Diferencia entre revisiones de «Relación 1»
De Razonamiento automático (2016-17)
Línea 19: | Línea 19: | ||
− | (*wilmorort, pablucoto,marcarmor13, crigomgom, rubgonmar*) | + | (*wilmorort, pablucoto,marcarmor13, crigomgom, rubgonmar, jeamacpov *) |
fun factorial1 :: "nat ⇒ nat" where | fun factorial1 :: "nat ⇒ nat" where | ||
"factorial1 0 = 1 " | "factorial1 0 = 1 " | ||
Línea 55: | Línea 55: | ||
− | (*marcarmor13, manmorjim1*) | + | (*marcarmor13, manmorjim1, jeamacpov *) |
fun longitud1 :: "'a list ⇒ nat" where | fun longitud1 :: "'a list ⇒ nat" where | ||
"longitud1 [] = 0 " | "longitud1 [] = 0 " | ||
Línea 82: | Línea 82: | ||
fun intercambia :: "'a × 'b ⇒ 'b × 'a" where | fun intercambia :: "'a × 'b ⇒ 'b × 'a" where | ||
"intercambia (x,y) = (y,x) " | "intercambia (x,y) = (y,x) " | ||
+ | |||
+ | (* jeamacpov *) | ||
+ | fun intercambia2 :: "'a × 'b ⇒ 'b × 'a" where | ||
+ | "intercambia2 (x,y) = (snd (x,y), fst (x,y))" | ||
+ | |||
value "intercambia (u,v)"-- "= (v,u)" | value "intercambia (u,v)"-- "= (v,u)" | ||
+ | value "intercambia2 (u,v) = (v,u)" | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 121: | Línea 127: | ||
"inversa4 [] = []" | | "inversa4 [] = []" | | ||
"inversa4 xs = (last xs)#(inversa4(butlast xs)) " | "inversa4 xs = (last xs)#(inversa4(butlast xs)) " | ||
+ | |||
+ | (* jeamacpov *) | ||
+ | fun inversa5 :: "'a list ⇒ 'a list" where | ||
+ | "inversa5 [] = []" | ||
+ | | "inversa5 xs = (drop (length(xs)-1) xs)@inversa5(take (length(xs)-1) xs)" | ||
+ | |||
value "inversa [a,d,c]" -- "= [c,d,a]" | value "inversa [a,d,c]" -- "= [c,d,a]" | ||
Línea 132: | Línea 144: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | (*wilmorort,marcarmor13, crigomgom, pablucoto, rubgonmar, manmorjim1*) | + | (*wilmorort,marcarmor13, crigomgom, pablucoto, rubgonmar, manmorjim1, jeamacpov *) |
fun repite :: "nat ⇒ 'a ⇒ 'a list" where | fun repite :: "nat ⇒ 'a ⇒ 'a list" where | ||
"repite 0 x = [] " | | "repite 0 x = [] " | | ||
Línea 162: | Línea 174: | ||
| "conc1 (x#xs) ys = x#(conc1 xs ys)" | | "conc1 (x#xs) ys = x#(conc1 xs ys)" | ||
− | (*pablucoto*) | + | (*pablucoto, jeamacpov *) |
fun conc2 :: "'a list ⇒ 'a list ⇒ 'a list" where | fun conc2 :: "'a list ⇒ 'a list ⇒ 'a list" where | ||
"conc2 [] ys = ys" | | "conc2 [] ys = ys" | | ||
Línea 192: | Línea 204: | ||
| "coge1 (Suc n) (x#xs) = x#(coge1 n xs)" | | "coge1 (Suc n) (x#xs) = x#(coge1 n xs)" | ||
− | (*crimgomgom*) | + | (*crimgomgom, jeamacpov*) |
fun coge2 :: "nat ⇒ 'a list ⇒ 'a list" where | fun coge2 :: "nat ⇒ 'a list ⇒ 'a list" where | ||
"coge2 0 _ = []"| | "coge2 0 _ = []"| | ||
Línea 227: | Línea 239: | ||
"elimina2 0 xs = xs" | | "elimina2 0 xs = xs" | | ||
"elimina2 n (x#xs) = (if n>length(x#xs) then [] else (elimina2 (n-1) xs))" | "elimina2 n (x#xs) = (if n>length(x#xs) then [] else (elimina2 (n-1) xs))" | ||
+ | |||
+ | (* jeamacpov *) | ||
+ | fun elimina3 :: "nat ⇒ 'a list ⇒ 'a list" where | ||
+ | "elimina3 0 xs = xs" | ||
+ | | "elimina3 n xs = (elimina3 (n-1) ((drop 1 xs))) " | ||
+ | |||
value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]" | value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]" | ||
Línea 247: | Línea 265: | ||
"esVacia1 xs = (xs = [])" | "esVacia1 xs = (xs = [])" | ||
− | (*pablucoto*) | + | (*pablucoto, jeamacpov *) |
fun esVacia2 :: "'a list ⇒ bool" where | fun esVacia2 :: "'a list ⇒ bool" where | ||
"esVacia2 xs = (if xs=[] then True else False)" | "esVacia2 xs = (if xs=[] then True else False)" | ||
Línea 286: | Línea 304: | ||
fun inversaAc2 :: "'a list ⇒ 'a list" where | fun inversaAc2 :: "'a list ⇒ 'a list" where | ||
"inversaAc2 xs = inversaAcAux2 [] xs " | "inversaAc2 xs = inversaAcAux2 [] xs " | ||
+ | |||
+ | |||
+ | (* jeamacpov *) | ||
+ | fun inversaAcAux3 :: "'a list ⇒ 'a list ⇒ 'a list" where | ||
+ | "inversaAcAux3 ys [] = ys" | ||
+ | | "inversaAcAux3 ys (x#xs) = inversaAcAux3 (x#ys) xs" | ||
+ | fun inversaAc3 :: "'a list ⇒ 'a list" where | ||
+ | "inversaAc3 xs = inversaAcAux3 [] xs" | ||
value "inversaAc [a,c,b,e]" -- "= [e,b,c,a]" | value "inversaAc [a,c,b,e]" -- "= [e,b,c,a]" | ||
Línea 309: | Línea 335: | ||
fun sum2 :: "nat list ⇒ nat" where | fun sum2 :: "nat list ⇒ nat" where | ||
"sum2 xs = fold (op +) xs 0" | "sum2 xs = fold (op +) xs 0" | ||
+ | |||
+ | (* jeamacpov *) | ||
+ | fun sum3 :: "nat list ⇒ nat" where | ||
+ | "sum3 [] = 0" | ||
+ | | "sum3 xs = (hd xs)+(sum3(drop 1 xs))" | ||
value "sum [3,2,5]" -- "= 10" | value "sum [3,2,5]" -- "= 10" | ||
Línea 331: | Línea 362: | ||
|"map f (x # xs) = f x # map f xs" (*yo pondría paréntesis, pero sin | |"map f (x # xs) = f x # map f xs" (*yo pondría paréntesis, pero sin | ||
ellos lo entiende*) | ellos lo entiende*) | ||
+ | |||
+ | (* jeamacpov *) | ||
+ | fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where | ||
+ | "map f [] = []" | ||
+ | | "map f xs =f(hd xs)#(map f (drop 1 xs)) " | ||
value "map (λx. 2*x) [3::nat,2,5]" -- "= [6,4,10]" | value "map (λx. 2*x) [3::nat,2,5]" -- "= [6,4,10]" |
Revisión del 07:10 31 oct 2016
chapter {* R1: Programación funcional en Isabelle *}
theory R1
imports Main
begin
text {* ----------------------------------------------------------------
Ejercicio 0. Definir, por recursión, la función
factorial :: nat ⇒ nat
tal que (factorial n) es el factorial de n. Por ejemplo,
factorial 4 = 24
------------------------------------------------------------------- *}
(* danrodcha, anaprarod, ivamenjim, serrodcal, manmorjim1 *)
fun factorial :: "nat ⇒ nat" where
"factorial 0 = 1"
| "factorial (Suc n) = (Suc n) * factorial n"
(*wilmorort, pablucoto,marcarmor13, crigomgom, rubgonmar, jeamacpov *)
fun factorial1 :: "nat ⇒ nat" where
"factorial1 0 = 1 "
| "factorial1 n = n * factorial1(n-1)"
value "factorial 4" -- "24"
text {* ----------------------------------------------------------------
Ejercicio 1. Definir, por recursión, la función
longitud :: 'a list ⇒ nat
tal que (longitud xs) es la longitud de la listas xs. Por ejemplo,
longitud [4,2,5] = 3
------------------------------------------------------------------- *}
(*wilmorort*)
(* Para usar las lista en forma de [a,b,c] *)
translations
"[x, xs]" == "x#[xs]"
"[x]" == "x#[]"
(*wilmorort, serrodcal,crigomgom,rubgonmar*)
fun longitud :: "'a list ⇒ nat" where
"longitud [] = 0" |
"longitud (x # xs) = 1 + longitud xs "
(*pablucoto*)
fun longitud0 :: "'a list ⇒ nat " where
" longitud0 [] = 0"
|"longitud0 xs = 1 + longitud0 ((butlast xs)) "
fun longitud0_1 :: "'a list ⇒ nat " where
"longitud0_1 xs = (if xs =[] then 0 else 1 + longitud0_1((butlast xs))) "
(*marcarmor13, manmorjim1, jeamacpov *)
fun longitud1 :: "'a list ⇒ nat" where
"longitud1 [] = 0 "
| "longitud1 xs = (1+ longitud2 (tl xs))"
(*danrodcha*)
fun longitud2 :: "'a list ⇒ nat" where
"longitud2 [] = 0"
| "longitud2 (x#xs) = Suc (longitud2 xs)"
(*serrodcal*)
fun longitud3 :: "'a list ⇒ nat" where
"longitud xs = length (xs)"
value "longitud [4,2,5] " -- "= 3"
text {* ---------------------------------------------------------------
Ejercicio 2. Definir la función
fun intercambia :: 'a × 'b ⇒ 'b × 'a
tal que (intercambia p) es el par obtenido intercambiando las
componentes del par p. Por ejemplo,
intercambia (u,v) = (v,u)
------------------------------------------------------------------ *}
(*wilmorort,marcarmor13,danrodcha,crigomgom,pablucoto, rubgonmar, manmorjim1*)
fun intercambia :: "'a × 'b ⇒ 'b × 'a" where
"intercambia (x,y) = (y,x) "
(* jeamacpov *)
fun intercambia2 :: "'a × 'b ⇒ 'b × 'a" where
"intercambia2 (x,y) = (snd (x,y), fst (x,y))"
value "intercambia (u,v)"-- "= (v,u)"
value "intercambia2 (u,v) = (v,u)"
text {* ---------------------------------------------------------------
Ejercicio 3. Definir, por recursión, la función
inversa :: 'a list ⇒ 'a list
tal que (inversa xs) es la lista obtenida invirtiendo el orden de los
elementos de xs. Por ejemplo,
inversa [a,d,c] = [c,d,a]
------------------------------------------------------------------ *}
(*wilmorort*)
(* @ :: "'a list => 'a list => 'a list", función agregación definida
en Theory Main, concatena dos listas: [a,b] @ [c,d] = [a,b,c,d] *)
fun inversa :: "'a list ⇒ 'a list" where
"inversa [] = []" |
"inversa (x # xs) = (inversa xs)@(x#[]) "
(*marcarmor13, manmorjim1*)
fun inversa1 :: "'a list ⇒ 'a list" where
"inversa1 [] = []"
| "inversa1 xs = inversa1 (tl xs)@ ((hd xs)#[])"
(*danrodcha, pablucoto*)
(* es igual que inversa sustituyendo x#[] por [x] *)
fun inversa2 :: "'a list ⇒ 'a list" where
"inversa2 [] = []"
| "inversa2 (x#xs) = (inversa2 xs)@[x] "
(*danrodcha*)
fun inversa3 :: "'a list ⇒ 'a list" where
"inversa3 [] = []"
| "inversa3 (x#xs) = concat [(inversa3 xs),[x]] "
(*crigomgom*)
fun inversa4 :: "'a list ⇒ 'a list" where
"inversa4 [] = []" |
"inversa4 xs = (last xs)#(inversa4(butlast xs)) "
(* jeamacpov *)
fun inversa5 :: "'a list ⇒ 'a list" where
"inversa5 [] = []"
| "inversa5 xs = (drop (length(xs)-1) xs)@inversa5(take (length(xs)-1) xs)"
value "inversa [a,d,c]" -- "= [c,d,a]"
text {* ---------------------------------------------------------------
Ejercicio 4. Definir la función
repite :: nat ⇒ 'a ⇒ 'a list
tal que (repite n x) es la lista formada por n copias del elemento
x. Por ejemplo,
repite 3 a = [a,a,a]
------------------------------------------------------------------ *}
(*wilmorort,marcarmor13, crigomgom, pablucoto, rubgonmar, manmorjim1, jeamacpov *)
fun repite :: "nat ⇒ 'a ⇒ 'a list" where
"repite 0 x = [] " |
"repite n x = x # (repite(n-1) x) "
(*danrodcha*)
fun repite1 :: "nat ⇒ 'a ⇒ 'a list" where
"repite1 0 x = []"
| "repite1 (Suc n) x = x#(repite1 n x)"
value "repite 3 a" -- "= [a,a,a]"
text {* ---------------------------------------------------------------
Ejercicio 5. Definir la función
conc :: 'a list ⇒ 'a list ⇒ 'a list
tal que (conc xs ys) es la concatención de las listas xs e ys. Por
ejemplo,
conc [a,d] [b,d,a,c] = [a,d,b,d,a,c]
------------------------------------------------------------------ *}
(*marcarmor13*)
fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where
"conc xs ys = xs@ys"
(*danrodcha, crigomgom, rubgonmar*)
fun conc1 :: "'a list ⇒ 'a list ⇒ 'a list" where
"conc1 [] ys = ys"
| "conc1 xs [] = xs" (*esta no hace falta*)
| "conc1 (x#xs) ys = x#(conc1 xs ys)"
(*pablucoto, jeamacpov *)
fun conc2 :: "'a list ⇒ 'a list ⇒ 'a list" where
"conc2 [] ys = ys" |
"conc2 (x#xs) ys = x # (conc2 xs ys)"
(* manmorjim1 *)
fun conc3 :: "'a list ⇒ 'a list ⇒ 'a list" where
"conc3 [] ys = ys"
| "conc3 xs ys = (hd xs)#[] @ (conc3 (tl xs) ys)"
value "conc [a,d] [b,d,a,c]" -- "= [a,d,b,d,a,c]"
text {* ---------------------------------------------------------------
Ejercicio 6. Definir la función
coge :: nat ⇒ 'a list ⇒ 'a list
tal que (coge n xs) es la lista de los n primeros elementos de xs. Por
ejemplo,
coge 2 [a,c,d,b,e] = [a,c]
------------------------------------------------------------------ *}
(*marcarmor13, manmorjim1*)
fun coge :: "nat ⇒ 'a list ⇒ 'a list" where
"coge 0 xs = []"
| "coge n xs = (hd xs)#(coge (n-1) (tl xs)) "
(*danrodcha*)
fun coge1 :: "nat ⇒ 'a list ⇒ 'a list" where
"coge1 0 _ = []"
| "coge1 _ [] = []"
| "coge1 (Suc n) (x#xs) = x#(coge1 n xs)"
(*crimgomgom, jeamacpov*)
fun coge2 :: "nat ⇒ 'a list ⇒ 'a list" where
"coge2 0 _ = []"|
"coge2 _ [] = []" |
"coge2 n (x#xs) = x#(coge2 (n-1) xs) "
(*pablucoto*)
fun coge3 :: "nat ⇒ 'a list ⇒ 'a list" where
"coge3 0 xs = []" |
"coge3 n (x#xs) = (if n>length(x#xs) then (x#xs) else x # (coge3 (n-1) xs))"
value "coge 2 [a,c,d,b,e]" -- "= [a,c]"
text {* ---------------------------------------------------------------
Ejercicio 7. Definir la función
elimina :: nat ⇒ 'a list ⇒ 'a list
tal que (elimina n xs) es la lista obtenida eliminando los n primeros
elementos de xs. Por ejemplo,
elimina 2 [a,c,d,b,e] = [d,b,e]
------------------------------------------------------------------ *}
(*marcarmor13, manmorjim1*)
fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina 0 xs = xs"
| "elimina n xs = (elimina (n-1) (tl xs ))"
(*danrodcha, crigomgom*)
fun elimina1 :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina1 0 xs = xs"
| "elimina1 _ [] = []"
| "elimina1 (Suc n) (x#xs) = elimina1 n xs"
(*pablucoto*)
fun elimina2 :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina2 0 xs = xs" |
"elimina2 n (x#xs) = (if n>length(x#xs) then [] else (elimina2 (n-1) xs))"
(* jeamacpov *)
fun elimina3 :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina3 0 xs = xs"
| "elimina3 n xs = (elimina3 (n-1) ((drop 1 xs))) "
value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]"
text {* ---------------------------------------------------------------
Ejercicio 8. Definir la función
esVacia :: 'a list ⇒ bool
tal que (esVacia xs) se verifica si xs es la lista vacía. Por ejemplo,
esVacia [] = True
esVacia [1] = False
------------------------------------------------------------------ *}
(*marcarmor13, rubgonmar, danrodcha, crigomgom*)
fun esVacia :: "'a list ⇒ bool" where
"esVacia [] = True "
| "esVacia xs = False"
(*danrodcha*)
fun esVacia1 :: "'a list ⇒ bool" where
"esVacia1 xs = (xs = [])"
(*pablucoto, jeamacpov *)
fun esVacia2 :: "'a list ⇒ bool" where
"esVacia2 xs = (if xs=[] then True else False)"
(*manmorjim1*)
fun esVacia3 :: "'a list ⇒ bool" where
"esVacia3 xs = (length xs = 0)"
value "esVacia []" -- "= True"
value "esVacia [1]" -- "= False"
text {* ---------------------------------------------------------------
Ejercicio 9. Definir la función
inversaAc :: 'a list ⇒ 'a list
tal que (inversaAc xs) es a inversa de xs calculada usando
acumuladores. Por ejemplo,
inversaAc [a,c,b,e] = [e,b,c,a]
------------------------------------------------------------------ *}
(*rubgonmar,marcarmor13, mamnorjim1*)
fun inversaAcAux :: "'a list ⇒ 'a list ⇒ 'a list" where
"inversaAcAux [] ys = ys"
| "inversaAcAux xs ys = inversaAcAux (tl xs) (hd xs#ys) "
(*danrodcha, crigomgom*)
fun inversaAcAux1 :: "'a list ⇒ 'a list ⇒ 'a list" where
"inversaAcAux1 [] ys = ys"
| "inversaAcAux1 (x#xs) ys = inversaAcAux1 xs (x#ys)"
(*rubgonmar, danrodcha, crigomgom, manmorjim1*)
fun inversaAc :: "'a list ⇒ 'a list" where
"inversaAc xs = inversaAcAux xs []"
(*pablucoto*)
fun inversaAcAux2 :: "'a list ⇒ 'a list ⇒ 'a list" where
"inversaAcAux2 [] [] = []"|
"inversaAcAux2 xs (y#ys) = (inversaAcAux2 [] ys) @ [y]"
fun inversaAc2 :: "'a list ⇒ 'a list" where
"inversaAc2 xs = inversaAcAux2 [] xs "
(* jeamacpov *)
fun inversaAcAux3 :: "'a list ⇒ 'a list ⇒ 'a list" where
"inversaAcAux3 ys [] = ys"
| "inversaAcAux3 ys (x#xs) = inversaAcAux3 (x#ys) xs"
fun inversaAc3 :: "'a list ⇒ 'a list" where
"inversaAc3 xs = inversaAcAux3 [] xs"
value "inversaAc [a,c,b,e]" -- "= [e,b,c,a]"
text {* ---------------------------------------------------------------
Ejercicio 10. Definir la función
sum :: nat list ⇒ nat
tal que (sum xs) es la suma de los elementos de xs. Por ejemplo,
sum [3,2,5] = 10
------------------------------------------------------------------ *}
(*rubgonmar,marcarmor13, manmorjim1*)
fun sum :: "nat list ⇒ nat" where
"sum [] = 0"
|"sum xs = hd xs + sum (tl xs)"
(*danrodcha, crigomgom, pablucoto*)
fun sum1 :: "nat list ⇒ nat" where
"sum1 [] = 0"
| "sum1 (x#xs) = x + sum1 xs"
(*danrodcha*)
fun sum2 :: "nat list ⇒ nat" where
"sum2 xs = fold (op +) xs 0"
(* jeamacpov *)
fun sum3 :: "nat list ⇒ nat" where
"sum3 [] = 0"
| "sum3 xs = (hd xs)+(sum3(drop 1 xs))"
value "sum [3,2,5]" -- "= 10"
text {* ---------------------------------------------------------------
Ejercicio 11. Definir la función
map :: ('a ⇒ 'b) ⇒ 'a list ⇒ 'b list
tal que (map f xs) es la lista obtenida aplicando la función f a los
elementos de xs. Por ejemplo,
map (λx. 2*x) [3,2,5] = [6,4,10]
------------------------------------------------------------------ *}
(*rubgonmar,marcarmor13,manmorjim1*)
fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
"map f [] = []"
| "map f xs = f(hd xs)#map f (tl xs)"
(*wilmorort, danrodcha, crigomgom, pablucoto*)
fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
"map f [] = []"
|"map f (x # xs) = f x # map f xs" (*yo pondría paréntesis, pero sin
ellos lo entiende*)
(* jeamacpov *)
fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
"map f [] = []"
| "map f xs =f(hd xs)#(map f (drop 1 xs)) "
value "map (λx. 2*x) [3::nat,2,5]" -- "= [6,4,10]"
end