Diferencia entre revisiones de «Relación 6»
De Razonamiento automático (2016-17)
m (Protegió «Relación 6» ([edit=sysop] (indefinido) [move=sysop] (indefinido))) |
|||
Línea 42: | Línea 42: | ||
(* ivamenjim marpoldia1 pablucoto bowma fraortmoy migtermor | (* ivamenjim marpoldia1 pablucoto bowma fraortmoy migtermor | ||
− | wilmorort lucnovdos serrodcal pabrodmac jeamacpov paupeddeg marcarmor13 josgarsan | + | wilmorort lucnovdos serrodcal pabrodmac jeamacpov paupeddeg |
− | + | marcarmor13 josgarsan dancorgar *) | |
fun preOrden :: "'a arbol ⇒ 'a list" where | fun preOrden :: "'a arbol ⇒ 'a list" where | ||
− | "preOrden (H t) = [t]" | + | "preOrden (H t) = [t]" |
| "preOrden (N t i d) = [t] @ (preOrden i) @ (preOrden d)" | | "preOrden (N t i d) = [t] @ (preOrden i) @ (preOrden d)" | ||
Línea 52: | Línea 52: | ||
rubgonmar paupeddeg fracorjim1 *) | rubgonmar paupeddeg fracorjim1 *) | ||
fun preOrden1 :: "'a arbol ⇒ 'a list" where | fun preOrden1 :: "'a arbol ⇒ 'a list" where | ||
− | "preOrden1 (H x) = [x]" | + | "preOrden1 (H x) = [x]" |
− | | "preOrden1 (N x i d) = x#preOrden1 i @ preOrden1 d" | + | | "preOrden1 (N x i d) = x # preOrden1 i @ preOrden1 d" |
value "preOrden (N e (N c (H a) (H d)) (N g (H f) (H h))) | value "preOrden (N e (N c (H a) (H d)) (N g (H f) (H h))) | ||
Línea 81: | Línea 81: | ||
fun postOrden :: "'a arbol ⇒ 'a list" where | fun postOrden :: "'a arbol ⇒ 'a list" where | ||
− | "postOrden (H t) = [t]" | + | "postOrden (H t) = [t]" |
| "postOrden (N t i d) = (postOrden i) @ (postOrden d) @ [t]" | | "postOrden (N t i d) = (postOrden i) @ (postOrden d) @ [t]" | ||
Línea 102: | Línea 102: | ||
ferrenseg jeamacpov rubgonmar paupeddeg marcarmor13 josgarsan | ferrenseg jeamacpov rubgonmar paupeddeg marcarmor13 josgarsan | ||
dancorgar *) | dancorgar *) | ||
− | |||
fun inOrden :: "'a arbol ⇒ 'a list" where | fun inOrden :: "'a arbol ⇒ 'a list" where | ||
− | "inOrden (H t) = [t]" | + | "inOrden (H t) = [t]" |
| "inOrden (N t i d) = (inOrden i) @ [t] @ (inOrden d)" | | "inOrden (N t i d) = (inOrden i) @ [t] @ (inOrden d)" | ||
− | |||
(* danrodcha manmorjim1 fracorjim1 *) | (* danrodcha manmorjim1 fracorjim1 *) | ||
fun inOrden1 :: "'a arbol ⇒ 'a list" where | fun inOrden1 :: "'a arbol ⇒ 'a list" where | ||
− | "inOrden1 (H t) = [t]" | + | "inOrden1 (H t) = [t]" |
| "inOrden1 (N t i d) = inOrden1 i @ t#inOrden1 d" | | "inOrden1 (N t i d) = inOrden1 i @ t#inOrden1 d" | ||
Línea 138: | Línea 136: | ||
juacabsou serrodcal pabrodmac ferrenseg jeamacpov rubgonmar | juacabsou serrodcal pabrodmac ferrenseg jeamacpov rubgonmar | ||
paupeddeg marcarmor13 josgarsan dancorgar fracorjim1 *) | paupeddeg marcarmor13 josgarsan dancorgar fracorjim1 *) | ||
− | |||
fun espejo :: "'a arbol ⇒ 'a arbol" where | fun espejo :: "'a arbol ⇒ 'a arbol" where | ||
− | "espejo (H t) = H t" | + | "espejo (H t) = H t" |
| "espejo (N t i d) = N t (espejo d) (espejo i)" | | "espejo (N t i d) = N t (espejo d) (espejo i)" | ||
value "espejo (N e (N c (H a) (H d)) (N g (H f) (H h))) | value "espejo (N e (N c (H a) (H d)) (N g (H f) (H h))) | ||
= N e (N g (H h) (H f)) (N c (H d) (H a))" | = N e (N g (H h) (H f)) (N c (H d) (H a))" | ||
− | |||
text {* | text {* | ||
Línea 154: | Línea 150: | ||
*} | *} | ||
− | (* ivamenjim migtermor wilmorort juacabsou serrodcal dancorgar josgarsan*) | + | (* ivamenjim migtermor wilmorort juacabsou serrodcal dancorgar josgarsan |
− | + | *) | |
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a") | lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 164: | Línea 160: | ||
fix i assume h1: "?P i" | fix i assume h1: "?P i" | ||
fix d assume h2: "?P d" | fix d assume h2: "?P d" | ||
− | have "preOrden (espejo (N x i d)) = preOrden (N x (espejo d) (espejo i))" by simp | + | have "preOrden (espejo (N x i d)) = |
− | also have "... = [x] @ (preOrden (espejo d)) @ (preOrden (espejo i))" by simp | + | preOrden (N x (espejo d) (espejo i))" by simp |
− | also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)" using h1 h2 by simp | + | also have "... = [x] @ (preOrden (espejo d)) @ (preOrden (espejo i))" |
− | finally show "preOrden (espejo (N x i d)) = rev (postOrden (N x i d))" by simp | + | by simp |
− | + | also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)" | |
+ | using h1 h2 by simp | ||
+ | finally show "preOrden (espejo (N x i d)) = rev (postOrden (N x i d))" | ||
+ | by simp | ||
qed | qed | ||
Línea 176: | Línea 175: | ||
(* danrodcha crigomgom fracorjim1 *) | (* danrodcha crigomgom fracorjim1 *) | ||
− | lemma " | + | lemma "preOrden1 (espejo a) = rev (postOrden a)" (is "?P a") |
proof (induct a) | proof (induct a) | ||
fix x | fix x | ||
Línea 184: | Línea 183: | ||
assume HIi: "?P i" | assume HIi: "?P i" | ||
assume HId: "?P d" | assume HId: "?P d" | ||
− | have " | + | have "preOrden1 (espejo (N x i d)) = |
+ | preOrden1 (N x (espejo d) (espejo i))" | ||
by (simp only: espejo.simps(2)) | by (simp only: espejo.simps(2)) | ||
− | also have "… = x# | + | also have "… = x#preOrden1 (espejo d) @ preOrden1 (espejo i)" |
− | by (simp only: | + | by (simp only: preOrden1.simps(2)) |
also have"… = x#rev (postOrden d) @ rev (postOrden i)" | also have"… = x#rev (postOrden d) @ rev (postOrden i)" | ||
using HIi HId by simp | using HIi HId by simp | ||
Línea 213: | Línea 213: | ||
(* pablucoto marpoldia1 jeamacpov paupeddeg marcarmor13*) | (* pablucoto marpoldia1 jeamacpov paupeddeg marcarmor13*) | ||
− | |||
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a") | lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 222: | Línea 221: | ||
assume h1: "?P i" | assume h1: "?P i" | ||
assume h2: "?P d" | assume h2: "?P d" | ||
− | have "preOrden (espejo (N x i d)) = preOrden (N x (espejo d) (espejo i))" by simp | + | have "preOrden (espejo (N x i d)) = |
− | also have "... = [x] @ (preOrden (espejo d)) @ (preOrden (espejo i))" by simp | + | preOrden (N x (espejo d) (espejo i))" by simp |
− | also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)" using h1 h2 by simp | + | also have "... = [x] @ (preOrden (espejo d)) @ (preOrden (espejo i))" |
+ | by simp | ||
+ | also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)" | ||
+ | using h1 h2 by simp | ||
also have "... = [x] @ rev (postOrden i @ postOrden d)" by simp | also have "... = [x] @ rev (postOrden i @ postOrden d)" by simp | ||
also have "... = rev ( postOrden i @ postOrden d @ [x] ) " by simp | also have "... = rev ( postOrden i @ postOrden d @ [x] ) " by simp | ||
Línea 234: | Línea 236: | ||
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?p a") | lemma "preOrden (espejo a) = rev (postOrden a)" (is "?p a") | ||
proof (induct a) | proof (induct a) | ||
− | fix t | + | fix t |
− | show "?p (H t)" by simp | + | show "?p (H t)" by simp |
− | (* Aquí si le diga "preOrden (espejo (H t)) = rev (postOrden (H t))",isabelle dice: | + | (* Aquí si le diga "preOrden (espejo (H t)) = rev (postOrden (H t))", |
− | proof (prove) | + | isabelle dice: |
− | goal (1 subgoal): | + | proof (prove) |
− | + | goal (1 subgoal): | |
− | Introduced fixed type variable(s): 'b in "t__" | + | 1. preOrden (espejo (H t)) = rev (postOrden (H t)) |
− | No entiendo porqué *) | + | Introduced fixed type variable(s): 'b in "t__" |
+ | No entiendo porqué *) | ||
next | next | ||
− | fix t i d | + | fix t i d |
− | assume H1: "?p i" | + | assume H1: "?p i" |
− | assume H2: "?p d" | + | assume H2: "?p d" |
− | have "preOrden (espejo (N t i d)) = preOrden (N t (espejo d) (espejo i))" by simp | + | have "preOrden (espejo (N t i d)) = |
− | also have "... = [t] @ (preOrden (espejo d)) @ (preOrden (espejo i))" by simp | + | preOrden (N t (espejo d) (espejo i))" by simp |
− | also have "... = [t] @ rev (postOrden d) @ rev (postOrden i)" using H1 H2 by simp | + | also have "... = [t] @ (preOrden (espejo d)) @ (preOrden (espejo i))" |
− | finally show "?p (N t i d)" by simp | + | by simp |
+ | also have "... = [t] @ rev (postOrden d) @ rev (postOrden i)" | ||
+ | using H1 H2 by simp | ||
+ | finally show "?p (N t i d)" by simp | ||
qed | qed | ||
+ | |||
+ | (* Comentario sobre tipo inducido. *) | ||
(* fraortmoy lucnovdos pabrodmac*) | (* fraortmoy lucnovdos pabrodmac*) | ||
− | |||
lemma "preOrden (espejo a) = rev (postOrden a)" | lemma "preOrden (espejo a) = rev (postOrden a)" | ||
by (induct a) auto | by (induct a) auto | ||
(*pabrodmac*) | (*pabrodmac*) | ||
− | |||
lemma | lemma | ||
fixes a ::"'b arbol" | fixes a ::"'b arbol" | ||
Línea 271: | Línea 277: | ||
show "?P (N x i d)" | show "?P (N x i d)" | ||
proof - | proof - | ||
− | have "preOrden (espejo (N x i d)) = preOrden(N x (espejo d) (espejo i))" by simp | + | have "preOrden (espejo (N x i d)) = |
− | also have "… = [x]@rev(postOrden d)@rev(postOrden i)" using h1 h2 by simp | + | preOrden(N x (espejo d) (espejo i))" by simp |
+ | also have "… = [x]@rev(postOrden d)@rev(postOrden i)" | ||
+ | using h1 h2 by simp | ||
also have "… = rev(postOrden (N x i d))" by simp | also have "… = rev(postOrden (N x i d))" by simp | ||
finally show ?thesis . | finally show ?thesis . | ||
qed | qed | ||
qed | qed | ||
− | |||
(* ferrenseg rubgonmar *) | (* ferrenseg rubgonmar *) | ||
− | |||
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a") | lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 310: | Línea 316: | ||
*} | *} | ||
− | (* ivamenjim crigomgom bowma migtermor wilmorort juacabsou serrodcal dancorgar josgarsan*) | + | (* ivamenjim crigomgom bowma migtermor wilmorort juacabsou serrodcal |
− | + | dancorgar josgarsan*) | |
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a") | lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 320: | Línea 326: | ||
fix i assume h1: "?P i" | fix i assume h1: "?P i" | ||
fix d assume h2: "?P d" | fix d assume h2: "?P d" | ||
− | have "postOrden (espejo (N x i d)) = postOrden (N x (espejo d) (espejo i))" by simp | + | have "postOrden (espejo (N x i d)) = |
− | also have "... = (postOrden (espejo d)) @ (postOrden (espejo i)) @ [x]" by simp | + | postOrden (N x (espejo d) (espejo i))" by simp |
− | also have "... = rev (preOrden d) @ rev (preOrden i) @ [x]" using h1 h2 by simp | + | also have "... = (postOrden (espejo d)) @ (postOrden (espejo i)) @ [x]" |
− | finally show "postOrden (espejo (N x i d)) = rev (preOrden (N x i d))" by simp | + | by simp |
− | + | also have "... = rev (preOrden d) @ rev (preOrden i) @ [x]" | |
− | + | using h1 h2 by simp | |
+ | finally show "postOrden (espejo (N x i d)) = rev (preOrden (N x i d))" | ||
+ | by simp | ||
+ | (* "?p (N x i d)" más corto *) | ||
qed | qed | ||
Línea 341: | Línea 350: | ||
(* pablucoto marpoldia1 jeamacpov paupeddeg rubgonmar *) | (* pablucoto marpoldia1 jeamacpov paupeddeg rubgonmar *) | ||
− | |||
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a") | lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 350: | Línea 358: | ||
assume H1: "?P i" | assume H1: "?P i" | ||
assume H2: "?P d" | assume H2: "?P d" | ||
− | have " postOrden (espejo (N x i d)) = postOrden ( N x (espejo d) (espejo i)) " by simp | + | have " postOrden (espejo (N x i d)) = |
− | also have "... = postOrden (espejo d) @ postOrden (espejo i) @ [x] | + | postOrden ( N x (espejo d) (espejo i)) " by simp |
− | also have "... = rev (preOrden d) @ rev (preOrden i) @ [x] " using H1 H2 by simp | + | also have "... = postOrden (espejo d) @ postOrden (espejo i) @ [x]" |
+ | by simp | ||
+ | also have "... = rev (preOrden d) @ rev (preOrden i) @ [x] " | ||
+ | using H1 H2 by simp | ||
also have "... = rev (preOrden d) @ rev (x # preOrden i)" by simp | also have "... = rev (preOrden d) @ rev (x # preOrden i)" by simp | ||
also have "... = rev (x # preOrden i @ preOrden d)" by simp | also have "... = rev (x # preOrden i @ preOrden d)" by simp | ||
Línea 364: | Línea 375: | ||
(*pabrodmac*) | (*pabrodmac*) | ||
− | |||
lemma | lemma | ||
fixes a ::"'b arbol" | fixes a ::"'b arbol" | ||
Línea 377: | Línea 387: | ||
show "?P (N x i d)" | show "?P (N x i d)" | ||
proof - | proof - | ||
− | have "postOrden (espejo (N x i d)) = postOrden(N x (espejo d) (espejo i))" by simp | + | have "postOrden (espejo (N x i d)) = |
− | also have "… =rev(preOrden d)@rev(preOrden i)@[x]" using h1 h2 by simp | + | postOrden(N x (espejo d) (espejo i))" by simp |
− | also have "… =rev(preOrden (N x i d))" by simp | + | also have "… = rev (preOrden d) @ rev (preOrden i) @ [x]" |
+ | using h1 h2 by simp | ||
+ | also have "… = rev (preOrden (N x i d))" by simp | ||
finally show ?thesis. | finally show ?thesis. | ||
qed | qed | ||
Línea 385: | Línea 397: | ||
(* ferrenseg *) | (* ferrenseg *) | ||
− | |||
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a") | lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 398: | Línea 409: | ||
have "postOrden (espejo (N x l r)) = | have "postOrden (espejo (N x l r)) = | ||
postOrden (N x (espejo r) (espejo l))" by simp | postOrden (N x (espejo r) (espejo l))" by simp | ||
− | also have "… = postOrden (espejo r) @ postOrden (espejo l) @ [x]" by simp | + | also have "… = postOrden (espejo r) @ postOrden (espejo l) @ [x]" |
+ | by simp | ||
also have "… = rev (preOrden r) @ rev (preOrden l) @ [x]" | also have "… = rev (preOrden r) @ rev (preOrden l) @ [x]" | ||
− | + | using H1 H2 by simp | |
also have "… = rev (preOrden l @ preOrden r) @ [x]" by simp | also have "… = rev (preOrden l @ preOrden r) @ [x]" by simp | ||
also have "… = rev ([x] @ preOrden l @ preOrden r)" by simp | also have "… = rev ([x] @ preOrden l @ preOrden r)" by simp | ||
Línea 415: | Línea 427: | ||
*} | *} | ||
− | (* ivamenjim crigomgom bowma migtermor wilmorort juacabsou serrodcal dancorgar josgarsan*) | + | (* ivamenjim crigomgom bowma migtermor wilmorort juacabsou serrodcal |
− | + | dancorgar josgarsan *) | |
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a") | theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 425: | Línea 437: | ||
fix i assume h1: "?P i" | fix i assume h1: "?P i" | ||
fix d assume h2: "?P d" | fix d assume h2: "?P d" | ||
− | have "inOrden (espejo (N x i d)) = inOrden (N x (espejo d) (espejo i))" by simp | + | have "inOrden (espejo (N x i d)) = inOrden (N x (espejo d) (espejo i))" |
− | also have "... = (inOrden (espejo d)) @ [x] @ (inOrden (espejo i))" by simp | + | by simp |
− | also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)" using h1 h2 by simp | + | also have "... = (inOrden (espejo d)) @ [x] @ (inOrden (espejo i))" |
− | finally show "inOrden (espejo (N x i d)) = rev (inOrden (N x i d))" by simp | + | by simp |
+ | also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)" | ||
+ | using h1 h2 by simp | ||
+ | finally show "inOrden (espejo (N x i d)) = rev (inOrden (N x i d))" | ||
+ | by simp | ||
qed | qed | ||
Línea 456: | Línea 472: | ||
assume HI1: "?P i" | assume HI1: "?P i" | ||
assume HI2: "?P d" | assume HI2: "?P d" | ||
− | have " inOrden (espejo (N x i d)) = inOrden ( N x (espejo d) (espejo i) )" by simp | + | have "inOrden (espejo (N x i d)) = |
− | also have "... = inOrden (espejo d) @ [x] @ inOrden (espejo i) " by simp | + | inOrden ( N x (espejo d) (espejo i) )" by simp |
− | also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)" using HI1 HI2 by simp | + | also have "... = inOrden (espejo d) @ [x] @ inOrden (espejo i)" |
+ | by simp | ||
+ | also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)" | ||
+ | using HI1 HI2 by simp | ||
also have "... = rev (x # inOrden d ) @ rev (inOrden i)" by simp | also have "... = rev (x # inOrden d ) @ rev (inOrden i)" by simp | ||
also have "... = rev ( inOrden i @ x # inOrden d) " by simp | also have "... = rev ( inOrden i @ x # inOrden d) " by simp | ||
Línea 470: | Línea 489: | ||
(* pabrodmac *) | (* pabrodmac *) | ||
− | |||
lemma | lemma | ||
fixes a ::"'b arbol" | fixes a ::"'b arbol" | ||
Línea 483: | Línea 501: | ||
show "?P (N x i d)" | show "?P (N x i d)" | ||
proof - | proof - | ||
− | have "inOrden (espejo (N x i d)) = inOrden(N x (espejo d) (espejo i))" by simp | + | have "inOrden (espejo (N x i d)) = |
+ | inOrden(N x (espejo d) (espejo i))" by simp | ||
also have "… =rev(inOrden d)@[x]@rev(inOrden i)" using h1 h2 by simp | also have "… =rev(inOrden d)@[x]@rev(inOrden i)" using h1 h2 by simp | ||
also have "… =rev(inOrden (N x i d))" by simp | also have "… =rev(inOrden (N x i d))" by simp | ||
Línea 491: | Línea 510: | ||
(* ferrenseg rubgonmar *) | (* ferrenseg rubgonmar *) | ||
− | |||
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a") | theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 497: | Línea 515: | ||
show "?P (H x)" by simp | show "?P (H x)" by simp | ||
next | next | ||
− | fix x | + | fix x l r |
assume H1: "?P l" | assume H1: "?P l" | ||
assume H2: "?P r" | assume H2: "?P r" | ||
Línea 504: | Línea 522: | ||
have "inOrden (espejo (N x l r)) = | have "inOrden (espejo (N x l r)) = | ||
inOrden (N x (espejo r) (espejo l))" by simp | inOrden (N x (espejo r) (espejo l))" by simp | ||
− | also have "… = inOrden (espejo r) @ [x] @ inOrden (espejo l)" by simp | + | also have "… = inOrden (espejo r) @ [x] @ inOrden (espejo l)" |
+ | by simp | ||
also have "… = rev (inOrden r) @ [x] @ rev (inOrden l)" | also have "… = rev (inOrden r) @ [x] @ rev (inOrden l)" | ||
− | + | using H1 H2 by simp | |
also have "… = rev (inOrden l @ [x] @ inOrden r)" by simp | also have "… = rev (inOrden l @ [x] @ inOrden r)" by simp | ||
also have "… = rev (inOrden (N x l r))" by simp | also have "… = rev (inOrden (N x l r))" by simp | ||
Línea 522: | Línea 541: | ||
fix i assume h1: "?P i" | fix i assume h1: "?P i" | ||
fix d assume h2: "?P d" | fix d assume h2: "?P d" | ||
− | show "inOrden (espejo (N x i d)) = rev (inOrden (N x i d))" using h1 h2 by simp | + | show "inOrden (espejo (N x i d)) = rev (inOrden (N x i d))" |
+ | using h1 h2 by simp | ||
qed | qed | ||
Línea 536: | Línea 556: | ||
(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto | (* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto | ||
migtermor marpoldia1 wilmorort lucnovdos juacabsou serrodcal | migtermor marpoldia1 wilmorort lucnovdos juacabsou serrodcal | ||
− | ferrenseg paupeddeg rubgonmar jeamacpov marcarmor13 fraortmoy | + | ferrenseg paupeddeg rubgonmar jeamacpov marcarmor13 fraortmoy |
− | josgarsan dancorgar *) | + | fracorjim1 josgarsan dancorgar *) |
fun raiz :: "'a arbol ⇒ 'a" where | fun raiz :: "'a arbol ⇒ 'a" where | ||
− | "raiz (H x) = x" | + | "raiz (H x) = x" |
| "raiz (N x i d) = x" | | "raiz (N x i d) = x" | ||
Línea 559: | Línea 579: | ||
fraortmoy fracorjim1 josgarsan dancorgar *) | fraortmoy fracorjim1 josgarsan dancorgar *) | ||
fun extremo_izquierda :: "'a arbol ⇒ 'a" where | fun extremo_izquierda :: "'a arbol ⇒ 'a" where | ||
− | "extremo_izquierda (H x) = x" | + | "extremo_izquierda (H x) = x" |
| "extremo_izquierda (N x i d) = extremo_izquierda i" | | "extremo_izquierda (N x i d) = extremo_izquierda i" | ||
Línea 566: | Línea 586: | ||
(* bowma *) | (* bowma *) | ||
fun extremo_izquierda_1 :: "'a arbol ⇒ 'a" where | fun extremo_izquierda_1 :: "'a arbol ⇒ 'a" where | ||
− | "extremo_izquierda_1 (H t) = t" | + | "extremo_izquierda_1 (H t) = t" |
| "extremo_izquierda_1 (N t i d) = hd (inOrden (N t i d))" | | "extremo_izquierda_1 (N t i d) = hd (inOrden (N t i d))" | ||
Línea 605: | Línea 625: | ||
Llamando teorema_12 al teorema del ejercicio 12 *) | Llamando teorema_12 al teorema del ejercicio 12 *) | ||
+ | (* | ||
lemma "extremo_derecha a = extremo_derecha_1 a" | lemma "extremo_derecha a = extremo_derecha_1 a" | ||
by (induct a, simp_all add: aux_ej12_1 teorema_12) | by (induct a, simp_all add: aux_ej12_1 teorema_12) | ||
+ | *) | ||
text {* | text {* | ||
Línea 641: | Línea 663: | ||
(* ivamenjim *) | (* ivamenjim *) | ||
− | |||
lemma aux_ej12_1: "inOrden a ≠ []" | lemma aux_ej12_1: "inOrden a ≠ []" | ||
by (induct a) simp_all | by (induct a) simp_all | ||
Línea 647: | Línea 668: | ||
(* ivamenjim marpoldia1 paupeddeg *) | (* ivamenjim marpoldia1 paupeddeg *) | ||
(* Igual que la anterior, pero poniendo solo by simp en el primer have *) | (* Igual que la anterior, pero poniendo solo by simp en el primer have *) | ||
− | |||
theorem "last (inOrden a) = extremo_derecha a" (is "?P a") | theorem "last (inOrden a) = extremo_derecha a" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 656: | Línea 676: | ||
fix i assume h1: "?P i" | fix i assume h1: "?P i" | ||
fix d assume h2: "?P d" | fix d assume h2: "?P d" | ||
− | have "last (inOrden (N x i d)) = last ((inOrden i) @ [x] @ (inOrden d))" by simp | + | have "last (inOrden (N x i d)) = |
+ | last ((inOrden i) @ [x] @ (inOrden d))" by simp | ||
also have "... = last (inOrden d)" by (simp add: aux_ej12_1) | also have "... = last (inOrden d)" by (simp add: aux_ej12_1) | ||
also have "... = extremo_derecha d" using h2 by simp | also have "... = extremo_derecha d" using h2 by simp | ||
− | finally show "last (inOrden (N x i d)) = extremo_derecha (N x i d)" by simp | + | finally show "last (inOrden (N x i d)) = extremo_derecha (N x i d)" |
+ | by simp | ||
qed | qed | ||
Línea 666: | Línea 688: | ||
theorem "last (inOrden a) = extremo_derecha a" (is "?p a") | theorem "last (inOrden a) = extremo_derecha a" (is "?p a") | ||
proof (induct a) | proof (induct a) | ||
− | fix t | + | fix t |
− | show "?p (H t)" by simp | + | show "?p (H t)" by simp |
next | next | ||
− | fix t i d | + | fix t i d |
− | assume HI: "?p d" | + | assume HI: "?p d" |
− | have "last (inOrden (N t i d)) = last (inOrden i @ [t] @ inOrden d)" by simp | + | have "last (inOrden (N t i d)) = last (inOrden i @ [t] @ inOrden d)" |
− | also have "... = last (inOrden d)" by (simp add:aux_ej12) | + | by simp |
− | also have "... = extremo_derecha d" using HI by simp | + | also have "... = last (inOrden d)" by (simp add:aux_ej12) |
− | finally show "?p (N t i d)" by simp | + | also have "... = extremo_derecha d" using HI by simp |
+ | finally show "?p (N t i d)" by simp | ||
qed | qed | ||
Línea 687: | Línea 710: | ||
fix i d ::"'a arbol" | fix i d ::"'a arbol" | ||
assume HI: "last (inOrden d) = extremo_derecha d" | assume HI: "last (inOrden d) = extremo_derecha d" | ||
− | have "last (inOrden (N x i d)) = last ((inOrden i) @ [x] @ (inOrden d))" by simp | + | have "last (inOrden (N x i d)) = |
+ | last ((inOrden i) @ [x] @ (inOrden d))" by simp | ||
also have "… = last (inOrden d)" by (simp add: aux_ej12) | also have "… = last (inOrden d)" by (simp add: aux_ej12) | ||
also have "… = extremo_derecha d" using HI by simp | also have "… = extremo_derecha d" using HI by simp | ||
also have "… = extremo_derecha (N x i d)" by simp | also have "… = extremo_derecha (N x i d)" by simp | ||
− | finally show "last (inOrden (N x i d)) = extremo_derecha (N x i d)" by simp | + | finally show "last (inOrden (N x i d)) = extremo_derecha (N x i d)" |
+ | by simp | ||
qed | qed | ||
Línea 697: | Línea 722: | ||
theorem "last (inOrden a) = extremo_derecha a" (is "?P a") | theorem "last (inOrden a) = extremo_derecha a" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
− | + | fix h | |
− | + | show "?P (H h)" by simp | |
next | next | ||
− | + | fix n i | |
− | + | fix d assume HId: "?P d" | |
− | + | have AUX: "¬ (inOrden d = [])" (is "?Q d") | |
proof (induct d) | proof (induct d) | ||
fix hd | fix hd | ||
Línea 712: | Línea 737: | ||
show "?Q (N nd id dd)" using HIid HIdd by simp | show "?Q (N nd id dd)" using HIid HIdd by simp | ||
qed | qed | ||
− | + | have "last (inOrden (N n i d)) = last (inOrden i @[n]@inOrden d)" | |
− | + | by simp | |
− | + | also have "… = last (inOrden d)" using AUX by simp | |
− | + | also have "… = extremo_derecha d" using HId by simp | |
+ | finally show "?P (N n i d)" by simp | ||
qed | qed | ||
(* pabrodmac fraortmoy *) | (* pabrodmac fraortmoy *) | ||
− | |||
lemma Aux_ej12: "inOrden a ≠ []" | lemma Aux_ej12: "inOrden a ≠ []" | ||
by (induct a) auto | by (induct a) auto | ||
(* pabrodmac fraortmoy *) | (* pabrodmac fraortmoy *) | ||
− | |||
theorem "last (inOrden a) = extremo_derecha a" | theorem "last (inOrden a) = extremo_derecha a" | ||
by (induct a)(auto simp add: Aux_ej12) | by (induct a)(auto simp add: Aux_ej12) | ||
(* pabrodmac *) | (* pabrodmac *) | ||
− | |||
lemma | lemma | ||
fixes a ::"'b arbol" | fixes a ::"'b arbol" | ||
Línea 742: | Línea 765: | ||
show "?P (N x i d)" | show "?P (N x i d)" | ||
proof - | proof - | ||
− | have "last (inOrden (N x i d)) = | + | have "last (inOrden (N x i d)) = last((inOrden i)@ [x] @ (inOrden d))" |
− | also have "… =last(inOrden d)" by (simp add: Aux_ej12) | + | by simp |
+ | also have "… = last(inOrden d)" by (simp add: Aux_ej12) | ||
also have "… = extremo_derecha d" using h1 h2 by simp | also have "… = extremo_derecha d" using h1 h2 by simp | ||
also have "… = extremo_derecha (N x i d)" by simp | also have "… = extremo_derecha (N x i d)" by simp | ||
finally show ?thesis . | finally show ?thesis . | ||
− | qed | + | qed |
qed | qed | ||
(* ferrenseg *) | (* ferrenseg *) | ||
− | |||
theorem "last (inOrden a) = extremo_derecha a" (is "?P a") | theorem "last (inOrden a) = extremo_derecha a" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 771: | Línea 794: | ||
(* fraortmoy *) | (* fraortmoy *) | ||
− | |||
lemma | lemma | ||
fixes a ::"'b arbol" | fixes a ::"'b arbol" | ||
Línea 793: | Línea 815: | ||
fix t i d | fix t i d | ||
assume H2: "?P d" | assume H2: "?P d" | ||
− | have "last (inOrden (N t i d)) = last ((inOrden i)@[t]@(inOrden d))" by simp | + | have "last (inOrden (N t i d)) = last ((inOrden i)@[t]@(inOrden d))" |
− | also have "… = last(inOrden d)" | + | by simp |
+ | also have "… = last (inOrden d)" | ||
proof (induct d) | proof (induct d) | ||
fix x | fix x | ||
− | show "last (inOrden i @ [t] @ inOrden (H x)) = last (inOrden (H x))" by simp | + | show "last (inOrden i @ [t] @ inOrden (H x)) = last (inOrden (H x))" |
+ | by simp | ||
next | next | ||
fix x1a d1 d2 | fix x1a d1 d2 | ||
− | show "last (inOrden i @ [t] @ inOrden (N x1a d1 d2)) = last (inOrden (N x1a d1 d2))" by simp | + | show "last (inOrden i @ [t] @ inOrden (N x1a d1 d2)) = |
+ | last (inOrden (N x1a d1 d2))" by simp | ||
qed | qed | ||
− | finally show "last (inOrden (N t i d)) = extremo_derecha (N t i d)" using H2 by simp | + | finally show "last (inOrden (N t i d)) = extremo_derecha (N t i d)" |
+ | using H2 by simp | ||
qed | qed | ||
Línea 812: | Línea 838: | ||
*} | *} | ||
− | (* danrodcha pablucoto crigomgom juacabsou serrodcal jeamacpov marcarmor13 *) | + | (* danrodcha pablucoto crigomgom juacabsou serrodcal jeamacpov |
+ | marcarmor13 *) | ||
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a") | theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 832: | Línea 859: | ||
theorem "hd (inOrden a) = extremo_izquierda a" (is "?p a") | theorem "hd (inOrden a) = extremo_izquierda a" (is "?p a") | ||
proof (induct a) | proof (induct a) | ||
− | fix t | + | fix t |
− | show "?p (H t)" by simp | + | show "?p (H t)" by simp |
next | next | ||
− | fix t i d | + | fix t i d |
− | assume HI: "?p i" | + | assume HI: "?p i" |
− | have "hd (inOrden (N t i d)) = hd (inOrden i @ [t] @ inOrden d)" by simp | + | have "hd (inOrden (N t i d)) = hd (inOrden i @ [t] @ inOrden d)" |
− | also have "… = hd (inOrden i)" by (simp add: aux_ej12) | + | by simp |
− | also have "… = extremo_izquierda i" using HI by simp | + | also have "… = hd (inOrden i)" by (simp add: aux_ej12) |
− | finally show "?p (N t i d)" by simp | + | also have "… = extremo_izquierda i" using HI by simp |
+ | finally show "?p (N t i d)" by simp | ||
qed | qed | ||
Línea 846: | Línea 874: | ||
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a") | theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
− | + | fix h | |
− | + | show "?P (H h)" by simp | |
next | next | ||
− | + | fix n d | |
− | + | fix i assume HId: "?P i" | |
− | + | have AUX: "¬ (inOrden i = [])" (is "?Q i") | |
proof (induct i) | proof (induct i) | ||
fix hi | fix hi | ||
Línea 861: | Línea 889: | ||
show "?Q (N ni ii di)" using HIid HIdd by simp | show "?Q (N ni ii di)" using HIid HIdd by simp | ||
qed | qed | ||
− | + | have "hd (inOrden (N n i d)) = hd (inOrden i @[n]@inOrden d)" by simp | |
− | + | also have "… = hd (inOrden i)" using AUX by simp | |
− | + | also have "… = extremo_izquierda i" using HId by simp | |
− | + | finally show "?P (N n i d)" by simp | |
qed | qed | ||
(* ivamenjim marpoldia1 wilmorort paupeddeg rubgonmar *) | (* ivamenjim marpoldia1 wilmorort paupeddeg rubgonmar *) | ||
− | |||
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a") | theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 877: | Línea 904: | ||
fix i assume h1: "?P i" | fix i assume h1: "?P i" | ||
fix d assume h2: "?P d" | fix d assume h2: "?P d" | ||
− | have "hd (inOrden (N x i d)) = hd ((inOrden i) @ [x] @ (inOrden d))" by simp | + | have "hd (inOrden (N x i d)) = hd ((inOrden i) @ [x] @ (inOrden d))" |
+ | by simp | ||
also have "... = hd (inOrden i)" by (simp add: aux_ej12_1) | also have "... = hd (inOrden i)" by (simp add: aux_ej12_1) | ||
also have "... = extremo_izquierda i" using h1 by simp | also have "... = extremo_izquierda i" using h1 by simp | ||
− | finally show "hd (inOrden (N x i d)) = extremo_izquierda (N x i d)" by simp | + | finally show "hd (inOrden (N x i d)) = extremo_izquierda (N x i d)" |
+ | by simp | ||
qed | qed | ||
(* pabrodmac paupeddeg*) | (* pabrodmac paupeddeg*) | ||
− | |||
theorem "hd (inOrden a) = extremo_izquierda a" | theorem "hd (inOrden a) = extremo_izquierda a" | ||
by (induct a)(auto simp add: Aux_ej12) | by (induct a)(auto simp add: Aux_ej12) | ||
(* pabrodmac *) | (* pabrodmac *) | ||
− | |||
lemma | lemma | ||
fixes a ::"'b arbol" | fixes a ::"'b arbol" | ||
Línea 902: | Línea 929: | ||
show "?P (N x i d)" | show "?P (N x i d)" | ||
proof - | proof - | ||
− | have "hd (inOrden (N x i d)) = hd((inOrden i)@ [x] @ (inOrden d))" by simp | + | have "hd (inOrden (N x i d)) = hd((inOrden i)@ [x] @ (inOrden d))" |
+ | by simp | ||
also have "… = hd (inOrden i)" by (simp add: Aux_ej12) | also have "… = hd (inOrden i)" by (simp add: Aux_ej12) | ||
also have "… = extremo_izquierda i" using h1 h2 by simp | also have "… = extremo_izquierda i" using h1 h2 by simp | ||
also have "… = extremo_izquierda (N x i d)" by simp | also have "… = extremo_izquierda (N x i d)" by simp | ||
finally show ?thesis . | finally show ?thesis . | ||
− | qed | + | qed |
qed | qed | ||
(* ferrenseg *) | (* ferrenseg *) | ||
− | |||
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a") | theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 923: | Línea 950: | ||
have "hd (inOrden (N x l r)) = | have "hd (inOrden (N x l r)) = | ||
hd (inOrden l @ [x] @ inOrden r)" by simp | hd (inOrden l @ [x] @ inOrden r)" by simp | ||
− | also have "… = hd (inOrden l)" by (simp add: | + | also have "… = hd (inOrden l)" by (simp add: Aux_ej12) |
also have "… = extremo_izquierda l" using HI by simp | also have "… = extremo_izquierda l" using HI by simp | ||
also have "… = extremo_izquierda (N x l r)" by simp | also have "… = extremo_izquierda (N x l r)" by simp | ||
Línea 959: | Línea 986: | ||
(* danrodcha *) | (* danrodcha *) | ||
− | theorem "hd ( | + | theorem "hd (preOrden1 a) = last (postOrden a)" (is "?P a") |
proof (induct a) | proof (induct a) | ||
fix x | fix x | ||
Línea 966: | Línea 993: | ||
assume HIi: "?P i" | assume HIi: "?P i" | ||
assume HId: "?P d" | assume HId: "?P d" | ||
− | have "hd ( | + | have "hd (preOrden1 (N x i d)) = hd (x#preOrden1 i @ preOrden1 d)" |
− | by (simp only: | + | by (simp only: preOrden1.simps(2)) |
also have "… = x" by simp | also have "… = x" by simp | ||
also have "… = last (postOrden i @ postOrden d @ [x])" by simp | also have "… = last (postOrden i @ postOrden d @ [x])" by simp | ||
Línea 975: | Línea 1002: | ||
qed | qed | ||
− | (* pablucoto crigomgom bowma marpoldia1 wilmorort lucnovdos juacabsou jeamacpov paupeddeg rubgonmar marcarmor13*) (*Similar al anterior*) | + | (* pablucoto crigomgom bowma marpoldia1 wilmorort lucnovdos juacabsou |
+ | jeamacpov paupeddeg rubgonmar marcarmor13*) | ||
+ | (*Similar al anterior*) | ||
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a") | theorem "hd (preOrden a) = last (postOrden a)" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 984: | Línea 1013: | ||
assume HI1: "?P i" | assume HI1: "?P i" | ||
assume HI2: "?P d" | assume HI2: "?P d" | ||
− | have " hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d)" by simp | + | have " hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d)" |
+ | by simp | ||
also have "... = x" by simp | also have "... = x" by simp | ||
also have "... = last ( postOrden i @ postOrden d @ [x]) " by simp | also have "... = last ( postOrden i @ postOrden d @ [x]) " by simp | ||
Línea 998: | Línea 1028: | ||
next | next | ||
fix n i d | fix n i d | ||
− | have "hd (preOrden (N n (i :: 'a arbol) (d :: 'a arbol))) = hd ([n]@preOrden i@preOrden d)" | + | have "hd (preOrden (N n (i :: 'a arbol) (d :: 'a arbol))) = |
− | + | hd ([n]@preOrden i@preOrden d)" by simp | |
− | (* Si no especifico que i y d son árboles, salta un error de tipo. Supongo que será por | + | (* Si no especifico que i y d son árboles, salta un error de tipo. |
− | + | Supongo que será por no haber asumido hipótesis sobre ellos *) | |
also have "… = last (postOrden (N n i d))" by simp | also have "… = last (postOrden (N n i d))" by simp | ||
show "?P (N n i d)" by simp | show "?P (N n i d)" by simp | ||
Línea 1007: | Línea 1037: | ||
(* ivamenjim serrodcal *) | (* ivamenjim serrodcal *) | ||
− | |||
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a") | theorem "hd (preOrden a) = last (postOrden a)" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 1016: | Línea 1045: | ||
fix i assume h1: "?P i" | fix i assume h1: "?P i" | ||
fix d assume h2: "?P d" | fix d assume h2: "?P d" | ||
− | have "hd (preOrden (N x i d)) = hd ([x] @ (preOrden i) @ (preOrden d))" by simp | + | have "hd (preOrden (N x i d)) = hd ([x] @ (preOrden i) @ (preOrden d))" |
+ | by simp | ||
also have "... = hd ([x])" by simp | also have "... = hd ([x])" by simp | ||
− | finally show "hd (preOrden (N x i d)) = last (postOrden (N x i d))" by simp | + | finally show "hd (preOrden (N x i d)) = last (postOrden (N x i d))" |
+ | by simp | ||
qed | qed | ||
(* pabrodmac paupeddeg fraortmoy *) | (* pabrodmac paupeddeg fraortmoy *) | ||
− | |||
theorem "hd (preOrden a) = last (postOrden a)" | theorem "hd (preOrden a) = last (postOrden a)" | ||
by (induct a) auto | by (induct a) auto | ||
(* pabrodmac *) | (* pabrodmac *) | ||
− | |||
lemma | lemma | ||
fixes a ::"'b arbol" | fixes a ::"'b arbol" | ||
Línea 1046: | Línea 1075: | ||
qed | qed | ||
− | (*Me he dado cuenta que no es necesario asumir ninguna hipótesis de inducción puesto que no es necesario utilizarlas, así que no se si está bien hecho puesto que no se aplicaría inducción *) | + | (* Me he dado cuenta que no es necesario asumir ninguna hipótesis de |
+ | inducción puesto que no es necesario utilizarlas, así que no se si | ||
+ | está bien hecho puesto que no se aplicaría inducción *) | ||
(* ferrenseg *) | (* ferrenseg *) | ||
− | + | theorem "hd (preOrden a) = last (postOrden a)" (is "?P a") | |
− | theorem "hd (preOrden a) = last (postOrden a)"(is "?P a") | ||
proof (cases a) | proof (cases a) | ||
fix x | fix x | ||
Línea 1069: | Línea 1099: | ||
qed | qed | ||
qed | qed | ||
− | |||
(* fraortmoy *) | (* fraortmoy *) | ||
Línea 1098: | Línea 1127: | ||
(* danrodcha *) | (* danrodcha *) | ||
− | theorem "hd ( | + | theorem "hd (preOrden1 a) = raiz a" (is "?P a") |
proof (induct a) | proof (induct a) | ||
fix x | fix x | ||
show "?P (H x)" by simp | show "?P (H x)" by simp | ||
+ | next | ||
fix x i d | fix x i d | ||
assume HIi: "?P i" | assume HIi: "?P i" | ||
assume HId: "?P d" | assume HId: "?P d" | ||
− | have "hd ( | + | have "hd (preOrden1 (N x i d)) = hd (x#preOrden1 i @ preOrden1 d)" |
− | by (simp only: | + | by (simp only: preOrden1.simps(2)) |
also have "… = x" by simp | also have "… = x" by simp | ||
also have "… = raiz (N x i d)" by simp | also have "… = raiz (N x i d)" by simp | ||
Línea 1121: | Línea 1151: | ||
qed | qed | ||
− | (* pablucoto crigomgom ivamenjim marpoldia1 wilmorort lucnovdos juacabsou serrodcal jeamacpov paupeddeg rubgonmar marcarmor13*) | + | (* pablucoto crigomgom ivamenjim marpoldia1 wilmorort lucnovdos |
+ | juacabsou serrodcal jeamacpov paupeddeg rubgonmar marcarmor13 *) | ||
theorem "hd (preOrden a) = raiz a" (is "?P a") | theorem "hd (preOrden a) = raiz a" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 1130: | Línea 1161: | ||
assume HI1: " ?P i" | assume HI1: " ?P i" | ||
assume HI2: " ?P d" | assume HI2: " ?P d" | ||
− | have " hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d) " by simp | + | have " hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d) " |
+ | by simp | ||
also have "... = x" by simp | also have "... = x" by simp | ||
also have "... = raiz (N x i d)" by simp | also have "... = raiz (N x i d)" by simp | ||
Línea 1145: | Línea 1177: | ||
fix t i d | fix t i d | ||
assume HI: "?p i" | assume HI: "?p i" | ||
− | have "hd (preOrden (N t i d)) = hd ([t] @ preOrden i @ preOrden d)" by simp | + | have "hd (preOrden (N t i d)) = hd ([t] @ preOrden i @ preOrden d)" |
+ | by simp | ||
also have "… = t" by simp | also have "… = t" by simp | ||
also have "… = last (postOrden i @ postOrden d @ [t])" by simp | also have "… = last (postOrden i @ postOrden d @ [t])" by simp | ||
Línea 1159: | Línea 1192: | ||
next | next | ||
fix n i d | fix n i d | ||
− | have "hd (preOrden (N n (i :: 'a arbol) (d :: 'a arbol))) = hd ([n]@preOrden i@preOrden d)" | + | have "hd (preOrden (N n (i :: 'a arbol) (d :: 'a arbol))) = |
− | + | hd ([n]@preOrden i@preOrden d)" by simp | |
also have "… = raiz (N n i d)" by simp | also have "… = raiz (N n i d)" by simp | ||
finally show "?P (N n i d)" by simp | finally show "?P (N n i d)" by simp | ||
Línea 1166: | Línea 1199: | ||
(* ivamenjim: sin usar patrones *) | (* ivamenjim: sin usar patrones *) | ||
− | |||
theorem "hd (preOrden a) = raiz a" | theorem "hd (preOrden a) = raiz a" | ||
proof (induct a) | proof (induct a) | ||
Línea 1175: | Línea 1207: | ||
fix i ::"'a arbol" assume h1: "hd (preOrden i) = raiz i" | fix i ::"'a arbol" assume h1: "hd (preOrden i) = raiz i" | ||
fix d ::"'a arbol" assume h2: "hd (preOrden d) = raiz d" | fix d ::"'a arbol" assume h2: "hd (preOrden d) = raiz d" | ||
− | have "hd (preOrden (N x i d)) = hd ([x] @ (preOrden i) @ (preOrden d))" by simp | + | have "hd (preOrden (N x i d)) = hd ([x] @ (preOrden i) @ (preOrden d))" |
+ | by simp | ||
also have "... = hd ([x])" by simp | also have "... = hd ([x])" by simp | ||
finally show "hd (preOrden (N x i d)) = raiz (N x i d)" by simp | finally show "hd (preOrden (N x i d)) = raiz (N x i d)" by simp | ||
Línea 1181: | Línea 1214: | ||
(* pabrodmac paupeddeg fraortmoy *) | (* pabrodmac paupeddeg fraortmoy *) | ||
− | |||
theorem "hd (preOrden a) = raiz a" | theorem "hd (preOrden a) = raiz a" | ||
by (induct a) auto | by (induct a) auto | ||
(* pabrodmac *) | (* pabrodmac *) | ||
− | |||
lemma | lemma | ||
fixes a ::"'b arbol" | fixes a ::"'b arbol" | ||
Línea 1205: | Línea 1236: | ||
qed | qed | ||
− | (*Me he dado cuenta que no es necesario asumir ninguna hipótesis de inducción puesto que no es necesario utilizarlas, así que no se si está bien hecho puesto que no se aplicaría inducción *) | + | (* Me he dado cuenta que no es necesario asumir ninguna hipótesis de |
+ | inducción puesto que no es necesario utilizarlas, así que no se si | ||
+ | está bien hecho puesto que no se aplicaría inducción *) | ||
(* ferrenseg *) | (* ferrenseg *) | ||
− | |||
theorem "hd (preOrden a) = raiz a" (is "?P a") | theorem "hd (preOrden a) = raiz a" (is "?P a") | ||
proof (cases a) | proof (cases a) | ||
Línea 1227: | Línea 1259: | ||
qed | qed | ||
qed | qed | ||
− | |||
(* fraortmoy *) | (* fraortmoy *) | ||
Línea 1245: | Línea 1276: | ||
show "?P (N x i d)" by simp | show "?P (N x i d)" by simp | ||
qed | qed | ||
− | |||
text {* | text {* | ||
Línea 1254: | Línea 1284: | ||
*} | *} | ||
− | (*crigomgom pablucoto bowma migtermor ivamenjim wilmorort lucnovdos juacabsou pabrodmac serrodcal ferrenseg jeamacpov paupeddeg rubgonmar marcarmor13 fraortmoy dancorgar *) | + | (* crigomgom pablucoto bowma migtermor ivamenjim wilmorort lucnovdos |
+ | juacabsou pabrodmac serrodcal ferrenseg jeamacpov paupeddeg rubgonmar | ||
+ | marcarmor13 fraortmoy dancorgar *) | ||
theorem "hd (inOrden a) = raiz a" | theorem "hd (inOrden a) = raiz a" | ||
quickcheck | quickcheck | ||
Línea 1261: | Línea 1293: | ||
(* danrodcha: | (* danrodcha: | ||
Auto Quickcheck found a counterexample: | Auto Quickcheck found a counterexample: | ||
− | a = N | + | a = N a1 (H a2) (H a1) |
Evaluated terms: | Evaluated terms: | ||
− | hd (inOrden a) = | + | hd (inOrden a) = a2 |
− | raiz a = | + | raiz a = a1 *) |
(* ivamenjim marpoldia1 *) | (* ivamenjim marpoldia1 *) | ||
− | |||
theorem "hd (inOrden a) = raiz a" (is "?P a") | theorem "hd (inOrden a) = raiz a" (is "?P a") | ||
proof (induct a) | proof (induct a) | ||
Línea 1279: | Línea 1310: | ||
also have "... = hd (inOrden i)" by (simp add: aux_ej12_1) | also have "... = hd (inOrden i)" by (simp add: aux_ej12_1) | ||
(* Perdemos la x, luego se refuta el enunciado del teorema *) | (* Perdemos la x, luego se refuta el enunciado del teorema *) | ||
− | + | oops | |
text {* | text {* | ||
Línea 1305: | Línea 1336: | ||
assume HIi: "?P i" | assume HIi: "?P i" | ||
assume HId: "?P d" | assume HId: "?P d" | ||
− | have "last (postOrden (N x i d)) = last (postOrden i @ postOrden d @ [x])" | + | have "last (postOrden (N x i d)) = |
+ | last (postOrden i @ postOrden d @ [x])" | ||
by (simp only: postOrden.simps(2)) | by (simp only: postOrden.simps(2)) | ||
also have "… = x" by simp | also have "… = x" by simp | ||
Línea 1312: | Línea 1344: | ||
qed | qed | ||
− | (* pablucoto crigomgom ivamenjim marpoldia1 wilmorort lucnovdos juacabsou serrodcal jeamacpov paupeddeg rubgonmar marcarmor13 *) (*Similar al anterior*) | + | (* pablucoto crigomgom ivamenjim marpoldia1 wilmorort lucnovdos |
− | + | juacabsou serrodcal jeamacpov paupeddeg rubgonmar marcarmor13 *) | |
+ | (* Similar al anterior *) | ||
theorem "last (postOrden a) = raiz a" (is "?P a") | theorem "last (postOrden a) = raiz a" (is "?P a") | ||
proof (induct a ) | proof (induct a ) | ||
Línea 1322: | Línea 1355: | ||
assume HI1: "?P i" | assume HI1: "?P i" | ||
assume HI2: "?P d" | assume HI2: "?P d" | ||
− | have "last (postOrden (N x i d)) = last ( postOrden i @ postOrden d @ [x])" by simp | + | have "last (postOrden (N x i d)) = |
+ | last ( postOrden i @ postOrden d @ [x])" by simp | ||
also have "... = x" by simp | also have "... = x" by simp | ||
also have "... = raiz (N x i d) " by simp | also have "... = raiz (N x i d) " by simp | ||
Línea 1332: | Línea 1366: | ||
theorem "last (postOrden a) = raiz a" (is "?p a") | theorem "last (postOrden a) = raiz a" (is "?p a") | ||
proof (induct a) | proof (induct a) | ||
− | fix t | + | fix t |
− | show "?p (H t)" by simp | + | show "?p (H t)" by simp |
next | next | ||
− | fix t i d | + | fix t i d |
− | assume "?p i" | + | assume "?p i" |
− | (* si quito este supuesto, hay error pero no sé dónde se lo está usando *) | + | (* si quito este supuesto, hay error pero no sé dónde se lo está |
− | have "last (postOrden (N t i d)) = last (postOrden i @ postOrden d @ [t])" by simp | + | usando *) |
− | also have "... = t" by simp | + | have "last (postOrden (N t i d)) = |
− | also have "... = raiz (N t i d)" by simp | + | last (postOrden i @ postOrden d @ [t])" by simp |
− | finally show "?p (N t i d)" by simp | + | also have "... = t" by simp |
+ | also have "... = raiz (N t i d)" by simp | ||
+ | finally show "?p (N t i d)" by simp | ||
qed | qed | ||
Línea 1358: | Línea 1394: | ||
(* ivamenjim: sin usar patrones *) | (* ivamenjim: sin usar patrones *) | ||
− | |||
theorem "last (postOrden a) = raiz a" | theorem "last (postOrden a) = raiz a" | ||
proof (induct a) | proof (induct a) | ||
Línea 1367: | Línea 1402: | ||
fix i::"'a arbol" assume h1: "last (postOrden i) = raiz i" | fix i::"'a arbol" assume h1: "last (postOrden i) = raiz i" | ||
fix d::"'a arbol" assume h2: "last (postOrden d) = raiz d" | fix d::"'a arbol" assume h2: "last (postOrden d) = raiz d" | ||
− | have "last (postOrden (N x i d)) = last ((postOrden i) @ (postOrden d) @ [x])" by simp | + | have "last (postOrden (N x i d)) = |
+ | last ((postOrden i) @ (postOrden d) @ [x])" by simp | ||
also have "... = last ([x])" by simp | also have "... = last ([x])" by simp | ||
finally show "last (postOrden (N x i d)) = raiz (N x i d)" by simp | finally show "last (postOrden (N x i d)) = raiz (N x i d)" by simp | ||
qed | qed | ||
− | (*pabrodmac paupeddeg fraortmoy*) | + | (* pabrodmac paupeddeg fraortmoy *) |
− | |||
theorem "last (postOrden a) = raiz a" | theorem "last (postOrden a) = raiz a" | ||
by (induct a) auto | by (induct a) auto | ||
− | (*pabrodmac*) | + | (* pabrodmac *) |
− | |||
lemma | lemma | ||
fixes a ::"'b arbol" | fixes a ::"'b arbol" | ||
Línea 1397: | Línea 1431: | ||
qed | qed | ||
− | (*Me he dado cuenta que no es necesario asumir ninguna hipótesis de inducción puesto que no es necesario utilizarlas, así que no se si está bien hecho puesto que no se aplicaría inducción *) | + | (* Me he dado cuenta que no es necesario asumir ninguna hipótesis de |
+ | inducción puesto que no es necesario utilizarlas, así que no se si | ||
+ | está bien hecho puesto que no se aplicaría inducción *) | ||
(* ferrenseg *) | (* ferrenseg *) |
Revisión del 13:38 15 dic 2016
chapter {* R6: Recorridos de árboles *}
theory R6_Recorridos_de_arboles
imports Main
begin
text {*
---------------------------------------------------------------------
Ejercicio 1. Definir el tipo de datos arbol para representar los
árboles binarios que tiene información en los nodos y en las hojas.
Por ejemplo, el árbol
e
/ \
/ \
c g
/ \ / \
a d f 3
se representa por "N e (N c (H a) (H d)) (N g (H f) (H h))".
---------------------------------------------------------------------
*}
(* ivamenjim marpoldia1 manmorjim1 bowma migtermor wilmorort
juacabsou serrodcal pabrodmac ferrenseg rubgonmar paupeddeg
crigomgom danrodcha jeamacpov marcarmor13 josgarsan fraortmoy
dancorgar fracorjim1*)
datatype 'a arbol = H "'a" | N "'a" "'a arbol" "'a arbol"
value "N e (N c (H a) (H d)) (N g (H f) (H h))"
text {*
---------------------------------------------------------------------
Ejercicio 2. Definir la función
preOrden :: "'a arbol ⇒ 'a list"
tal que (preOrden a) es el recorrido pre orden del árbol a. Por
ejemplo,
preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [e,c,a,d,g,f,h]
---------------------------------------------------------------------
*}
(* ivamenjim marpoldia1 pablucoto bowma fraortmoy migtermor
wilmorort lucnovdos serrodcal pabrodmac jeamacpov paupeddeg
marcarmor13 josgarsan dancorgar *)
fun preOrden :: "'a arbol ⇒ 'a list" where
"preOrden (H t) = [t]"
| "preOrden (N t i d) = [t] @ (preOrden i) @ (preOrden d)"
(* danrodcha crigomgom manmorjim1 bowma juacabsou ferrenseg
rubgonmar paupeddeg fracorjim1 *)
fun preOrden1 :: "'a arbol ⇒ 'a list" where
"preOrden1 (H x) = [x]"
| "preOrden1 (N x i d) = x # preOrden1 i @ preOrden1 d"
value "preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [e,c,a,d,g,f,h]"
value "preOrden1 (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [e,c,a,d,g,f,h]"
(* danrodcha *)
lemma "preOrden a = preOrden1 a"
by (induct a) simp_all
text {*
---------------------------------------------------------------------
Ejercicio 3. Definir la función
postOrden :: "'a arbol ⇒ 'a list"
tal que (postOrden a) es el recorrido post orden del árbol a. Por
ejemplo,
postOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [e,c,a,d,g,f,h]
---------------------------------------------------------------------
*}
(* ivamenjim danrodcha crigomgom marpoldia1 manmorjim1
pablucoto bowma fraortmoy migtermor wilmorort lucnovdos
juacabsou serrodcal pabrodmac ferrenseg jeamacpov
rubgonmar paupeddeg marcarmor13 josgarsan dancorgar fracorjim1 *)
fun postOrden :: "'a arbol ⇒ 'a list" where
"postOrden (H t) = [t]"
| "postOrden (N t i d) = (postOrden i) @ (postOrden d) @ [t]"
value "postOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [a,d,c,f,h,g,e]"
text {*
---------------------------------------------------------------------
Ejercicio 4. Definir la función
inOrden :: "'a arbol ⇒ 'a list"
tal que (inOrden a) es el recorrido in orden del árbol a. Por
ejemplo,
inOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [a,c,d,e,f,g,h]
---------------------------------------------------------------------
*}
(* ivamenjim crigomgom marpoldia1 pablucoto bowma fraortmoy
migtermor wilmorort lucnovdos juacabsou serrodcal pabrodmac
ferrenseg jeamacpov rubgonmar paupeddeg marcarmor13 josgarsan
dancorgar *)
fun inOrden :: "'a arbol ⇒ 'a list" where
"inOrden (H t) = [t]"
| "inOrden (N t i d) = (inOrden i) @ [t] @ (inOrden d)"
(* danrodcha manmorjim1 fracorjim1 *)
fun inOrden1 :: "'a arbol ⇒ 'a list" where
"inOrden1 (H t) = [t]"
| "inOrden1 (N t i d) = inOrden1 i @ t#inOrden1 d"
value "inOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [a,c,d,e,f,g,h]"
value "inOrden1 (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [a,c,d,e,f,g,h]"
(* manmorjim1 *)
lemma "inOrden t = inOrden1 t"
apply (induct t)
apply auto
done
text {*
---------------------------------------------------------------------
Ejercicio 5. Definir la función
espejo :: "'a arbol ⇒ 'a arbol"
tal que (espejo a) es la imagen especular del árbol a. Por ejemplo,
espejo (N e (N c (H a) (H d)) (N g (H f) (H h)))
= N e (N g (H h) (H f)) (N c (H d) (H a))
---------------------------------------------------------------------
*}
(* ivamenjim danrodcha crigomgom marpoldia1 manmorjim1
pablucoto bowma fraortmoy migtermor wilmorort lucnovdos
juacabsou serrodcal pabrodmac ferrenseg jeamacpov rubgonmar
paupeddeg marcarmor13 josgarsan dancorgar fracorjim1 *)
fun espejo :: "'a arbol ⇒ 'a arbol" where
"espejo (H t) = H t"
| "espejo (N t i d) = N t (espejo d) (espejo i)"
value "espejo (N e (N c (H a) (H d)) (N g (H f) (H h)))
= N e (N g (H h) (H f)) (N c (H d) (H a))"
text {*
---------------------------------------------------------------------
Ejercicio 6. Demostrar que
preOrden (espejo a) = rev (postOrden a)
---------------------------------------------------------------------
*}
(* ivamenjim migtermor wilmorort juacabsou serrodcal dancorgar josgarsan
*)
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
have "preOrden (espejo (N x i d)) =
preOrden (N x (espejo d) (espejo i))" by simp
also have "... = [x] @ (preOrden (espejo d)) @ (preOrden (espejo i))"
by simp
also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)"
using h1 h2 by simp
finally show "preOrden (espejo (N x i d)) = rev (postOrden (N x i d))"
by simp
qed
(* danrodcha paupeddeg *)
lemma "preOrden (espejo a) = rev (postOrden a)"
by (induct a) simp_all
(* danrodcha crigomgom fracorjim1 *)
lemma "preOrden1 (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
have "preOrden1 (espejo (N x i d)) =
preOrden1 (N x (espejo d) (espejo i))"
by (simp only: espejo.simps(2))
also have "… = x#preOrden1 (espejo d) @ preOrden1 (espejo i)"
by (simp only: preOrden1.simps(2))
also have"… = x#rev (postOrden d) @ rev (postOrden i)"
using HIi HId by simp
also have "… = rev (postOrden (N x i d))" by simp
finally show "?P (N x i d)" by simp
qed
(* danrodcha fraortmoy *)
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
show "?P (N x i d)" using HIi HId by simp
qed
(* bowma *)
lemma "preOrden (espejo a) = rev (postOrden a)"
apply (induct a)
apply simp_all
done
(* pablucoto marpoldia1 jeamacpov paupeddeg marcarmor13*)
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume h1: "?P i"
assume h2: "?P d"
have "preOrden (espejo (N x i d)) =
preOrden (N x (espejo d) (espejo i))" by simp
also have "... = [x] @ (preOrden (espejo d)) @ (preOrden (espejo i))"
by simp
also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)"
using h1 h2 by simp
also have "... = [x] @ rev (postOrden i @ postOrden d)" by simp
also have "... = rev ( postOrden i @ postOrden d @ [x] ) " by simp
also have "... = rev (postOrden (N x i d)) " by simp
finally show "?P (N x i d)" by simp
qed
(* bowma *)
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?p a")
proof (induct a)
fix t
show "?p (H t)" by simp
(* Aquí si le diga "preOrden (espejo (H t)) = rev (postOrden (H t))",
isabelle dice:
proof (prove)
goal (1 subgoal):
1. preOrden (espejo (H t)) = rev (postOrden (H t))
Introduced fixed type variable(s): 'b in "t__"
No entiendo porqué *)
next
fix t i d
assume H1: "?p i"
assume H2: "?p d"
have "preOrden (espejo (N t i d)) =
preOrden (N t (espejo d) (espejo i))" by simp
also have "... = [t] @ (preOrden (espejo d)) @ (preOrden (espejo i))"
by simp
also have "... = [t] @ rev (postOrden d) @ rev (postOrden i)"
using H1 H2 by simp
finally show "?p (N t i d)" by simp
qed
(* Comentario sobre tipo inducido. *)
(* fraortmoy lucnovdos pabrodmac*)
lemma "preOrden (espejo a) = rev (postOrden a)"
by (induct a) auto
(*pabrodmac*)
lemma
fixes a ::"'b arbol"
shows "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "preOrden (espejo (N x i d)) =
preOrden(N x (espejo d) (espejo i))" by simp
also have "… = [x]@rev(postOrden d)@rev(postOrden i)"
using h1 h2 by simp
also have "… = rev(postOrden (N x i d))" by simp
finally show ?thesis .
qed
qed
(* ferrenseg rubgonmar *)
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x l r
assume H1: "?P l"
assume H2: "?P r"
show "?P (N x l r)"
proof -
have "preOrden (espejo (N x l r)) =
preOrden (N x (espejo r) (espejo l))" by simp
also have "… = x # (preOrden (espejo r) @ preOrden (espejo l))" by simp
also have "… = x # (rev (postOrden r) @ rev (postOrden l))"
using H1 H2 by simp
also have "… = x # rev (postOrden l @ postOrden r)" by simp
also have "… = rev ((postOrden l) @ (postOrden r) @ [x])" by simp
also have "… = rev (postOrden (N x l r))" by simp
finally show ?thesis .
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 7. Demostrar que
postOrden (espejo a) = rev (preOrden a)
---------------------------------------------------------------------
*}
(* ivamenjim crigomgom bowma migtermor wilmorort juacabsou serrodcal
dancorgar josgarsan*)
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
have "postOrden (espejo (N x i d)) =
postOrden (N x (espejo d) (espejo i))" by simp
also have "... = (postOrden (espejo d)) @ (postOrden (espejo i)) @ [x]"
by simp
also have "... = rev (preOrden d) @ rev (preOrden i) @ [x]"
using h1 h2 by simp
finally show "postOrden (espejo (N x i d)) = rev (preOrden (N x i d))"
by simp
(* "?p (N x i d)" más corto *)
qed
(* danrodcha fraortmoy *)
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
show "?P (N x i d)" using HIi HId by simp
qed
(* pablucoto marpoldia1 jeamacpov paupeddeg rubgonmar *)
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume H1: "?P i"
assume H2: "?P d"
have " postOrden (espejo (N x i d)) =
postOrden ( N x (espejo d) (espejo i)) " by simp
also have "... = postOrden (espejo d) @ postOrden (espejo i) @ [x]"
by simp
also have "... = rev (preOrden d) @ rev (preOrden i) @ [x] "
using H1 H2 by simp
also have "... = rev (preOrden d) @ rev (x # preOrden i)" by simp
also have "... = rev (x # preOrden i @ preOrden d)" by simp
also have "... = rev (preOrden (N x i d)) " by simp
finally show "?P (N x i d)" by simp
qed
(* fraortmoy lucnovdos pabrodmac paupeddeg marcarmor13 *)
lemma "postOrden (espejo a) = rev (preOrden a)"
by (induct a) auto
(*pabrodmac*)
lemma
fixes a ::"'b arbol"
shows "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "postOrden (espejo (N x i d)) =
postOrden(N x (espejo d) (espejo i))" by simp
also have "… = rev (preOrden d) @ rev (preOrden i) @ [x]"
using h1 h2 by simp
also have "… = rev (preOrden (N x i d))" by simp
finally show ?thesis.
qed
qed
(* ferrenseg *)
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x l r
assume H1: "?P l"
assume H2: "?P r"
show "?P (N x l r)"
proof -
have "postOrden (espejo (N x l r)) =
postOrden (N x (espejo r) (espejo l))" by simp
also have "… = postOrden (espejo r) @ postOrden (espejo l) @ [x]"
by simp
also have "… = rev (preOrden r) @ rev (preOrden l) @ [x]"
using H1 H2 by simp
also have "… = rev (preOrden l @ preOrden r) @ [x]" by simp
also have "… = rev ([x] @ preOrden l @ preOrden r)" by simp
also have "… = rev (preOrden (N x l r))" by simp
finally show ?thesis .
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 8. Demostrar que
inOrden (espejo a) = rev (inOrden a)
---------------------------------------------------------------------
*}
(* ivamenjim crigomgom bowma migtermor wilmorort juacabsou serrodcal
dancorgar josgarsan *)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
have "inOrden (espejo (N x i d)) = inOrden (N x (espejo d) (espejo i))"
by simp
also have "... = (inOrden (espejo d)) @ [x] @ (inOrden (espejo i))"
by simp
also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)"
using h1 h2 by simp
finally show "inOrden (espejo (N x i d)) = rev (inOrden (N x i d))"
by simp
qed
(* danrodcha *)
theorem "inOrden (espejo a) = rev (inOrden a)"
by (induct a) simp_all
(* danrodcha *)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
show "?P (N x i d)" using HIi HId by simp
qed
(* pablucoto marpoldia1 jeamacpov paupeddeg marcarmor13*)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x) " by simp
next
fix x i d
assume HI1: "?P i"
assume HI2: "?P d"
have "inOrden (espejo (N x i d)) =
inOrden ( N x (espejo d) (espejo i) )" by simp
also have "... = inOrden (espejo d) @ [x] @ inOrden (espejo i)"
by simp
also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)"
using HI1 HI2 by simp
also have "... = rev (x # inOrden d ) @ rev (inOrden i)" by simp
also have "... = rev ( inOrden i @ x # inOrden d) " by simp
also have "... = rev (inOrden (N x i d))" by simp
finally show "?P (N x i d)" by simp
qed
(* lucnovdos pabrodmac paupeddeg fraortmoy *)
theorem "inOrden (espejo a) = rev (inOrden a)"
by (induct a) auto
(* pabrodmac *)
lemma
fixes a ::"'b arbol"
shows "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "inOrden (espejo (N x i d)) =
inOrden(N x (espejo d) (espejo i))" by simp
also have "… =rev(inOrden d)@[x]@rev(inOrden i)" using h1 h2 by simp
also have "… =rev(inOrden (N x i d))" by simp
finally show ?thesis .
qed
qed
(* ferrenseg rubgonmar *)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x l r
assume H1: "?P l"
assume H2: "?P r"
show "?P (N x l r)"
proof -
have "inOrden (espejo (N x l r)) =
inOrden (N x (espejo r) (espejo l))" by simp
also have "… = inOrden (espejo r) @ [x] @ inOrden (espejo l)"
by simp
also have "… = rev (inOrden r) @ [x] @ rev (inOrden l)"
using H1 H2 by simp
also have "… = rev (inOrden l @ [x] @ inOrden r)" by simp
also have "… = rev (inOrden (N x l r))" by simp
finally show ?thesis .
qed
qed
(* fraortmoy *)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "inOrden (espejo (N x i d)) = rev (inOrden (N x i d))"
using h1 h2 by simp
qed
text {*
---------------------------------------------------------------------
Ejercicio 9. Definir la función
raiz :: "'a arbol ⇒ 'a"
tal que (raiz a) es la raiz del árbol a. Por ejemplo,
raiz (N e (N c (H a) (H d)) (N g (H f) (H h))) = e
---------------------------------------------------------------------
*}
(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto
migtermor marpoldia1 wilmorort lucnovdos juacabsou serrodcal
ferrenseg paupeddeg rubgonmar jeamacpov marcarmor13 fraortmoy
fracorjim1 josgarsan dancorgar *)
fun raiz :: "'a arbol ⇒ 'a" where
"raiz (H x) = x"
| "raiz (N x i d) = x"
value "raiz (N e (N c (H a) (H d)) (N g (H f) (H h))) = e"
text {*
---------------------------------------------------------------------
Ejercicio 10. Definir la función
extremo_izquierda :: "'a arbol ⇒ 'a"
tal que (extremo_izquierda a) es el nodo más a la izquierda del árbol
a. Por ejemplo,
extremo_izquierda (N e (N c (H a) (H d)) (N g (H f) (H h))) = a
---------------------------------------------------------------------
*}
(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto
migtermor marpoldia1 wilmorort lucnovdos juacabsou serrodcal
pabrodmac ferrenseg jeamacpov paupeddeg rubgonmar marcarmor13
fraortmoy fracorjim1 josgarsan dancorgar *)
fun extremo_izquierda :: "'a arbol ⇒ 'a" where
"extremo_izquierda (H x) = x"
| "extremo_izquierda (N x i d) = extremo_izquierda i"
value "extremo_izquierda (N e (N c (H a) (H d)) (N g (H f) (H h))) = a"
(* bowma *)
fun extremo_izquierda_1 :: "'a arbol ⇒ 'a" where
"extremo_izquierda_1 (H t) = t"
| "extremo_izquierda_1 (N t i d) = hd (inOrden (N t i d))"
(* ivamenjim *)
(* Metaejercicio de demostración.
Llamando teorema_13 al teorema del ejercicio 13 *)
lemma "extremo_izquierda a = extremo_izquierda_1 a"
by (induct a, simp_all add: aux_ej12_1 teorema_13)
text {*
---------------------------------------------------------------------
Ejercicio 11. Definir la función
extremo_derecha :: "'a arbol ⇒ 'a"
tal que (extremo_derecha a) es el nodo más a la derecha del árbol
a. Por ejemplo,
extremo_derecha (N e (N c (H a) (H d)) (N g (H f) (H h))) = h
---------------------------------------------------------------------
*}
(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto
migtermor marpoldia1 wilmorort lucnovdos juacabsou pabrodmac
serrodcal ferrenseg jeamacpov paupeddeg rubgonmar marcarmor13
fraortmoy fracorjim1 josgarsan dancorgar *)
fun extremo_derecha :: "'a arbol ⇒ 'a" where
"extremo_derecha (H x) = x"
| "extremo_derecha (N x i d) = extremo_derecha d"
value "extremo_derecha (N e (N c (H a) (H d)) (N g (H f) (H h))) = h"
(* bowma *)
fun extremo_derecha_1 :: "'a arbol ⇒ 'a" where
"extremo_derecha_1 (H t) = t"
| "extremo_derecha_1 (N t i d) = last (inOrden (N t i d))"
(* ivamenjim *)
(* Metaejercicio de demostración.
Llamando teorema_12 al teorema del ejercicio 12 *)
(*
lemma "extremo_derecha a = extremo_derecha_1 a"
by (induct a, simp_all add: aux_ej12_1 teorema_12)
*)
text {*
---------------------------------------------------------------------
Ejercicio 12. Demostrar o refutar
last (inOrden a) = extremo_derecha a
---------------------------------------------------------------------
*}
(* danrodcha *)
lemma aux_ej12: "inOrden a ≠ []"
apply (induct a)
apply simp
apply simp
done
(* danrodcha pablucoto crigomgom wilmorort juacabsou serrodcal
rubgonmar jeamacpov marcarmor13*)
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
have "last (inOrden (N x i d)) = last (inOrden i @ [x] @ inOrden d)"
by (simp only: inOrden.simps(2))
also have "… = last (inOrden d)" by (simp add: aux_ej12)
also have "… = extremo_derecha d" using HId by simp
also have "… = extremo_derecha (N x i d)" by simp
finally show "?P (N x i d)" by simp
qed
(* ivamenjim *)
lemma aux_ej12_1: "inOrden a ≠ []"
by (induct a) simp_all
(* ivamenjim marpoldia1 paupeddeg *)
(* Igual que la anterior, pero poniendo solo by simp en el primer have *)
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
have "last (inOrden (N x i d)) =
last ((inOrden i) @ [x] @ (inOrden d))" by simp
also have "... = last (inOrden d)" by (simp add: aux_ej12_1)
also have "... = extremo_derecha d" using h2 by simp
finally show "last (inOrden (N x i d)) = extremo_derecha (N x i d)"
by simp
qed
(* bowma *)
(* Casi lo mismo que el anterior,pero no hace falta suponer "?p i" *)
theorem "last (inOrden a) = extremo_derecha a" (is "?p a")
proof (induct a)
fix t
show "?p (H t)" by simp
next
fix t i d
assume HI: "?p d"
have "last (inOrden (N t i d)) = last (inOrden i @ [t] @ inOrden d)"
by simp
also have "... = last (inOrden d)" by (simp add:aux_ej12)
also have "... = extremo_derecha d" using HI by simp
finally show "?p (N t i d)" by simp
qed
(* lucnovdos*)
(* El mismo que el anterior,pero sin usar patrones *)
theorem "last (inOrden a) = extremo_derecha a"
proof (induct a)
fix x ::"'a"
show "last (inOrden (H x)) = extremo_derecha (H x)" by simp
next
fix x ::"'a"
fix i d ::"'a arbol"
assume HI: "last (inOrden d) = extremo_derecha d"
have "last (inOrden (N x i d)) =
last ((inOrden i) @ [x] @ (inOrden d))" by simp
also have "… = last (inOrden d)" by (simp add: aux_ej12)
also have "… = extremo_derecha d" using HI by simp
also have "… = extremo_derecha (N x i d)" by simp
finally show "last (inOrden (N x i d)) = extremo_derecha (N x i d)"
by simp
qed
(* migtermor *)
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
fix h
show "?P (H h)" by simp
next
fix n i
fix d assume HId: "?P d"
have AUX: "¬ (inOrden d = [])" (is "?Q d")
proof (induct d)
fix hd
show "?Q (H hd)" by simp
next
fix nd
fix id assume HIid: "?Q id"
fix dd assume HIdd: "?Q dd"
show "?Q (N nd id dd)" using HIid HIdd by simp
qed
have "last (inOrden (N n i d)) = last (inOrden i @[n]@inOrden d)"
by simp
also have "… = last (inOrden d)" using AUX by simp
also have "… = extremo_derecha d" using HId by simp
finally show "?P (N n i d)" by simp
qed
(* pabrodmac fraortmoy *)
lemma Aux_ej12: "inOrden a ≠ []"
by (induct a) auto
(* pabrodmac fraortmoy *)
theorem "last (inOrden a) = extremo_derecha a"
by (induct a)(auto simp add: Aux_ej12)
(* pabrodmac *)
lemma
fixes a ::"'b arbol"
shows "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "last (inOrden (N x i d)) = last((inOrden i)@ [x] @ (inOrden d))"
by simp
also have "… = last(inOrden d)" by (simp add: Aux_ej12)
also have "… = extremo_derecha d" using h1 h2 by simp
also have "… = extremo_derecha (N x i d)" by simp
finally show ?thesis .
qed
qed
(* ferrenseg *)
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x l r
assume HI: "?P r"
show "?P (N x l r)"
proof -
have "last (inOrden (N x l r)) =
last (inOrden r @ [x] @ inOrden r)" by simp
also have "… = last (inOrden r)" by (simp add: inOrden)
also have "… = extremo_derecha r" using HI by simp
also have "… = extremo_derecha (N x l r)" by simp
finally show ?thesis .
qed
qed
(* fraortmoy *)
lemma
fixes a ::"'b arbol"
shows "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)" using h1 h2 by (simp add: Aux_ej12)
qed
(* dancorgar *)
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
fix t
show "?P (H t)" by simp
next
fix t i d
assume H2: "?P d"
have "last (inOrden (N t i d)) = last ((inOrden i)@[t]@(inOrden d))"
by simp
also have "… = last (inOrden d)"
proof (induct d)
fix x
show "last (inOrden i @ [t] @ inOrden (H x)) = last (inOrden (H x))"
by simp
next
fix x1a d1 d2
show "last (inOrden i @ [t] @ inOrden (N x1a d1 d2)) =
last (inOrden (N x1a d1 d2))" by simp
qed
finally show "last (inOrden (N t i d)) = extremo_derecha (N t i d)"
using H2 by simp
qed
text {*
---------------------------------------------------------------------
Ejercicio 13. Demostrar o refutar
hd (inOrden a) = extremo_izquierda a
---------------------------------------------------------------------
*}
(* danrodcha pablucoto crigomgom juacabsou serrodcal jeamacpov
marcarmor13 *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
have "hd (inOrden (N x i d)) = hd (inOrden i @ [x] @ inOrden d)"
by (simp only: inOrden.simps(2))
also have "… = hd (inOrden i)" by (simp add: aux_ej12)
also have "… = extremo_izquierda i" using HIi by simp
also have "… = extremo_izquierda (N x i d)" by simp
finally show "?P (N x i d)" by simp
qed
(* bowma lucnovdos dancorgar *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?p a")
proof (induct a)
fix t
show "?p (H t)" by simp
next
fix t i d
assume HI: "?p i"
have "hd (inOrden (N t i d)) = hd (inOrden i @ [t] @ inOrden d)"
by simp
also have "… = hd (inOrden i)" by (simp add: aux_ej12)
also have "… = extremo_izquierda i" using HI by simp
finally show "?p (N t i d)" by simp
qed
(* migtermor *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
fix h
show "?P (H h)" by simp
next
fix n d
fix i assume HId: "?P i"
have AUX: "¬ (inOrden i = [])" (is "?Q i")
proof (induct i)
fix hi
show "?Q (H hi)" by simp
next
fix ni
fix ii assume HIid: "?Q ii"
fix di assume HIdd: "?Q di"
show "?Q (N ni ii di)" using HIid HIdd by simp
qed
have "hd (inOrden (N n i d)) = hd (inOrden i @[n]@inOrden d)" by simp
also have "… = hd (inOrden i)" using AUX by simp
also have "… = extremo_izquierda i" using HId by simp
finally show "?P (N n i d)" by simp
qed
(* ivamenjim marpoldia1 wilmorort paupeddeg rubgonmar *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
have "hd (inOrden (N x i d)) = hd ((inOrden i) @ [x] @ (inOrden d))"
by simp
also have "... = hd (inOrden i)" by (simp add: aux_ej12_1)
also have "... = extremo_izquierda i" using h1 by simp
finally show "hd (inOrden (N x i d)) = extremo_izquierda (N x i d)"
by simp
qed
(* pabrodmac paupeddeg*)
theorem "hd (inOrden a) = extremo_izquierda a"
by (induct a)(auto simp add: Aux_ej12)
(* pabrodmac *)
lemma
fixes a ::"'b arbol"
shows "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "hd (inOrden (N x i d)) = hd((inOrden i)@ [x] @ (inOrden d))"
by simp
also have "… = hd (inOrden i)" by (simp add: Aux_ej12)
also have "… = extremo_izquierda i" using h1 h2 by simp
also have "… = extremo_izquierda (N x i d)" by simp
finally show ?thesis .
qed
qed
(* ferrenseg *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x l r
assume HI: "?P l"
show "?P (N x l r)"
proof -
have "hd (inOrden (N x l r)) =
hd (inOrden l @ [x] @ inOrden r)" by simp
also have "… = hd (inOrden l)" by (simp add: Aux_ej12)
also have "… = extremo_izquierda l" using HI by simp
also have "… = extremo_izquierda (N x l r)" by simp
finally show ?thesis .
qed
qed
(* fraortmoy *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume h1: "?P i"
assume h2: "?P d"
show "?P (N x i d)" using h1 h2 by (simp add: Aux_ej12)
qed
text {*
---------------------------------------------------------------------
Ejercicio 14. Demostrar o refutar
hd (preOrden a) = last (postOrden a)
---------------------------------------------------------------------
*}
(* danrodcha pabrodmac dancorgar *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
fix x i d
show "?P (N x i d)" by simp
qed
(* danrodcha *)
theorem "hd (preOrden1 a) = last (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
have "hd (preOrden1 (N x i d)) = hd (x#preOrden1 i @ preOrden1 d)"
by (simp only: preOrden1.simps(2))
also have "… = x" by simp
also have "… = last (postOrden i @ postOrden d @ [x])" by simp
also have "… = last (postOrden (N x i d))"
by (simp only: postOrden.simps(2))
finally show "?P (N x i d)" by simp
qed
(* pablucoto crigomgom bowma marpoldia1 wilmorort lucnovdos juacabsou
jeamacpov paupeddeg rubgonmar marcarmor13*)
(*Similar al anterior*)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HI1: "?P i"
assume HI2: "?P d"
have " hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d)"
by simp
also have "... = x" by simp
also have "... = last ( postOrden i @ postOrden d @ [x]) " by simp
also have "... = last ( postOrden (N x i d) )" by simp
finally show "?P (N x i d)" by simp
qed
(* migtermor *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
fix h
show "?P (H h)" by simp
next
fix n i d
have "hd (preOrden (N n (i :: 'a arbol) (d :: 'a arbol))) =
hd ([n]@preOrden i@preOrden d)" by simp
(* Si no especifico que i y d son árboles, salta un error de tipo.
Supongo que será por no haber asumido hipótesis sobre ellos *)
also have "… = last (postOrden (N n i d))" by simp
show "?P (N n i d)" by simp
qed
(* ivamenjim serrodcal *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
have "hd (preOrden (N x i d)) = hd ([x] @ (preOrden i) @ (preOrden d))"
by simp
also have "... = hd ([x])" by simp
finally show "hd (preOrden (N x i d)) = last (postOrden (N x i d))"
by simp
qed
(* pabrodmac paupeddeg fraortmoy *)
theorem "hd (preOrden a) = last (postOrden a)"
by (induct a) auto
(* pabrodmac *)
lemma
fixes a ::"'b arbol"
shows "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "hd (preOrden (N x i d) )= x" by simp
also have "… = last (postOrden (N x i d))" by simp
finally show ?thesis .
qed
qed
(* Me he dado cuenta que no es necesario asumir ninguna hipótesis de
inducción puesto que no es necesario utilizarlas, así que no se si
está bien hecho puesto que no se aplicaría inducción *)
(* ferrenseg *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (cases a)
fix x
assume "a = H x"
then show "?P a" by simp
next
fix x l r
assume H: "a = N x l r"
show "?P a"
proof -
have "hd (preOrden a) = hd (preOrden (N x l r))" using H by simp
also have "… = hd (x # (preOrden l @ preOrden r))" by simp
also have "… = x" by simp
also have "… = last (postOrden l @ postOrden r @ [x])" by simp
also have "… = last (postOrden (N x l r))" by simp
also have "… = last (postOrden a)" using H by simp
finally show ?thesis .
qed
qed
(* fraortmoy *)
theorem "hd (preOrden a) = last (postOrden a)"
apply (induct a)
apply simp
apply simp
done
(* fraortmoy *)
(* como ya se ha comentado antes, no se usan hipótesis de inducción *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
show "?P (N x i d)" by simp
qed
text {*
---------------------------------------------------------------------
Ejercicio 15. Demostrar o refutar
hd (preOrden a) = raiz a
---------------------------------------------------------------------
*}
(* danrodcha *)
theorem "hd (preOrden1 a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
have "hd (preOrden1 (N x i d)) = hd (x#preOrden1 i @ preOrden1 d)"
by (simp only: preOrden1.simps(2))
also have "… = x" by simp
also have "… = raiz (N x i d)" by simp
finally show "?P (N x i d)" by simp
qed
(* danrodcha pabrodmac dancorgar *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
fix x i d
show "?P (N x i d)" by simp
qed
(* pablucoto crigomgom ivamenjim marpoldia1 wilmorort lucnovdos
juacabsou serrodcal jeamacpov paupeddeg rubgonmar marcarmor13 *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
assume HI1: " ?P i"
assume HI2: " ?P d"
have " hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d) "
by simp
also have "... = x" by simp
also have "... = raiz (N x i d)" by simp
finally show " ?P (N x i d)" by simp
qed
(* bowma *)
(* similar al anterior pero sin suponer "?p d" *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?p a")
proof (induct a)
fix t
show "?p (H t)" by simp
next
fix t i d
assume HI: "?p i"
have "hd (preOrden (N t i d)) = hd ([t] @ preOrden i @ preOrden d)"
by simp
also have "… = t" by simp
also have "… = last (postOrden i @ postOrden d @ [t])" by simp
also have "… = last (postOrden (N t i d))" by simp
finally show "?p (N t i d)" by simp
qed
(* migtermor *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
fix h
show "?P (H h)" by simp
next
fix n i d
have "hd (preOrden (N n (i :: 'a arbol) (d :: 'a arbol))) =
hd ([n]@preOrden i@preOrden d)" by simp
also have "… = raiz (N n i d)" by simp
finally show "?P (N n i d)" by simp
qed
(* ivamenjim: sin usar patrones *)
theorem "hd (preOrden a) = raiz a"
proof (induct a)
fix x ::"'a"
show "hd (preOrden (H x)) = raiz (H x)" by simp
next
fix x ::"'a"
fix i ::"'a arbol" assume h1: "hd (preOrden i) = raiz i"
fix d ::"'a arbol" assume h2: "hd (preOrden d) = raiz d"
have "hd (preOrden (N x i d)) = hd ([x] @ (preOrden i) @ (preOrden d))"
by simp
also have "... = hd ([x])" by simp
finally show "hd (preOrden (N x i d)) = raiz (N x i d)" by simp
qed
(* pabrodmac paupeddeg fraortmoy *)
theorem "hd (preOrden a) = raiz a"
by (induct a) auto
(* pabrodmac *)
lemma
fixes a ::"'b arbol"
shows "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "hd (preOrden (N x i d) )= x" by simp
also have "… = raiz (N x i d)" by simp
finally show ?thesis .
qed
qed
(* Me he dado cuenta que no es necesario asumir ninguna hipótesis de
inducción puesto que no es necesario utilizarlas, así que no se si
está bien hecho puesto que no se aplicaría inducción *)
(* ferrenseg *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (cases a)
fix x
assume "a = H x"
then show "?P a" by simp
next
fix x l r
assume H: "a = N x l r"
show "?P a"
proof -
have "hd (preOrden a) = hd (preOrden (N x l r))" using H by simp
also have "… = hd (x#(preOrden l @ preOrden r))" by simp
also have "… = x" by simp
also have "… = raiz (N x l r)" by simp
also have "… = raiz a" using H by simp
finally show ?thesis .
qed
qed
(* fraortmoy *)
theorem "hd (preOrden a) = raiz a"
apply (induct a)
apply simp
apply simp
done
(* fraortmoy *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
show "?P (N x i d)" by simp
qed
text {*
---------------------------------------------------------------------
Ejercicio 16. Demostrar o refutar
hd (inOrden a) = raiz a
---------------------------------------------------------------------
*}
(* crigomgom pablucoto bowma migtermor ivamenjim wilmorort lucnovdos
juacabsou pabrodmac serrodcal ferrenseg jeamacpov paupeddeg rubgonmar
marcarmor13 fraortmoy dancorgar *)
theorem "hd (inOrden a) = raiz a"
quickcheck
oops
(* danrodcha:
Auto Quickcheck found a counterexample:
a = N a1 (H a2) (H a1)
Evaluated terms:
hd (inOrden a) = a2
raiz a = a1 *)
(* ivamenjim marpoldia1 *)
theorem "hd (inOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
have "hd (inOrden (N x i d)) = hd ((inOrden i) @ [x] @ (inOrden d))" by simp
also have "... = hd (inOrden i)" by (simp add: aux_ej12_1)
(* Perdemos la x, luego se refuta el enunciado del teorema *)
oops
text {*
---------------------------------------------------------------------
Ejercicio 17. Demostrar o refutar
last (postOrden a) = raiz a
---------------------------------------------------------------------
*}
(* danrodcha pabrodmac dancorgar *)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
fix x i d
show "?P (N x i d)" by simp
qed
(* danrodcha *)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
fix x i d
assume HIi: "?P i"
assume HId: "?P d"
have "last (postOrden (N x i d)) =
last (postOrden i @ postOrden d @ [x])"
by (simp only: postOrden.simps(2))
also have "… = x" by simp
also have "… = raiz (N x i d)" by (simp only: raiz.simps(2))
finally show "?P (N x i d)" by simp
qed
(* pablucoto crigomgom ivamenjim marpoldia1 wilmorort lucnovdos
juacabsou serrodcal jeamacpov paupeddeg rubgonmar marcarmor13 *)
(* Similar al anterior *)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a )
fix x
show "?P (H x)" by simp
next
fix x i d
assume HI1: "?P i"
assume HI2: "?P d"
have "last (postOrden (N x i d)) =
last ( postOrden i @ postOrden d @ [x])" by simp
also have "... = x" by simp
also have "... = raiz (N x i d) " by simp
finally show " ?P (N x i d)" by simp
qed
(* bowma *)
(* También sin usar el supuesto "?p d" *)
theorem "last (postOrden a) = raiz a" (is "?p a")
proof (induct a)
fix t
show "?p (H t)" by simp
next
fix t i d
assume "?p i"
(* si quito este supuesto, hay error pero no sé dónde se lo está
usando *)
have "last (postOrden (N t i d)) =
last (postOrden i @ postOrden d @ [t])" by simp
also have "... = t" by simp
also have "... = raiz (N t i d)" by simp
finally show "?p (N t i d)" by simp
qed
(* migtermor *)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
fix h
show "?P (H h)" by simp
next
fix n i d
have "last (postOrden (N n (i :: 'a arbol) (d :: 'a arbol))) =
last (postOrden i@postOrden d@[n])" by simp
also have "… = raiz (N n i d)" by simp
finally show "?P (N n i d)" by simp
qed
(* ivamenjim: sin usar patrones *)
theorem "last (postOrden a) = raiz a"
proof (induct a)
fix x::"'a"
show "last (postOrden (H x)) = raiz (H x)" by simp
next
fix x::"'a"
fix i::"'a arbol" assume h1: "last (postOrden i) = raiz i"
fix d::"'a arbol" assume h2: "last (postOrden d) = raiz d"
have "last (postOrden (N x i d)) =
last ((postOrden i) @ (postOrden d) @ [x])" by simp
also have "... = last ([x])" by simp
finally show "last (postOrden (N x i d)) = raiz (N x i d)" by simp
qed
(* pabrodmac paupeddeg fraortmoy *)
theorem "last (postOrden a) = raiz a"
by (induct a) auto
(* pabrodmac *)
lemma
fixes a ::"'b arbol"
shows "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x
fix i assume h1: "?P i"
fix d assume h2: "?P d"
show "?P (N x i d)"
proof -
have "last (postOrden (N x i d))= x" by simp
also have "… = raiz (N x i d)" by simp
finally show ?thesis .
qed
qed
(* Me he dado cuenta que no es necesario asumir ninguna hipótesis de
inducción puesto que no es necesario utilizarlas, así que no se si
está bien hecho puesto que no se aplicaría inducción *)
(* ferrenseg *)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (cases a)
fix x
assume "a = H x"
then show "?P a" by simp
next
fix x l r
assume H: "a = N x l r"
show "?P a"
proof -
have "last (postOrden a) = last (postOrden (N x l r))" using H by simp
also have "… = last (postOrden l @ preOrden r @ [x])" by simp
also have "… = x" by simp
also have "… = raiz a" using H by simp
finally show ?thesis .
qed
qed
(* fraortmoy *)
theorem "last (postOrden a) = raiz a"
apply (induct a)
apply simp
apply simp
done
(* fraortmoy *)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix x i d
show "?P (N x i d)" by simp
qed
end