha *)
lemma aux_ej12: "inOrden a ≠ []"
apply (induct a)
apply simp
apply simp
done
(* danrodcha pablucoto crigomgom wilmorort juacabsou serrodcal *)
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
have "last (inOrden (N x i d)) = last (inOrden i @ [x] @ inOrden d)"
by (simp only: inOrden.simps(2))
also have "… = last (inOrden d)" by (simp add: aux_ej12)
also have "… = extremo_derecha d" using HId by simp
also have "… = extremo_derecha (N x i d)" by simp
finally show "?P (N x i d)" by simp
qed
(* ivamenjim *)
lemma aux_ej12_1: "inOrden a ≠ []"
by (induct a) simp_all
(* ivamenjim marpoldia1 paupeddeg *)
(* Igual que la anterior, pero poniendo solo by simp en el primer have *)
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
have "last (inOrden (N x i d)) = last ((inOrden i) @ [x] @ (inOrden d))" by simp
also have "... = last (inOrden d)" by (simp add: aux_ej12_1)
also have "... = extremo_derecha d" using h2 by simp
finally show "last (inOrden (N x i d)) = extremo_derecha (N x i d)" by simp
qed
(* bowma *)
(* Casi lo mismo que el anterior,pero no hace falta suponer "?p i" *)
theorem "last (inOrden a) = extremo_derecha a" (is "?p a")
proof (induct a)
fix t
show "?p (H t)" by simp
next
fix t i d
assume HI: "?p d"
have "last (inOrden (N t i d)) = last (inOrden i @ [t] @ inOrden d)" by simp
also have "... = last (inOrden d)" by (simp add:aux_ej12)
also have "... = extremo_derecha d" using HI by simp
finally show "?p (N t i d)" by simp
qed
(* lucnovdos*)
(* El mismo que el anterior,pero sin usar patrones *)
theorem "last (inOrden a) = extremo_derecha a"
proof (induct a)
fix x ::"'a"
show "last (inOrden (H x)) = extremo_derecha (H x)" by simp
next
fix x ::"'a"
fix i d ::"'a arbol"
assume HI: "last (inOrden d) = extremo_derecha d"
have "last (inOrden (N x i d)) = last ((inOrden i) @ [x] @ (inOrden d))" by simp
also have "… = last (inOrden d)" by (simp add: aux_ej12)
also have "… = extremo_derecha d" using HI by simp
also have "… = extremo_derecha (N x i d)" by simp
finally show "last (inOrden (N x i d)) = extremo_derecha (N x i d)" by simp
qed
(* migtermor *)
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
fix h
show "?P (H h)" by simp
next
fix n i
fix d assume HId: "?P d"
have AUX: "¬ (inOrden d = [])" (is "?Q d")
proof (induct d)
fix hd
show "?Q (H hd)" by simp
next
fix nd
fix id assume HIid: "?Q id"
fix dd assume HIdd: "?Q dd"
show "?Q (N nd id dd)" using HIid HIdd by simp
qed
have "last (inOrden (N n i d)) = last (inOrden i @[n]@inOrden d)" by simp
also have "… = last (inOrden d)" using AUX by simp
also have "… = extremo_derecha d" using HId by simp
finally show "?P (N n i d)" by simp
qed
(* pabrodmac *)
lemma Aux_ej12: "inOrden a ≠ []"
by (induct a) auto
(* pabrodmac *)
theorem "last (inOrden a) = extremo_derecha a"
by (induct a)(auto simp add: Aux_ej12)
(* pabrodmac *)
lemma
fixes a ::"'b arbol"
shows "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "last (inOrden (N x i d)) = last((inOrden i)@ [x] @ (inOrden d))" by simp
also have "… =last(inOrden d)" by (simp add: Aux_ej12)
also have "… = extremo_derecha d" using h1 h2 by simp
also have "… = extremo_derecha (N x i d)" by simp
finally show ?thesis .
qed
qed
(* ferrenseg *)
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x l r
assume HI: "?P r"
show "?P (N x l r)"
proof -
have "last (inOrden (N x l r)) =
last (inOrden r @ [x] @ inOrden r)" by simp
also have "… = last (inOrden r)" by (simp add: inOrden)
also have "… = extremo_derecha r" using HI by simp
also have "… = extremo_derecha (N x l r)" by simp
finally show ?thesis .
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 13. Demostrar o refutar
hd (inOrden a) = extremo_izquierda a
---------------------------------------------------------------------
*}
(* danrodcha pablucoto crigomgom juacabsou serrodcal jeamacpov*)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
have "hd (inOrden (N x i d)) = hd (inOrden i @ [x] @ inOrden d)"
by (simp only: inOrden.simps(2))
also have "… = hd (inOrden i)" by (simp add: aux_ej12)
also have "… = extremo_izquierda i" using HIi by simp
also have "… = extremo_izquierda (N x i d)" by simp
finally show "?P (N x i d)" by simp
qed
(* bowma lucnovdos *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?p a")
proof (induct a)
fix t
show "?p (H t)" by simp
next
fix t i d
assume HI: "?p i"
have "hd (inOrden (N t i d)) = hd (inOrden i @ [t] @ inOrden d)" by simp
also have "… = hd (inOrden i)" by (simp add: aux_ej12)
also have "… = extremo_izquierda i" using HI by simp
finally show "?p (N t i d)" by simp
qed
(* migtermor *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
fix h
show "?P (H h)" by simp
next
fix n d
fix i assume HId: "?P i"
have AUX: "¬ (inOrden i = [])" (is "?Q i")
proof (induct i)
fix hi
show "?Q (H hi)" by simp
next
fix ni
fix ii assume HIid: "?Q ii"
fix di assume HIdd: "?Q di"
show "?Q (N ni ii di)" using HIid HIdd by simp
qed
have "hd (inOrden (N n i d)) = hd (inOrden i @[n]@inOrden d)" by simp
also have "… = hd (inOrden i)" using AUX by simp
also have "… = extremo_izquierda i" using HId by simp
finally show "?P (N n i d)" by simp
qed
(* ivamenjim marpoldia1 wilmorort paupeddeg *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
have "hd (inOrden (N x i d)) = hd ((inOrden i) @ [x] @ (inOrden d))" by simp
also have "... = hd (inOrden i)" by (simp add: aux_ej12_1)
also have "... = extremo_izquierda i" using h1 by simp
finally show "hd (inOrden (N x i d)) = extremo_izquierda (N x i d)" by simp
qed
(* pabrodmac *)
theorem "hd (inOrden a) = extremo_izquierda a"
by (induct a)(auto simp add: Aux_ej12)
(* pabrodmac *)
lemma
fixes a ::"'b arbol"
shows "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "hd (inOrden (N x i d)) = hd((inOrden i)@ [x] @ (inOrden d))" by simp
also have "… = hd (inOrden i)" by (simp add: Aux_ej12)
also have "… = extremo_izquierda i" using h1 h2 by simp
also have "… = extremo_izquierda (N x i d)" by simp
finally show ?thesis .
qed
qed
(* ferrenseg *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x l r
assume HI: "?P l"
show "?P (N x l r)"
proof -
have "hd (inOrden (N x l r)) =
hd (inOrden l @ [x] @ inOrden r)" by simp
also have "… = hd (inOrden l)" by (simp add: inOrden)
also have "… = extremo_izquierda l" using HI by simp
also have "… = extremo_izquierda (N x l r)" by simp
finally show ?thesis .
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 14. Demostrar o refutar
hd (preOrden a) = last (postOrden a)
---------------------------------------------------------------------
*}
(* danrodcha pabrodmac *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
fix x i d
show "?P (N x i d)" by simp
qed
(* danrodcha *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
have "hd (preOrden (N x i d)) = hd (x#preOrden i @ preOrden d)"
by (simp only: preOrden.simps(2))
also have "… = x" by simp
also have "… = last (postOrden i @ postOrden d @ [x])" by simp
also have "… = last (postOrden (N x i d))"
by (simp only: postOrden.simps(2))
finally show "?P (N x i d)" by simp
qed
(* pablucoto crigomgom bowma marpoldia1 wilmorort lucnovdos juacabsou jeamacpov *) (*Similar al anterior*)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HI1: "?P i"
assume HI2: "?P d"
have " hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d)" by simp
also have "... = x" by simp
also have "... = last ( postOrden i @ postOrden d @ [x]) " by simp
also have "... = last ( postOrden (N x i d) )" by simp
finally show "?P (N x i d)" by simp
qed
(* migtermor *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
fix h
show "?P (H h)" by simp
next
fix n i d
have "hd (preOrden (N n (i :: 'a arbol) (d :: 'a arbol))) = hd ([n]@preOrden i@preOrden d)"
by simp
(* Si no especifico que i y d son árboles, salta un error de tipo. Supongo que será por
no haber asumido hipótesis sobre ellos *)
also have "… = last (postOrden (N n i d))" by simp
show "?P (N n i d)" by simp
qed
(* ivamenjim serrodcal *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
have "hd (preOrden (N x i d)) = hd ([x] @ (preOrden i) @ (preOrden d))" by simp
also have "... = hd ([x])" by simp
finally show "hd (preOrden (N x i d)) = last (postOrden (N x i d))" by simp
qed
(* pabrodmac *)
theorem "hd (preOrden a) = last (postOrden a)"
by (induct a) auto
(* pabrodmac *)
lemma
fixes a ::"'b arbol"
shows "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "hd (preOrden (N x i d) )= x" by simp
also have "… = last (postOrden (N x i d))" by simp
finally show ?thesis .
qed
qed
(*Me he dado cuenta que no es necesario asumir ninguna hipótesis de inducción puesto que no es necesario utilizarlas, así que no se si está bien hecho puesto que no se aplicaría inducción *)
(* ferrenseg *)
theorem "hd (preOrden a) = last (postOrden a)"(is "?P a")
proof (cases a)
fix x
assume "a = H x"
then show "?P a" by simp
next
fix x l r
assume H: "a = N x l r"
show "?P a"
proof -
have "hd (preOrden a) = hd (preOrden (N x l r))" using H by simp
also have "… = hd (x # (preOrden l @ preOrden r))" by simp
also have "… = x" by simp
also have "… = last (postOrden l @ postOrden r @ [x])" by simp
also have "… = last (postOrden (N x l r))" by simp
also have "… = last (postOrden a)" using H by simp
finally show ?thesis .
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 15. Demostrar o refutar
hd (preOrden a) = raiz a
---------------------------------------------------------------------
*}
(* danrodcha *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
have "hd (preOrden (N x i d)) = hd (x#preOrden i @ preOrden d)"
by (simp only: preOrden.simps(2))
also have "… = x" by simp
also have "… = raiz (N x i d)" by simp
finally show "?P (N x i d)" by simp
qed
(* danrodcha pabrodmac *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
fix x i d
show "?P (N x i d)" by simp
qed
(* pablucoto crigomgom ivamenjim marpoldia1 wilmorort lucnovdos juacabsou serrodcal jeamacpov *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HI1: " ?P i"
assume HI2: " ?P d"
have " hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d) " by simp
also have "... = x" by simp
also have "... = raiz (N x i d)" by simp
finally show " ?P (N x i d)" by simp
qed
(* bowma *)
(* similar al anterior pero sin suponer "?p d" *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?p a")
proof (induct a)
fix t
show "?p (H t)" by simp
next
fix t i d
assume HI: "?p i"
have "hd (preOrden (N t i d)) = hd ([t] @ preOrden i @ preOrden d)" by simp
also have "… = t" by simp
also have "… = last (postOrden i @ postOrden d @ [t])" by simp
also have "… = last (postOrden (N t i d))" by simp
finally show "?p (N t i d)" by simp
qed
(* migtermor *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
fix h
show "?P (H h)" by simp
next
fix n i d
have "hd (preOrden (N n (i :: 'a arbol) (d :: 'a arbol))) = hd ([n]@preOrden i@preOrden d)"
by simp
also have "… = raiz (N n i d)" by simp
finally show "?P (N n i d)" by simp
qed
(* ivamenjim: sin usar patrones *)
theorem "hd (preOrden a) = raiz a"
proof (induct a)
fix x ::"'a"
show "hd (preOrden (H x)) = raiz (H x)" by simp
next
fix x ::"'a"
fix i ::"'a arbol" assume h1: "hd (preOrden i) = raiz i"
fix d ::"'a arbol" assume h2: "hd (preOrden d) = raiz d"
have "hd (preOrden (N x i d)) = hd ([x] @ (preOrden i) @ (preOrden d))" by simp
also have "... = hd ([x])" by simp
finally show "hd (preOrden (N x i d)) = raiz (N x i d)" by simp
qed
(* pabrodmac *)
theorem "hd (preOrden a) = raiz a"
by (induct a) auto
(* pabrodmac *)
lemma
fixes a ::"'b arbol"
shows "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "hd (preOrden (N x i d) )= x" by simp
also have "… = raiz (N x i d)" by simp
finally show ?thesis .
qed
qed
(*Me he dado cuenta que no es necesario asumir ninguna hipótesis de inducción puesto que no es necesario utilizarlas, así que no se si está bien hecho puesto que no se aplicaría inducción *)
(* ferrenseg *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (cases a)
fix x
assume "a = H x"
then show "?P a" by simp
next
fix x l r
assume H: "a = N x l r"
show "?P a"
proof -
have "hd (preOrden a) = hd (preOrden (N x l r))" using H by simp
also have "… = hd (x#(preOrden l @ preOrden r))" by simp
also have "… = x" by simp
also have "… = raiz (N x l r)" by simp
also have "… = raiz a" using H by simp
finally show ?thesis .
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 16. Demostrar o refutar
hd (inOrden a) = raiz a
---------------------------------------------------------------------
*}
(*crigomgom pablucoto bowma migtermor ivamenjim wilmorort lucnovdos juacabsou pabrodmac serrodcal ferrenseg jeamacpov *)
theorem "hd (inOrden a) = raiz a"
quickcheck
oops
(* danrodcha:
Auto Quickcheck found a counterexample:
a = N a⇩1 (H a⇩2) (H a⇩1)
Evaluated terms:
hd (inOrden a) = a⇩2
raiz a = a⇩1 *)
(* ivamenjim marpoldia1 *)
theorem "hd (inOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
have "hd (inOrden (N x i d)) = hd ((inOrden i) @ [x] @ (inOrden d))" by simp
also have "... = hd (inOrden i)" by (simp add: aux_ej12_1)
(* Perdemos la x, luego se refuta el enunciado del teorema *)
qed
text {*
---------------------------------------------------------------------
Ejercicio 17. Demostrar o refutar
last (postOrden a) = raiz a
---------------------------------------------------------------------
*}
(* danrodcha pabrodmac*)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
fix x i d
show "?P (N x i d)" by simp
qed
(* danrodcha *)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
have "last (postOrden (N x i d)) = last (postOrden i @ postOrden d @ [x])"
by (simp only: postOrden.simps(2))
also have "… = x" by simp
also have "… = raiz (N x i d)" by (simp only: raiz.simps(2))
finally show "?P (N x i d)" by simp
qed
(* pablucoto crigomgom ivamenjim marpoldia1 wilmorort lucnovdos juacabsou serrodcal jeamacpov *) (*Similar al anterior*)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a )
fix x
show "?P (H x)" by simp
next
fix x i d
assume HI1: "?P i"
assume HI2: "?P d"
have "last (postOrden (N x i d)) = last ( postOrden i @ postOrden d @ [x])" by simp
also have "... = x" by simp
also have "... = raiz (N x i d) " by simp
finally show " ?P (N x i d)" by simp
qed
(* bowma *)
(* También sin usar el supuesto "?p d" *)
theorem "last (postOrden a) = raiz a" (is "?p a")
proof (induct a)
fix t
show "?p (H t)" by simp
next
fix t i d
assume "?p i"
(* si quito este supuesto, hay error pero no sé dónde se lo está usando *)
have "last (postOrden (N t i d)) = last (postOrden i @ postOrden d @ [t])" by simp
also have "... = t" by simp
also have "... = raiz (N t i d)" by simp
finally show "?p (N t i d)" by simp
qed
(* migtermor *)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
fix h
show "?P (H h)" by simp
next
fix n i d
have "last (postOrden (N n (i :: 'a arbol) (d :: 'a arbol))) =
last (postOrden i@postOrden d@[n])" by simp
also have "… = raiz (N n i d)" by simp
finally show "?P (N n i d)" by simp
qed
(* ivamenjim: sin usar patrones *)
theorem "last (postOrden a) = raiz a"
proof (induct a)
fix x::"'a"
show "last (postOrden (H x)) = raiz (H x)" by simp
next
fix x::"'a"
fix i::"'a arbol" assume h1: "last (postOrden i) = raiz i"
fix d::"'a arbol" assume h2: "last (postOrden d) = raiz d"
have "last (postOrden (N x i d)) = last ((postOrden i) @ (postOrden d) @ [x])" by simp
also have "... = last ([x])" by simp
finally show "last (postOrden (N x i d)) = raiz (N x i d)" by simp
qed
(*pabrodmac*)
theorem "last (postOrden a) = raiz a"
by (induct a) auto
(*pabrodmac*)
lemma
fixes a ::"'b arbol"
shows "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "last (postOrden (N x i d))= x" by simp
also have "… = raiz (N x i d)" by simp
finally show ?thesis .
qed
qed
(*Me he dado cuenta que no es necesario asumir ninguna hipótesis de inducción puesto que no es necesario utilizarlas, así que no se si está bien hecho puesto que no se aplicaría inducción *)
(* ferrenseg *)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (cases a)
fix x
assume "a = H x"
then show "?P a" by simp
next
fix x l r
assume H: "a = N x l r"
show "?P a"
proof -
have "last (postOrden a) = last (postOrden (N x l r))" using H by simp
also have "… = last (postOrden l @ preOrden r @ [x])" by simp
also have "… = x" by simp
also have "… = raiz a" using H by simp
finally show ?thesis .
qed
qed
end