Diferencia entre revisiones de «Relación 8»
De Razonamiento automático (2016-17)
m (Texto reemplazado: «isar» por «isabelle») |
|||
Línea 1: | Línea 1: | ||
− | <source lang=" | + | <source lang="isabelle"> |
chapter {* R8: Deducción natural proposicional en Isabelle/HOL *} | chapter {* R8: Deducción natural proposicional en Isabelle/HOL *} | ||
Revisión actual del 13:11 16 jul 2018
chapter {* R8: Deducción natural proposicional en Isabelle/HOL *}
theory R8_Deduccion_natural_proposicional
imports Main
begin
text {*
Demostrar o refutar los siguientes lemas usando sólo las reglas
básicas de deducción natural de la lógica proposicional, de los
cuantificadores y de la igualdad:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
· allI: ⟦∀x. P x; P x ⟹ R⟧ ⟹ R
· allE: (⋀x. P x) ⟹ ∀x. P x
· exI: P x ⟹ ∃x. P x
· exE: ⟦∃x. P x; ⋀x. P x ⟹ Q⟧ ⟹ Q
· refl: t = t
· subst: ⟦s = t; P s⟧ ⟹ P t
· trans: ⟦r = s; s = t⟧ ⟹ r = t
· sym: s = t ⟹ t = s
· not_sym: t ≠ s ⟹ s ≠ t
· ssubst: ⟦t = s; P s⟧ ⟹ P t
· box_equals: ⟦a = b; a = c; b = d⟧ ⟹ a: = d
· arg_cong: x = y ⟹ f x = f y
· fun_cong: f = g ⟹ f x = g x
· cong: ⟦f = g; x = y⟧ ⟹ f x = g y
*}
text {*
Se usarán las reglas notnotI, mt y not_ex que demostramos a continuación.
*}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
lemma no_ex: "¬(∃x. P(x)) ⟹ ∀x. ¬P(x)"
by auto
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
¬q ⟶ ¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
(* marcarmor13 *)
--"usando un supuesto ¬¬p"
lemma ejercicio_1:
assumes 1: "¬q ⟶ ¬p" and
2: "¬¬p"
shows "p ⟶ q"
proof -
have 3: "¬¬q" using 1 2 by (rule mt)
have 4: "q" using 3 by (rule notnotD)
show "p ⟶ q" using 4 by (rule impI)
qed
(* pablucoto jeamacpov migtermor *)
lemma ejercicio_1_2:
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
proof -
{assume "p"
hence "¬¬p" by (rule notnotI)
with `¬q ⟶ ¬p` have "¬¬q" by (rule mt)
hence "q" by (rule notnotD)}
then show "p ⟶ q" by (rule impI)
qed
(* ivamenjim serrodcal anaprarod marpoldia1 manmorjim1 crigomgom juancabsou ferrenseg fraortmoy rubgonmar *)
lemma ejercicio_1_3:
assumes 1: "¬q ⟶ ¬p"
shows "p ⟶ q"
proof -
{assume 2:"p"
then have 3: "¬¬p" by (rule notnotI)
have 4: "¬¬q" using 1 3 by (rule mt)
then have 5: "q" by (rule notnotD)}
thus "p ⟶ q" by (rule impI)
qed
(* bowma *)
lemma ejercicio_1_4:
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
proof -
{assume "p"
hence "¬¬p" by (rule notnotI)
with assms have "¬¬q" by (rule mt)
then have "q" by (rule notnotD)}
thus "p ⟶ q" by (rule impI)
qed
(* bowma danrodcha paupeddeg pabrodmac fracorjim1 *)
lemma ejercicio_1_5:
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
proof
assume "p"
hence "¬¬p" by (rule notnotI)
with assms have "¬¬q" by (rule mt)
thus "q" by (rule notnotD)
qed
(* josgarsan *)
lemma ejercicio_1_6:
assumes 1: "¬q ⟶ ¬p"
shows "p ⟶ q"
proof (cases)
assume "p"
then show "p⟶q" using 1 by simp
next
assume "¬p"
then show "p⟶q" by simp
qed
(* dancorgar *)
lemma ejercicio_1_7:
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
proof-
{assume "p"
assume "¬q"
have "¬p" using assms(1) `¬q` by (rule mp)}
thus "p ⟶ q"
apply simp
apply (rule ccontr)
apply simp
done
qed
(* antsancab1 *)
lemma ejercicio_1:
assumes 1: "¬q ⟶ ¬p"
shows "p ⟶ q"
proof -
{assume p
hence "¬¬p" by (rule notnotI)
with 1 have "¬¬q" by (rule mt)
hence "q" by (rule notnotD)
}
then show "p ⟶ q" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
¬(¬p ∧ ¬q) ⊢ p ∨ q
------------------------------------------------------------------ *}
(* marcarmor13 *)
-- "usando un supuesto ¬p ∧ ¬q"
lemma ejercicio_2:
assumes 1: "¬(¬p ∧ ¬q)" and
2: "¬p ∧ ¬q"
shows "p ∨ q"
proof -
have 3: "p" using 1 2 by (rule notE)
show "p ∨ q" using 3 by (rule disjI1)
qed
(* Comentario: No se corresponde con el enunciado. *)
(* ivamenjim serrodcal marpoldia1 antsancab1 *)
lemma ejercicio_2_2:
assumes 1: "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof -
{ assume 2: "(¬p ∧ ¬q)"
have "p" using 1 2 by (rule notE)
then have "p ∨ q" by (rule disjI1)}
thus "p ∨ q" by auto
qed
(* Comentario: Usa auto. *)
(* pablucoto jeamacpov *)
lemma aux_ejercicio2:
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof
{ assume "p"
hence "p ∨ q" by (rule disjI1)
with `¬(p ∨ q)` have "False" by (rule notE)}
then show "¬p" ..
next
{ assume "q"
hence "p ∨ q" by (rule disjI2)
with `¬(p ∨ q)` have "False" by (rule notE)}
then show "¬q" ..
qed
lemma ejercicio_2_3:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof -
{ assume 2: "¬(p ∨ q)"
hence "¬p ∧ ¬q" by (rule aux_ejercicio2)
with `¬(¬p ∧ ¬q)` have "False" ..}
then show "p ∨ q" by (rule ccontr)
qed
(* danrodcha bowma *)
lemma ej_2:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof -
have "¬p ∨ p" by (rule excluded_middle)
thus "p ∨ q"
proof (rule disjE)
{ assume "¬p"
have "¬q ∨ q" by (rule excluded_middle)
thus "p ∨ q"
proof (rule disjE)
{ assume "¬q"
with `¬p` have "¬p ∧ ¬q" by (rule conjI)
with assms show "p ∨ q" by (rule notE)}
next
{ assume "q"
then show "p ∨ q" by (rule disjI2)}
qed}
next
{ assume "p"
thus "p ∨ q" by (rule disjI1)}
qed
qed
(* anaprarod crigomgom juancabsou ferrenseg fraortmoy fracorjim1 rubgonmar *)
(* Igual que el anterior pero con etiquetas *)
lemma ejercicio_2_4:
assumes 0: "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof-
have "¬p ∨ p" by (rule excluded_middle)
thus "p ∨ q"
proof (rule disjE)
{ assume 1: "¬p"
have "¬q ∨ q" by (rule excluded_middle)
thus "p ∨ q"
proof (rule disjE)
{ assume 2: "¬q"
have 3: "(¬p ∧ ¬q)" using 1 2 by (rule conjI)
have "p ∨ q" using 0 3 by (rule notE)
thus "p ∨ q" by this}
next
{ assume 4: "q"
have "p ∨ q" using 4 by (rule disjI2)
thus "p ∨ q" by this}
qed}
next
{ assume 5: "p"
have "p ∨ q" using 5 by (rule disjI1)
thus "p ∨ q" by this}
qed
qed
(* migtermor *)
lemma lem:
shows "p ∨ ¬p"
proof -
{assume 1: "¬(p∨¬p)"
{assume 2: "p"
then have 3: "p∨¬p" by (rule disjI1)
also have 4: "False" using 1 3 by (rule notE)}
then have 5: "¬p" by (rule notI)
then have 6: "p∨¬p" by (rule disjI2)
also have 7: "False" using 1 6 by (rule notE)}
thus "p∨¬p" by (rule ccontr)
qed
lemma ejercicio_2_5:
assumes 1: "¬(¬p∧¬q)"
shows "p∨q"
proof -
have 2: "p∨¬p" by (rule lem)
moreover
{assume 3: p
then have 4: "p∨q" by (rule disjI1)}
moreover
{assume 6: "¬p"
{assume 7: "¬q"
also have 8: "¬p∧¬q" using 6 7 by (rule conjI)
have 9: "False" using 1 8 by (rule notE)}
then have 10: "q" by (rule ccontr)
then have 11: "p∨q" by (rule disjI2)}
ultimately show "p∨q" by (rule disjE)
qed
(* paupeddeg pabrodmac *)
lemma aux1:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof -
have "¬p ∨ p" by (rule excluded_middle)
thus "¬p ∨ ¬q"
proof
{assume "¬p"
thus "¬p ∨ ¬q" by (rule disjI1)}
next
{assume "p"
have "¬q"
proof
{assume "q"
have "(p ∧ q)" using `p` `q` by (rule conjI)
show "False" using `¬(p ∧ q)` `p ∧ q` by (rule notE)}
qed
thus "¬p ∨ ¬q" by (rule disjI2)}
qed
qed
lemma ejercicio_2_5b:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof -
have "¬¬p ∨ ¬¬q" using assms by (rule aux1)
moreover
{assume "¬¬p"
hence "p" by (rule notnotD)
hence "p ∨ q" by (rule disjI1) }
moreover
{assume "¬¬q"
hence "q" by (rule notnotD)
hence "p ∨ q" by (rule disjI2) }
ultimately show "p ∨ q" by (rule disjE)
qed
(* pabrodmac *)
lemma ejercicio_2_6:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof -
have "¬¬p ∨ ¬¬q" using assms by (rule Meson.not_conjD)
moreover
{ assume "¬¬p"
hence "p" by (rule notnotD)
hence "p ∨ q" by (rule disjI1) }
moreover
{ assume "¬¬q"
then have "q" by (rule notnotD)
hence "p ∨ q" by (rule disjI2) }
ultimately show "p ∨ q" by (rule disjE)
qed
(* dancorgar *)
lemma ejercicio_2_7:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof-
{assume "(¬p ∧ ¬q)"
have "p" using assms `(¬p ∧ ¬q)` by (rule notE)
then have "p ∨ q" by (rule disjI1)}
then show "p ∨ q"
apply simp
apply (rule ccontr)
apply simp
done
qed
(* josgarsan *)
lemma ejercicio_2_8:
assumes 1: " ¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof (cases)
assume "p"
then show "p ∨ q" using disjI1 by simp
next
assume "¬p"
then have "q" using 1 conjunct2 by simp
then show "p ∨ q" using disjI2 by simp
qed
(* Comentario: Uso de simp. *)
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
¬(¬p ∨ ¬q) ⊢ p ∧ q
------------------------------------------------------------------ *}
(* marcarmor13 serrodcal marpoldia1 antsancab1 *)
--"usando un supuesto ¬p ∨ ¬q"
lemma ejercicio_3:
assumes 1: "¬(¬p ∨ ¬q)" and
2:"¬p ∨ ¬q"
shows "p ∧ q"
proof-
have 3: "p"using 1 2 by (rule notE)
have 4: "q"using 1 2 by (rule notE)
show "p ∧ q" using 3 4 by (rule conjI)
qed
(* Comentario: Uso de la negación de la hipótesis. *)
(* pablucoto jeamacpov *)
lemma ejercicio_3_2:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof
have "¬¬p ∧ ¬¬q" using assms(1) by (rule aux_ejercicio2)
hence "¬¬p" by (rule conjunct1)
show "p" using `¬¬p` by (rule notnotD)
next
have "¬¬p ∧ ¬¬q" using assms(1) by (rule aux_ejercicio2)
have "¬¬q" using `¬¬p ∧ ¬¬q` by (rule conjunct2)
show "q" using `¬¬q` by (rule notnotD)
qed
(* ivamenjim *)
lemma aux: "¬(p ∨ q) ⟹ ¬p ∧ ¬q"
by auto
lemma ejercicio_3_3:
assumes 1: "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof
have 2: "¬¬p ∧ ¬¬q" using 1 by (rule aux)
have 3: "¬¬p" using 2 ..
have 4: "¬¬q" using 2 ..
show "p" using 3 by (rule notnotD)
show "q" using 4 by (rule notnotD)
qed
(* Comentario: Uso de auxiliar con auto. *)
(* danrodcha migtermor bowma *)
lemma ej_3:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof (rule conjI)
{ assume "¬p"
hence "¬p ∨ ¬q" by (rule disjI1)
with assms have False by (rule notE)}
then show "p" by (rule ccontr)
{ assume "¬q"
hence "¬p ∨ ¬q" by (rule disjI2)
with assms have False by (rule notE)}
then show "q" by (rule ccontr)
qed
(* anaprarod crigomgom juancabsou ferrenseg fraortmoy fracorjim1 rubgonmar *)
(* Igual que el anterior pero con etiquetas *)
lemma ejercicio_3_4:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof (rule conjI)
{assume 1: "¬p"
hence 2: "¬p ∨ ¬q" by (rule disjI1)
have "False" using assms 2 by (rule notE)}
thus 3: "p" by (rule ccontr)
{assume 4: "¬q"
hence 5: "¬p ∨ ¬q" by (rule disjI2)
have "False" using assms 5 by (rule notE)}
thus 6: "q" by (rule ccontr)
qed
(* paupeddeg pabrodmac *)
lemma aux2:
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof -
have "¬p ∨ p" by (rule excluded_middle)
thus "¬p ∧ ¬q"
proof
{assume "¬p"
have "¬q ∨ q" by (rule excluded_middle)
thus "¬p ∧ ¬q"
proof
{assume "¬q"
show "¬p ∧ ¬q" using `¬p` `¬q` by (rule conjI)}
{assume "q"
hence "(p ∨ q)" by (rule disjI2)
have "False" using `¬(p ∨ q)` `p ∨ q` by (rule notE)
thus "¬p ∧ ¬q" by (rule FalseE) }
qed}
{assume "p"
hence "(p ∨ q)" by (rule disjI1)
have "False" using `¬(p ∨ q)` `p ∨ q` by (rule notE)
thus "¬p ∧ ¬q" by (rule FalseE) }
qed
qed
lemma ejercicio_3_5:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof -
have "¬¬p ∧ ¬¬q" using assms by (rule aux2)
hence "¬¬p" by (rule conjunct1)
hence "p" by (rule notnotD)
have "¬¬q" using `¬¬p ∧ ¬¬q` by (rule conjunct2)
hence "q" by (rule notnotD)
show "p ∧ q" using `p` `q` by (rule conjI)
qed
(* pabrodmac *)
lemma ejercicio_3_6:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof
have "¬¬p ∧ ¬¬q" using assms by (rule Meson.not_disjD)
hence "¬¬p" by (rule conjunct1)
show "p" using `¬¬p` by (rule notnotD)
next
have "¬¬p ∧ ¬¬q" using assms by (rule Meson.not_disjD)
hence "¬¬q" by (rule conjunct2)
show "q" using `¬¬q` by (rule notnotD)
qed
(* pabrodmac *)
lemma ejercicio_3_7:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof
have "¬¬p ∧ ¬¬q" using assms by (rule Meson.not_disjD)
have "¬¬p" using `¬¬p ∧ ¬¬q` by (rule conjunct1)
have "¬¬q" using `¬¬p ∧ ¬¬q` by (rule conjunct2)
show "p" using `¬¬p` by (rule notnotD)
show "q" using `¬¬q` by (rule notnotD)
qed
(* dancorgar *)
lemma ejercicio_3_8:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof -
{assume "(¬p ∨ ¬q)"
have "p" using assms `(¬p ∨ ¬q)` by (rule notE)
have "q" using assms `(¬p ∨ ¬q)` by (rule notE)
have "p ∧ q" using `p` `q` by (rule conjI)}
then show "p ∧ q"
apply simp
apply (rule ccontr)
apply simp
done
qed
(* josgarsan *)
lemma ejercicio_3_9:
assumes 1: "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof (rule ccontr)
assume "¬(p ∧ q)"
then show False using 1 by simp
qed
(* Comentario: Uso de simp. *)
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
¬(p ∧ q) ⊢ ¬p ∨ ¬q
------------------------------------------------------------------ *}
(* marcarmor13 serrodcal *)
--"usando un supuesto p ∧ q"
lemma ejercicio_4_1:
assumes 1: " ¬(p ∧ q)" and
2: "p ∧ q"
shows "¬p ∨ ¬q"
proof -
have 3: "¬p"using 1 2 by (rule notE)
show "¬p ∨ ¬q" using 3 by (rule disjI1)
qed
(* Comentario: Uso de la negación de la hipótesis.*)
(* ivamenjim marpoldia1 ferrenseg fraortmoy rubgonmar antsancab1 *)
lemma ejercicio_4_2:
assumes 1: "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof -
{assume 2:"(p ∧ q)"
have "¬p" using 1 2 by (rule notE)
then have "¬p ∨ ¬q" by (rule disjI1)}
thus "¬p ∨ ¬q" by auto
qed
(* Comentario: Uso de auto. *)
(* pablucoto jeamacpov crigomgom juancabsou *)
lemma ejercicio_4_3:
assumes " ¬(p ∧ q)"
shows " ¬p ∨ ¬q"
proof -
{ assume 2: "¬(¬p ∨ ¬q)"
hence "p ∧ q" by (rule ejercicio_3_2)
with assms(1) have "False" .. }
then show " ¬p ∨ ¬q" by (rule ccontr)
qed
(*danrodcha anaprarod bowma *)
lemma ej_4:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof (rule ccontr)
assume "¬ (¬ p ∨ ¬ q)"
hence "p ∧ q" by (rule ej_3)
with assms show False by (rule notE)
qed
(* anaprarod *)
(* sin usar el ejercicio anterior *)
lemma ejercicio_4_4:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof -
have "¬p ∨ p" by (rule excluded_middle)
thus "¬p ∨ ¬q"
proof (rule disjE)
{assume "¬p"
thus "¬p ∨ ¬q" by (rule disjI1)}
next
{assume 1:"p"
have "¬q ∨ q" by (rule excluded_middle)
thus "¬p ∨ ¬q"
proof (rule disjE)
{assume "¬q"
thus "¬p ∨ ¬q" by (rule disjI2)}
next
{assume 2:"q"
have 3:"p ∧ q" using 1 2 by (rule conjI)
have "¬p ∨ ¬q" using assms 3 by (rule notE)
thus "¬p ∨ ¬q" by this}
qed}
qed
qed
(* migtermor *)
lemma ejercicio_4_5:
assumes 1: "¬(p∧q)"
shows "¬p∨¬q"
proof -
have 2: "p∨¬p" by (rule lem)
moreover
{assume 3: "p"
{assume 4: "q"
also have 5: "p∧q" using 3 4 by (rule conjI)
have 6: "False" using assms 5 by (rule notE)}
then have 7: "¬q" by (rule notI)
then have 8: "¬p∨¬q" by (rule disjI2)}
moreover
{assume 9: "¬p"
then have "¬p∨¬q" by (rule disjI1)}
ultimately show "¬p∨¬q" by (rule disjE)
qed
(* paupeddeg pabrodmac*)
lemma ejercicio_4_6:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof -
have "¬p ∨ p" by (rule excluded_middle)
thus "¬p ∨ ¬q"
proof
{ assume "¬p"
thus "¬p ∨ ¬q" by (rule disjI1)}
next
{ assume "p"
have "¬q"
proof
{ assume "q"
have "(p ∧ q)" using `p` `q` by (rule conjI)
show "False" using `¬(p ∧ q)` `p ∧ q` by (rule notE)}
qed
thus "¬p ∨ ¬q" by (rule disjI2)}
qed
qed
(* pabrodmac*)
lemma ejercicio_4_7:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof -
show "¬p ∨ ¬q" using assms by (rule Meson.not_conjD)
qed
(* dancorgar *)
lemma ejercicio_4_8:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof-
{assume "(p ∧ q)"
have "¬p" using assms `(p ∧ q)` by (rule notE)
then have "¬p ∨ ¬q" by (rule disjI1)}
then show "¬p ∨ ¬q"
apply simp
apply (rule ccontr)
apply simp
done
qed
(* josgarsan *)
lemma ejercicio_4:
assumes 1: "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof (rule ccontr)
assume "¬(¬ p ∨ ¬ q)"
then show False using 1 by simp
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
⊢ (p ⟶ q) ∨ (q ⟶ p)
------------------------------------------------------------------ *}
(* marcarmor13 jeamacpov serrodcal juancabsou *)
--"usando un supuesto q"
lemma ejercicio_5_1:
assumes 1: "q"
shows "(p ⟶ q) ∨ (q ⟶ p)"
proof-
have 2: "p ⟶ q" using 1 by (rule impI)
show "(p ⟶ q) ∨ (q ⟶ p)" using 2 by (rule disjI1)
qed
(* Comentario: Hipótesis extra.*)
(* ivamenjim marpoldia1 ferrenseg fraortmoy rubgonmar antsancab1 *)
lemma ejercicio_5_2:
shows "(p ⟶ q) ∨ (q ⟶ p)"
proof -
{assume 1:"q"
have "(p ⟶ q)" using 1 by (rule impI)
then have "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1)}
thus "(p ⟶ q) ∨ (q ⟶ p)" by auto
qed
(* Comentario: Uso de auto. *)
(* danrodcha pablucoto *)
lemma ej_5:
shows "(p ⟶ q) ∨ (q ⟶ p)"
proof -
have "¬p ∨ p" by (rule excluded_middle)
thus "(p ⟶ q) ∨ (q ⟶ p)"
proof (rule disjE)
{ assume "¬p"
have "¬q ∨ q" by (rule excluded_middle)
thus "(p ⟶ q) ∨ (q ⟶ p)"
proof (rule disjE)
{assume "¬q"
hence "¬p ⟶ ¬q" by (rule impI)
{ assume "q"
hence "¬¬q" by (rule notnotI)
with `¬p ⟶ ¬q` have "¬¬p" by (rule mt)
hence "p" by (rule notnotD)}
hence "q ⟶ p" by (rule impI)
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)}
next
{assume "q"
hence "(p ⟶ q)" by (rule impI)
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1)}
qed}
next
{assume "p"
hence "q ⟶ p" by (rule impI)
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)}
qed
qed
(* anaprarod *)
(* Muy parecida a la anterior pero con algunas etiquetas
y con algunas implicaciones más detalladas *)
lemma ejercicio_5_3:
shows "(p ⟶ q) ∨ (q ⟶ p)"
proof-
have "¬p ∨ p" by (rule excluded_middle)
thus "(p ⟶ q) ∨ (q ⟶ p)"
proof (rule disjE)
{assume "¬p"
have "¬q ∨ q" by (rule excluded_middle)
thus "(p ⟶ q) ∨ (q ⟶ p)"
proof (rule disjE)
{assume "¬q"
hence 1: "¬p ⟶ ¬q" by (rule impI)
{assume "q"
hence 2: "¬¬q" by (rule notnotI)
have "¬¬p" using 1 2 by (rule mt)
hence "p" by (rule notnotD)}
hence "q ⟶ p" by (rule impI)
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)}
next
{assume 3: "q"
{assume "p"
have "q" using 3 by this}
hence "p ⟶ q" by (rule impI)
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1)}
qed}
next
{assume 4: "p"
{assume "q"
have "p" using 4 by this}
hence "q ⟶ p" by (rule impI)
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)}
qed
qed
(* migtermor *)
lemma ejercicio_5_4:
shows "(p ⟶ q) ∨ (q ⟶ p)"
proof -
have 1: "q∨¬q" by (rule lem)
moreover
{assume 2: "q"
have 3: "p ⟶ q" using 2 by (rule impI)
then have 4: "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1)}
moreover
{assume 5: "¬q"
have 6: "¬p⟶¬q" using 5 by (rule impI)
then have 7: "q⟶p" by (rule ejercicio_1_2)
then have "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)}
ultimately show "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjE)
qed
(* paupeddeg pabrodmac crigomgom bowma *)
lemma aux3:
assumes "¬q ∨ p"
shows "q ⟶ p"
proof -
note `¬q ∨ p`
moreover
{assume "¬q"
have "q ⟶ p"
proof
assume "q"
show "p" using `¬q``q`by (rule notE)
qed}
moreover
{assume "p"
have "q ⟶ p"
proof
assume "q"
show "p" using `p` by this
qed}
ultimately show "q ⟶ p" by (rule disjE)
qed
lemma ejercicio_5_5:
shows "(p ⟶ q) ∨ (q ⟶ p)"
proof -
have "¬p ∨ p" by (rule excluded_middle)
thus "(p ⟶ q) ∨ (q ⟶ p)"
proof
{assume "¬p"
hence "¬p ∨ q" by (rule disjI1)
hence "p ⟶ q" by (rule aux3)
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1)}
{assume "p"
hence "¬q ∨ p" by (rule disjI2)
hence "q ⟶ p" by (rule aux3)
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)}
qed
qed
(*pabrodmac*)
lemma ejercicio_5_6:
"(p ⟶ q) ∨ (q ⟶ p)"
proof -
have "¬(p ⟶ q) ∨ (p ⟶ q)" by (rule excluded_middle)
thus "(p ⟶ q) ∨ (q ⟶ p)"
proof
{ assume "¬(p ⟶ q)"
hence "p ∧ ¬ q" by (rule Meson.not_impD)
have "(q ⟶ p)"
proof
assume "q"
show "p" using `p ∧ ¬ q` by (rule conjunct1)
qed
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2) }
next
{ assume "p ⟶ q"
then show "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1) }
qed
qed
(* josgarsan *)
lemma ejercicio_5_7:
shows "(p ⟶ q) ∨ (q ⟶ p)"
proof (cases)
assume "p"
then show "(p ⟶ q) ∨ (q ⟶ p)" by simp
next
assume "¬p"
then show "(p ⟶ q) ∨ (q ⟶ p)" by simp
qed
(* Comentario: Uso de simp. *)
(* dancorgar *)
lemma ejercicio_5_8:
shows "(p ⟶ q) ∨ (q ⟶ p)"
proof (cases)
assume "p"
have "(q ⟶ p)" using `p` by (rule impI)
then show "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)
next
assume "¬p"
have "(p ⟶ q)" using `¬p` by simp
then show "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1)
qed
end