Acciones

Diferencia entre revisiones de «Relación 6»

De Razonamiento automático (2016-17)

m (Texto reemplazado: «isar» por «isabelle»)
 
(No se muestran 43 ediciones intermedias de 7 usuarios)
Línea 1: Línea 1:
<source lang="isar">
+
<source lang="isabelle">
 
chapter {* R6: Recorridos de árboles *}
 
chapter {* R6: Recorridos de árboles *}
  
Línea 23: Línea 23:
 
(* ivamenjim marpoldia1 manmorjim1 bowma migtermor wilmorort  
 
(* ivamenjim marpoldia1 manmorjim1 bowma migtermor wilmorort  
 
   juacabsou serrodcal pabrodmac ferrenseg rubgonmar paupeddeg  
 
   juacabsou serrodcal pabrodmac ferrenseg rubgonmar paupeddeg  
   crigomgom danrodcha jeamacpov marcarmor13 josgarsan*)
+
   crigomgom danrodcha jeamacpov marcarmor13 josgarsan fraortmoy
 +
  dancorgar fracorjim1 anaprarod antsancab1 *)
  
 
datatype 'a arbol = H "'a" | N "'a" "'a arbol" "'a arbol"
 
datatype 'a arbol = H "'a" | N "'a" "'a arbol" "'a arbol"
Línea 41: Línea 42:
  
 
(* ivamenjim marpoldia1 pablucoto bowma fraortmoy migtermor  
 
(* ivamenjim marpoldia1 pablucoto bowma fraortmoy migtermor  
   wilmorort lucnovdos serrodcal pabrodmac jeamacpov paupeddeg marcarmor13 josgarsan*)
+
   wilmorort lucnovdos serrodcal pabrodmac jeamacpov paupeddeg
 +
  marcarmor13 josgarsan dancorgar anaprarod antsancab1 *)
  
 
fun preOrden :: "'a arbol ⇒ 'a list" where
 
fun preOrden :: "'a arbol ⇒ 'a list" where
   "preOrden (H t) = [t]"
+
   "preOrden (H t)     = [t]"
 
| "preOrden (N t i d) = [t] @ (preOrden i) @ (preOrden d)"
 
| "preOrden (N t i d) = [t] @ (preOrden i) @ (preOrden d)"
  
 
(* danrodcha crigomgom manmorjim1 bowma juacabsou ferrenseg  
 
(* danrodcha crigomgom manmorjim1 bowma juacabsou ferrenseg  
   rubgonmar paupeddeg *)
+
   rubgonmar paupeddeg fracorjim1 *)
 
fun preOrden1 :: "'a arbol ⇒ 'a list" where
 
fun preOrden1 :: "'a arbol ⇒ 'a list" where
   "preOrden1 (H x) = [x]"
+
   "preOrden1 (H x)     = [x]"
| "preOrden1 (N x i d) = x#preOrden1 i @ preOrden1 d"
+
| "preOrden1 (N x i d) = x # preOrden1 i @ preOrden1 d"
  
 
value "preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))   
 
value "preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))   
Línea 76: Línea 78:
 
     pablucoto bowma fraortmoy migtermor wilmorort lucnovdos
 
     pablucoto bowma fraortmoy migtermor wilmorort lucnovdos
 
     juacabsou serrodcal pabrodmac  ferrenseg jeamacpov  
 
     juacabsou serrodcal pabrodmac  ferrenseg jeamacpov  
     rubgonmar paupeddeg marcarmor13 josgarsan*)
+
     rubgonmar paupeddeg marcarmor13 josgarsan dancorgar fracorjim1 anaprarod antsancab1 *)
  
 
fun postOrden :: "'a arbol ⇒ 'a list" where
 
fun postOrden :: "'a arbol ⇒ 'a list" where
   "postOrden (H t) = [t]"
+
   "postOrden (H t)     = [t]"
 
| "postOrden (N t i d) = (postOrden i) @ (postOrden d) @ [t]"
 
| "postOrden (N t i d) = (postOrden i) @ (postOrden d) @ [t]"
  
Línea 98: Línea 100:
 
(* ivamenjim crigomgom marpoldia1 pablucoto bowma fraortmoy  
 
(* ivamenjim crigomgom marpoldia1 pablucoto bowma fraortmoy  
 
   migtermor wilmorort lucnovdos juacabsou serrodcal pabrodmac  
 
   migtermor wilmorort lucnovdos juacabsou serrodcal pabrodmac  
   ferrenseg jeamacpov rubgonmar paupeddeg marcarmor13*)
+
   ferrenseg jeamacpov rubgonmar paupeddeg marcarmor13 josgarsan
 
+
  dancorgar anaprarod antsancab1 *)
 
fun inOrden :: "'a arbol ⇒ 'a list" where
 
fun inOrden :: "'a arbol ⇒ 'a list" where
   "inOrden (H t) = [t]"
+
   "inOrden (H t)     = [t]"
 
| "inOrden (N t i d) = (inOrden i) @ [t] @ (inOrden d)"
 
| "inOrden (N t i d) = (inOrden i) @ [t] @ (inOrden d)"
  
 
+
(* danrodcha manmorjim1 fracorjim1 *)
(* danrodcha manmorjim1 *)
 
 
fun inOrden1 :: "'a arbol ⇒ 'a list" where
 
fun inOrden1 :: "'a arbol ⇒ 'a list" where
   "inOrden1 (H t) = [t]"
+
   "inOrden1 (H t)     = [t]"
 
| "inOrden1 (N t i d) = inOrden1 i @ t#inOrden1 d"
 
| "inOrden1 (N t i d) = inOrden1 i @ t#inOrden1 d"
  
Línea 134: Línea 135:
 
   pablucoto bowma fraortmoy migtermor wilmorort lucnovdos  
 
   pablucoto bowma fraortmoy migtermor wilmorort lucnovdos  
 
   juacabsou serrodcal pabrodmac ferrenseg jeamacpov rubgonmar  
 
   juacabsou serrodcal pabrodmac ferrenseg jeamacpov rubgonmar  
   paupeddeg marcarmor13*)
+
   paupeddeg marcarmor13 josgarsan dancorgar fracorjim1 anaprarod antsancab1 *)
 
 
 
fun espejo :: "'a arbol ⇒ 'a arbol" where
 
fun espejo :: "'a arbol ⇒ 'a arbol" where
   "espejo (H t) = H t"
+
   "espejo (H t)     = H t"
 
| "espejo (N t i d) = N t (espejo d) (espejo i)"
 
| "espejo (N t i d) = N t (espejo d) (espejo i)"
  
 
value "espejo (N e (N c (H a) (H d)) (N g (H f) (H h)))  
 
value "espejo (N e (N c (H a) (H d)) (N g (H f) (H h)))  
 
       = N e (N g (H h) (H f)) (N c (H d) (H a))"
 
       = N e (N g (H h) (H f)) (N c (H d) (H a))"
 
  
 
text {*   
 
text {*   
Línea 151: Línea 150:
 
*}
 
*}
  
(* ivamenjim migtermor wilmorort juacabsou serrodcal *)
+
(* ivamenjim migtermor wilmorort juacabsou serrodcal dancorgar josgarsan
 
+
*)  
 
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
 
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 161: Línea 160:
 
   fix i assume h1: "?P i"
 
   fix i assume h1: "?P i"
 
   fix d assume h2: "?P d"
 
   fix d assume h2: "?P d"
   have "preOrden (espejo (N x i d)) = preOrden (N x (espejo d) (espejo i))" by simp
+
   have "preOrden (espejo (N x i d)) =  
   also have "... = [x] @ (preOrden (espejo d)) @ (preOrden (espejo i))" by simp
+
        preOrden (N x (espejo d) (espejo i))" by simp
   also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)" using h1 h2 by simp  
+
   also have "... = [x] @ (preOrden (espejo d)) @ (preOrden (espejo i))"  
   finally show "preOrden (espejo (N x i d)) = rev (postOrden (N x i d))" by simp
+
    by simp
+
   also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)"  
 +
    using h1 h2 by simp  
 +
   finally show "preOrden (espejo (N x i d)) = rev (postOrden (N x i d))"  
 +
    by simp
 
qed
 
qed
  
(* danrodcha paupeddeg *)
+
(* danrodcha paupeddeg anaprarod *)
 
lemma  "preOrden (espejo a) = rev (postOrden a)"
 
lemma  "preOrden (espejo a) = rev (postOrden a)"
 
by (induct a) simp_all
 
by (induct a) simp_all
  
(* danrodcha crigomgom*)
+
 
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
+
(* danrodcha crigomgom fracorjim1 *)
 +
lemma  "preOrden1 (espejo a) = rev (postOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
 
   fix x
 
   fix x
Línea 181: Línea 184:
 
   assume HIi: "?P i"
 
   assume HIi: "?P i"
 
   assume HId: "?P d"
 
   assume HId: "?P d"
   have "preOrden (espejo (N x i d)) = preOrden (N x (espejo d) (espejo i))"
+
   have "preOrden1 (espejo (N x i d)) =  
 +
        preOrden1 (N x (espejo d) (espejo i))"
 
     by (simp only: espejo.simps(2))
 
     by (simp only: espejo.simps(2))
   also have "… = x#preOrden (espejo d) @ preOrden (espejo i)"
+
   also have "… = x#preOrden1 (espejo d) @ preOrden1 (espejo i)"
     by (simp only: preOrden.simps(2))
+
     by (simp only: preOrden1.simps(2))
 
   also have"… = x#rev (postOrden d) @ rev (postOrden i)"  
 
   also have"… = x#rev (postOrden d) @ rev (postOrden i)"  
 
     using HIi HId by simp
 
     using HIi HId by simp
Línea 191: Línea 195:
 
qed
 
qed
  
(* danrodcha fraortmoy *)
+
(* danrodcha fraortmoy anaprarod *)
 
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
 
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 209: Línea 213:
 
done
 
done
  
(* pablucoto marpoldia1 jeamacpov paupeddeg marcarmor13*)
+
(* pablucoto marpoldia1 jeamacpov paupeddeg marcarmor13 anaprarod *)
 
 
 
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
 
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 219: Línea 222:
 
   assume h1: "?P i"
 
   assume h1: "?P i"
 
   assume h2: "?P d"
 
   assume h2: "?P d"
   have "preOrden (espejo (N x i d)) = preOrden (N x (espejo d) (espejo i))" by simp
+
   have "preOrden (espejo (N x i d)) =  
   also have "... = [x] @ (preOrden (espejo d)) @ (preOrden (espejo i))" by simp
+
        preOrden (N x (espejo d) (espejo i))" by simp
   also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)" using h1 h2 by simp
+
   also have "... = [x] @ (preOrden (espejo d)) @ (preOrden (espejo i))"  
 +
    by simp
 +
   also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)"  
 +
    using h1 h2 by simp
 
   also have "... = [x] @ rev (postOrden i @ postOrden d)" by simp  
 
   also have "... = [x] @ rev (postOrden i @ postOrden d)" by simp  
 
   also have "... = rev ( postOrden i @ postOrden d @ [x] ) " by simp
 
   also have "... = rev ( postOrden i @ postOrden d @ [x] ) " by simp
Línea 231: Línea 237:
 
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?p a")
 
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?p a")
 
proof (induct a)
 
proof (induct a)
fix t
+
  fix t
show "?p (H t)" by simp
+
  show "?p (H t)" by simp
(* Aquí si le diga "preOrden (espejo (H t)) = rev (postOrden (H t))",isabelle dice:  
+
  (* Aquí si le diga "preOrden (espejo (H t)) = rev (postOrden (H t))",
proof (prove)
+
    isabelle dice:  
goal (1 subgoal):
+
  proof (prove)
1. preOrden (espejo (H t)) = rev (postOrden (H t))  
+
  goal (1 subgoal):
Introduced fixed type variable(s): 'b in "t__"  
+
  1. preOrden (espejo (H t)) = rev (postOrden (H t))  
No entiendo porqué *)
+
  Introduced fixed type variable(s): 'b in "t__"  
 +
  No entiendo porqué *)
 
next  
 
next  
fix t i d
+
  fix t i d
assume H1: "?p i"
+
  assume H1: "?p i"
assume H2: "?p d"
+
  assume H2: "?p d"
have "preOrden (espejo (N t i d)) = preOrden (N t (espejo d) (espejo i))" by simp
+
  have "preOrden (espejo (N t i d)) =  
also have "... = [t] @ (preOrden (espejo d)) @ (preOrden (espejo i))" by simp
+
        preOrden (N t (espejo d) (espejo i))" by simp
also have "... = [t] @ rev (postOrden d) @ rev (postOrden i)" using H1 H2 by simp
+
  also have "... = [t] @ (preOrden (espejo d)) @ (preOrden (espejo i))"  
finally show "?p (N t i d)" by simp
+
    by simp
 +
  also have "... = [t] @ rev (postOrden d) @ rev (postOrden i)"  
 +
    using H1 H2 by simp
 +
  finally show "?p (N t i d)" by simp
 
qed  
 
qed  
 +
 +
(* Comentario sobre tipo inducido. *)
  
 
(* fraortmoy lucnovdos pabrodmac*)
 
(* fraortmoy lucnovdos pabrodmac*)
 
 
lemma  "preOrden (espejo a) = rev (postOrden a)"
 
lemma  "preOrden (espejo a) = rev (postOrden a)"
 
by (induct a) auto
 
by (induct a) auto
  
 
(*pabrodmac*)
 
(*pabrodmac*)
 
 
lemma
 
lemma
 
   fixes a ::"'b arbol"  
 
   fixes a ::"'b arbol"  
Línea 268: Línea 278:
 
   show "?P (N x i d)"   
 
   show "?P (N x i d)"   
 
   proof -               
 
   proof -               
     have "preOrden (espejo (N x i d)) =  preOrden(N x (espejo d) (espejo i))" by simp
+
     have "preOrden (espejo (N x i d)) =   
     also have "… = [x]@rev(postOrden d)@rev(postOrden i)" using h1 h2 by simp
+
          preOrden(N x (espejo d) (espejo i))" by simp
 +
     also have "… = [x]@rev(postOrden d)@rev(postOrden i)"  
 +
      using h1 h2 by simp
 
     also have "… = rev(postOrden (N x i d))" by simp
 
     also have "… = rev(postOrden (N x i d))" by simp
 
     finally show ?thesis .
 
     finally show ?thesis .
 
  qed
 
  qed
 
qed
 
qed
 
  
 
(* ferrenseg rubgonmar *)
 
(* ferrenseg rubgonmar *)
 
 
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
 
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 298: Línea 308:
 
     finally show ?thesis .
 
     finally show ?thesis .
 
   qed
 
   qed
 +
qed
 +
 +
(* antsancab1 *)
 +
(* Le he puesto el nombre para utilizarlo en la siguiente demostración *)
 +
lemma  pre_es_rev_post: "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
 +
proof (induct a)
 +
  fix x
 +
  show "?P (H x)" by simp
 +
next
 +
  fix x
 +
  fix i assume H1: "?P i"
 +
  fix d assume H2: "?P d"
 +
  have "preOrden (espejo (N x i d)) = preOrden (N x (espejo d) (espejo i))" by simp
 +
  also have "... = [x] @ preOrden (espejo d) @ preOrden (espejo i)" by simp
 +
  also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)" using H1 H2 by simp
 +
  finally show "preOrden (espejo (N x i d)) = rev (postOrden (N x i d))" by simp
 
qed
 
qed
  
Línea 307: Línea 333:
 
*}
 
*}
  
(* ivamenjim crigomgom bowma migtermor wilmorort juacabsou serrodcal *)
+
(* ivamenjim crigomgom bowma migtermor wilmorort juacabsou serrodcal
 
+
  dancorgar josgarsan antsancab1 *)  
 
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
 
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 317: Línea 343:
 
   fix i assume h1: "?P i"
 
   fix i assume h1: "?P i"
 
   fix d assume h2: "?P d"
 
   fix d assume h2: "?P d"
   have "postOrden (espejo (N x i d)) = postOrden (N x (espejo d) (espejo i))" by simp
+
   have "postOrden (espejo (N x i d)) =  
   also have "... = (postOrden (espejo d)) @ (postOrden (espejo i)) @ [x]" by simp
+
        postOrden (N x (espejo d) (espejo i))" by simp
   also have "... = rev (preOrden d) @ rev (preOrden i) @ [x]" using h1 h2 by simp  
+
   also have "... = (postOrden (espejo d)) @ (postOrden (espejo i)) @ [x]"  
   finally show "postOrden (espejo (N x i d)) = rev (preOrden (N x i d))" by simp
+
    by simp
  (* "?p (N x i d)" más corto *)
+
   also have "... = rev (preOrden d) @ rev (preOrden i) @ [x]"  
 
+
    using h1 h2 by simp  
 +
   finally show "postOrden (espejo (N x i d)) = rev (preOrden (N x i d))"  
 +
    by simp
 +
    (* "?p (N x i d)" más corto *)
 
qed
 
qed
  
(* danrodcha fraortmoy *)
+
(* danrodcha fraortmoy anaprarod *)
 
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
 
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 337: Línea 366:
 
qed
 
qed
  
(* pablucoto marpoldia1 jeamacpov paupeddeg rubgonmar *)
+
(* pablucoto marpoldia1 jeamacpov paupeddeg rubgonmar anaprarod *)
 
 
lemma "postOrden (espejo a) = rev (preOrden a)"  (is "?P a")
 
lemma "postOrden (espejo a) = rev (preOrden a)"  (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 347: Línea 375:
 
   assume H1: "?P i"
 
   assume H1: "?P i"
 
   assume H2: "?P d"
 
   assume H2: "?P d"
   have " postOrden (espejo (N x i d)) = postOrden ( N x (espejo d) (espejo i)) " by simp
+
   have " postOrden (espejo (N x i d)) =  
   also have "... = postOrden (espejo d) @ postOrden (espejo i) @ [x] " by simp
+
        postOrden ( N x (espejo d) (espejo i)) " by simp
   also have "... = rev (preOrden d) @ rev (preOrden i) @ [x] " using H1 H2 by simp
+
   also have "... = postOrden (espejo d) @ postOrden (espejo i) @ [x]"  
 +
    by simp
 +
   also have "... = rev (preOrden d) @ rev (preOrden i) @ [x] "  
 +
    using H1 H2 by simp
 
   also have "... = rev (preOrden d) @ rev (x # preOrden i)"  by simp
 
   also have "... = rev (preOrden d) @ rev (x # preOrden i)"  by simp
 
   also have "... = rev (x # preOrden i @ preOrden d)" by simp
 
   also have "... = rev (x # preOrden i @ preOrden d)" by simp
Línea 359: Línea 390:
 
lemma "postOrden (espejo a) = rev (preOrden a)"
 
lemma "postOrden (espejo a) = rev (preOrden a)"
 
by (induct a) auto
 
by (induct a) auto
 +
 +
(* anaprarod *)
 +
lemma "postOrden (espejo a) = rev (preOrden a)"
 +
by (induct a) simp_all
  
 
(*pabrodmac*)
 
(*pabrodmac*)
 
 
lemma
 
lemma
 
   fixes a ::"'b arbol"  
 
   fixes a ::"'b arbol"  
Línea 374: Línea 408:
 
   show "?P (N x i d)"   
 
   show "?P (N x i d)"   
 
   proof -               
 
   proof -               
     have "postOrden (espejo (N x i d)) =  postOrden(N x (espejo d) (espejo i))" by simp
+
     have "postOrden (espejo (N x i d)) =   
     also have "… =rev(preOrden d)@rev(preOrden i)@[x]" using h1 h2 by simp
+
          postOrden(N x (espejo d) (espejo i))" by simp
     also have "… =rev(preOrden (N x i d))" by simp
+
     also have "… = rev (preOrden d) @ rev (preOrden i) @ [x]"  
 +
      using h1 h2 by simp
 +
     also have "… = rev (preOrden (N x i d))" by simp
 
     finally show ?thesis.
 
     finally show ?thesis.
 
  qed
 
  qed
Línea 382: Línea 418:
  
 
(* ferrenseg *)
 
(* ferrenseg *)
 
 
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
 
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 395: Línea 430:
 
     have "postOrden (espejo (N x l r)) =  
 
     have "postOrden (espejo (N x l r)) =  
 
           postOrden (N x (espejo r) (espejo l))" by simp
 
           postOrden (N x (espejo r) (espejo l))" by simp
     also have "… = postOrden (espejo r) @ postOrden (espejo l) @ [x]" by simp
+
     also have "… = postOrden (espejo r) @ postOrden (espejo l) @ [x]"  
 +
      by simp
 
     also have "… = rev (preOrden r) @ rev (preOrden l) @ [x]"  
 
     also have "… = rev (preOrden r) @ rev (preOrden l) @ [x]"  
      using H1 H2 by simp
+
      using H1 H2 by simp
 
     also have "… = rev (preOrden l @ preOrden r) @ [x]" by simp
 
     also have "… = rev (preOrden l @ preOrden r) @ [x]" by simp
 
     also have "… = rev ([x] @ preOrden l @ preOrden r)" by simp
 
     also have "… = rev ([x] @ preOrden l @ preOrden r)" by simp
Línea 404: Línea 440:
 
   qed
 
   qed
 
qed
 
qed
 +
 +
(* antsancab1 *)
 +
(* Después de hacerlo como en la anterior demostración se me ocurrió cómo
 +
relacionar ambas demostraciones.
 +
Como hemos demostrado que
 +
preOrden (espejo a) = rev (postOrden a)
 +
a la inversa también queda demostrado *)
 +
lemma "postOrden (espejo a) = rev (preOrden a)"
 +
apply (induct a)
 +
apply simp
 +
apply (simp add:pre_es_rev_post)
 +
done
  
 
text {*   
 
text {*   
Línea 412: Línea 460:
 
*}
 
*}
  
(* ivamenjim crigomgom bowma migtermor wilmorort juacabsou serrodcal *)
+
(* ivamenjim crigomgom bowma migtermor wilmorort juacabsou serrodcal
 
+
  dancorgar josgarsan antsancab1 *)  
 
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
 
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 422: Línea 470:
 
   fix i assume h1: "?P i"
 
   fix i assume h1: "?P i"
 
   fix d assume h2: "?P d"
 
   fix d assume h2: "?P d"
   have "inOrden (espejo (N x i d)) = inOrden (N x (espejo d) (espejo i))" by simp
+
   have "inOrden (espejo (N x i d)) = inOrden (N x (espejo d) (espejo i))"  
   also have "... = (inOrden (espejo d)) @ [x] @ (inOrden (espejo i))" by simp
+
    by simp
   also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)" using h1 h2 by simp  
+
   also have "... = (inOrden (espejo d)) @ [x] @ (inOrden (espejo i))"  
   finally show "inOrden (espejo (N x i d)) = rev (inOrden (N x i d))" by simp
+
    by simp
 +
   also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)"  
 +
    using h1 h2 by simp  
 +
   finally show "inOrden (espejo (N x i d)) = rev (inOrden (N x i d))"  
 +
    by simp
 
qed
 
qed
  
(* danrodcha *)
+
(* danrodcha anaprarod *)
 
theorem "inOrden (espejo a) = rev (inOrden a)"
 
theorem "inOrden (espejo a) = rev (inOrden a)"
 
by (induct a) simp_all
 
by (induct a) simp_all
  
(* danrodcha *)
+
(* danrodcha anaprarod *)
 
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
 
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 444: Línea 496:
 
qed
 
qed
  
(* pablucoto marpoldia1 jeamacpov paupeddeg marcarmor13*)
+
(* pablucoto marpoldia1 jeamacpov paupeddeg marcarmor13 anaprarod *)
 
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
 
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 453: Línea 505:
 
   assume HI1: "?P i"
 
   assume HI1: "?P i"
 
   assume HI2: "?P d"
 
   assume HI2: "?P d"
   have " inOrden (espejo (N x i d)) = inOrden ( N x (espejo d) (espejo i) )" by simp
+
   have "inOrden (espejo (N x i d)) =  
   also have "... = inOrden (espejo d) @ [x] @ inOrden (espejo i) " by simp
+
        inOrden ( N x (espejo d) (espejo i) )" by simp
   also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)" using HI1 HI2 by simp
+
   also have "... = inOrden (espejo d) @ [x] @ inOrden (espejo i)"  
 +
    by simp
 +
   also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)"  
 +
    using HI1 HI2 by simp
 
   also have "... = rev (x # inOrden d ) @ rev (inOrden i)" by simp
 
   also have "... = rev (x # inOrden d ) @ rev (inOrden i)" by simp
 
   also have "... = rev ( inOrden i @ x # inOrden d) " by simp
 
   also have "... = rev ( inOrden i @ x # inOrden d) " by simp
Línea 462: Línea 517:
 
qed
 
qed
  
(* lucnovdos pabrodmac paupeddeg *)
+
(* lucnovdos pabrodmac paupeddeg fraortmoy *)
 
theorem "inOrden (espejo a) = rev (inOrden a)"
 
theorem "inOrden (espejo a) = rev (inOrden a)"
 
by (induct a) auto
 
by (induct a) auto
  
 
(* pabrodmac *)
 
(* pabrodmac *)
 
 
lemma
 
lemma
 
   fixes a ::"'b arbol"  
 
   fixes a ::"'b arbol"  
Línea 480: Línea 534:
 
   show "?P (N x i d)"   
 
   show "?P (N x i d)"   
 
   proof -               
 
   proof -               
     have "inOrden (espejo (N x i d)) =  inOrden(N x (espejo d) (espejo i))" by simp
+
     have "inOrden (espejo (N x i d)) =   
 +
          inOrden(N x (espejo d) (espejo i))" by simp
 
     also have "… =rev(inOrden d)@[x]@rev(inOrden i)" using h1 h2 by simp
 
     also have "… =rev(inOrden d)@[x]@rev(inOrden i)" using h1 h2 by simp
 
     also have "… =rev(inOrden (N x i d))" by simp
 
     also have "… =rev(inOrden (N x i d))" by simp
Línea 488: Línea 543:
  
 
(* ferrenseg rubgonmar *)
 
(* ferrenseg rubgonmar *)
 
 
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
 
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 494: Línea 548:
 
   show "?P (H x)" by simp
 
   show "?P (H x)" by simp
 
next
 
next
   fix x i d
+
   fix x l r 
 
   assume H1: "?P l"
 
   assume H1: "?P l"
 
   assume H2: "?P r"
 
   assume H2: "?P r"
Línea 501: Línea 555:
 
     have "inOrden (espejo (N x l r)) =  
 
     have "inOrden (espejo (N x l r)) =  
 
           inOrden (N x (espejo r) (espejo l))" by simp
 
           inOrden (N x (espejo r) (espejo l))" by simp
     also have "… = inOrden (espejo r) @ [x] @ inOrden (espejo l)" by simp
+
     also have "… = inOrden (espejo r) @ [x] @ inOrden (espejo l)"  
 +
      by simp
 
     also have "… = rev (inOrden r) @ [x] @ rev (inOrden l)"  
 
     also have "… = rev (inOrden r) @ [x] @ rev (inOrden l)"  
      using H1 H2 by simp
+
      using H1 H2 by simp
 
     also have "… = rev (inOrden l @ [x] @ inOrden r)" by simp
 
     also have "… = rev (inOrden l @ [x] @ inOrden r)" by simp
 
     also have "… = rev (inOrden (N x l r))" by simp
 
     also have "… = rev (inOrden (N x l r))" by simp
 
     finally show ?thesis .
 
     finally show ?thesis .
 
   qed
 
   qed
 +
qed
 +
 +
(* fraortmoy *)
 +
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
 +
proof (induct a)
 +
  fix x
 +
  show "?P (H x)" by simp
 +
next
 +
  fix x
 +
  fix i assume h1: "?P i"
 +
  fix d assume h2: "?P d"
 +
  show "inOrden (espejo (N x i d)) = rev (inOrden (N x i d))"
 +
    using h1 h2  by simp
 
qed
 
qed
  
Línea 521: Línea 589:
 
(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto  
 
(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto  
 
   migtermor marpoldia1 wilmorort lucnovdos  juacabsou serrodcal  
 
   migtermor marpoldia1 wilmorort lucnovdos  juacabsou serrodcal  
   ferrenseg paupeddeg rubgonmar jeamacpov marcarmor13*)
+
   ferrenseg paupeddeg rubgonmar jeamacpov marcarmor13 fraortmoy
 +
  fracorjim1 josgarsan dancorgar anaprarod antsancab1 *)
 
fun raiz :: "'a arbol ⇒ 'a" where
 
fun raiz :: "'a arbol ⇒ 'a" where
   "raiz (H x) = x"
+
   "raiz (H x)     = x"
 
| "raiz (N x i d) = x"
 
| "raiz (N x i d) = x"
  
Línea 540: Línea 609:
 
(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto  
 
(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto  
 
   migtermor marpoldia1 wilmorort lucnovdos  juacabsou serrodcal  
 
   migtermor marpoldia1 wilmorort lucnovdos  juacabsou serrodcal  
   pabrodmac ferrenseg jeamacpov paupeddeg rubgonmar marcarmor13*)
+
   pabrodmac ferrenseg jeamacpov paupeddeg rubgonmar marcarmor13
 +
  fraortmoy fracorjim1 josgarsan dancorgar  anaprarod antsancab1 *)
 
fun extremo_izquierda :: "'a arbol ⇒ 'a" where
 
fun extremo_izquierda :: "'a arbol ⇒ 'a" where
   "extremo_izquierda (H x) = x"
+
   "extremo_izquierda (H x)     = x"
 
| "extremo_izquierda (N x i d) = extremo_izquierda i"
 
| "extremo_izquierda (N x i d) = extremo_izquierda i"
  
Línea 549: Línea 619:
 
(* bowma *)
 
(* bowma *)
 
fun extremo_izquierda_1 :: "'a arbol ⇒ 'a" where
 
fun extremo_izquierda_1 :: "'a arbol ⇒ 'a" where
   "extremo_izquierda_1 (H t) = t"
+
   "extremo_izquierda_1 (H t)     = t"
 
| "extremo_izquierda_1 (N t i d) = hd (inOrden (N t i d))"
 
| "extremo_izquierda_1 (N t i d) = hd (inOrden (N t i d))"
  
Línea 571: Línea 641:
 
(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto  
 
(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto  
 
   migtermor marpoldia1 wilmorort lucnovdos  juacabsou pabrodmac  
 
   migtermor marpoldia1 wilmorort lucnovdos  juacabsou pabrodmac  
   serrodcal ferrenseg jeamacpov paupeddeg rubgonmar marcarmor13*)
+
   serrodcal ferrenseg jeamacpov paupeddeg rubgonmar marcarmor13
 +
  fraortmoy fracorjim1 josgarsan dancorgar anaprarod antsancab1 *)
 
fun extremo_derecha :: "'a arbol ⇒ 'a" where
 
fun extremo_derecha :: "'a arbol ⇒ 'a" where
 
   "extremo_derecha (H x) = x"
 
   "extremo_derecha (H x) = x"
Línea 587: Línea 658:
 
   Llamando teorema_12 al teorema del ejercicio 12 *)
 
   Llamando teorema_12 al teorema del ejercicio 12 *)
  
 +
(*
 
lemma "extremo_derecha a = extremo_derecha_1 a"
 
lemma "extremo_derecha a = extremo_derecha_1 a"
 
by (induct a, simp_all add: aux_ej12_1 teorema_12)
 
by (induct a, simp_all add: aux_ej12_1 teorema_12)
 +
*)
  
 
text {*   
 
text {*   
Línea 597: Línea 670:
 
*}
 
*}
  
(* danrodcha *)
+
(* danrodcha anaprarod *)
 
lemma aux_ej12: "inOrden a ≠ []"
 
lemma aux_ej12: "inOrden a ≠ []"
 
apply (induct a)  
 
apply (induct a)  
apply simp
+
apply simp (* poniendo simp_all se agrupan estos dos *)
 
apply simp
 
apply simp
 
done
 
done
Línea 623: Línea 696:
  
 
(* ivamenjim *)
 
(* ivamenjim *)
 
 
lemma aux_ej12_1: "inOrden a ≠ []"
 
lemma aux_ej12_1: "inOrden a ≠ []"
 
by (induct a) simp_all  
 
by (induct a) simp_all  
  
(* ivamenjim marpoldia1 paupeddeg *)
+
(* ivamenjim marpoldia1 paupeddeg anaprarod antsancab1 *)
 
(* Igual que la anterior, pero poniendo solo by simp en el primer have *)
 
(* Igual que la anterior, pero poniendo solo by simp en el primer have *)
 
 
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
 
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 638: Línea 709:
 
   fix i assume h1: "?P i"
 
   fix i assume h1: "?P i"
 
   fix d assume h2: "?P d"
 
   fix d assume h2: "?P d"
   have "last (inOrden (N x i d)) = last ((inOrden i) @ [x] @ (inOrden d))" by simp  
+
   have "last (inOrden (N x i d)) =  
 +
        last ((inOrden i) @ [x] @ (inOrden d))" by simp  
 
   also have "... = last (inOrden d)" by (simp add: aux_ej12_1)
 
   also have "... = last (inOrden d)" by (simp add: aux_ej12_1)
 
   also have "... = extremo_derecha d" using h2 by simp  
 
   also have "... = extremo_derecha d" using h2 by simp  
   finally show "last (inOrden (N x i d)) = extremo_derecha (N x i d)" by simp
+
   finally show "last (inOrden (N x i d)) = extremo_derecha (N x i d)"  
 +
    by simp
 
qed
 
qed
  
Línea 648: Línea 721:
 
theorem "last (inOrden a) = extremo_derecha a" (is "?p a")
 
theorem "last (inOrden a) = extremo_derecha a" (is "?p a")
 
proof (induct a)
 
proof (induct a)
fix t
+
  fix t
show "?p (H t)" by simp
+
  show "?p (H t)" by simp
 
next  
 
next  
fix t i d
+
  fix t i d
assume HI: "?p d"
+
  assume HI: "?p d"
have "last (inOrden (N t i d)) = last (inOrden i @ [t] @ inOrden d)" by simp
+
  have "last (inOrden (N t i d)) = last (inOrden i @ [t] @ inOrden d)"  
also have "... = last (inOrden d)" by (simp add:aux_ej12)
+
    by simp
also have "... = extremo_derecha d" using HI by simp
+
  also have "... = last (inOrden d)" by (simp add:aux_ej12)
finally show "?p (N t i d)" by simp
+
  also have "... = extremo_derecha d" using HI by simp
 +
  finally show "?p (N t i d)" by simp
 
qed
 
qed
  
Línea 669: Línea 743:
 
   fix i d ::"'a arbol"
 
   fix i d ::"'a arbol"
 
   assume HI: "last (inOrden d) = extremo_derecha d"
 
   assume HI: "last (inOrden d) = extremo_derecha d"
   have "last (inOrden (N x i d)) = last ((inOrden i) @ [x] @ (inOrden d))" by simp  
+
   have "last (inOrden (N x i d)) =  
 +
        last ((inOrden i) @ [x] @ (inOrden d))" by simp  
 
   also have "… = last (inOrden d)" by (simp add: aux_ej12)
 
   also have "… = last (inOrden d)" by (simp add: aux_ej12)
 
   also have "… = extremo_derecha d" using HI by simp
 
   also have "… = extremo_derecha d" using HI by simp
 
   also have "… = extremo_derecha (N x i d)" by simp
 
   also have "… = extremo_derecha (N x i d)" by simp
   finally show "last (inOrden (N x i d)) = extremo_derecha (N x i d)" by simp
+
   finally show "last (inOrden (N x i d)) = extremo_derecha (N x i d)"  
 +
    by simp
 
qed
 
qed
  
Línea 679: Línea 755:
 
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
 
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
 
proof (induct a)
 
proof (induct a)
fix h
+
  fix h
show "?P (H h)" by simp
+
  show "?P (H h)" by simp
 
next
 
next
fix n i
+
  fix n i
fix d assume HId: "?P d"
+
  fix d assume HId: "?P d"
have AUX: "¬ (inOrden d = [])" (is "?Q d")
+
  have AUX: "¬ (inOrden d = [])" (is "?Q d")
 
     proof (induct d)
 
     proof (induct d)
 
       fix hd
 
       fix hd
Línea 694: Línea 770:
 
     show "?Q (N nd id dd)" using HIid HIdd by simp
 
     show "?Q (N nd id dd)" using HIid HIdd by simp
 
     qed
 
     qed
have "last (inOrden (N n i d)) = last (inOrden i @[n]@inOrden d)" by simp
+
  have "last (inOrden (N n i d)) = last (inOrden i @[n]@inOrden d)"  
also have "… = last (inOrden d)" using AUX by simp
+
    by simp
also have "… = extremo_derecha d" using HId by simp
+
  also have "… = last (inOrden d)" using AUX by simp
finally show "?P (N n i d)"  by simp
+
  also have "… = extremo_derecha d" using HId by simp
 +
  finally show "?P (N n i d)"  by simp
 
qed
 
qed
  
(* pabrodmac *)
+
(* pabrodmac fraortmoy *)
 
 
 
lemma Aux_ej12: "inOrden a ≠ []"
 
lemma Aux_ej12: "inOrden a ≠ []"
 
by (induct a) auto
 
by (induct a) auto
  
(* pabrodmac *)
+
(* pabrodmac fraortmoy *)
 
 
 
theorem "last (inOrden a) = extremo_derecha a"
 
theorem "last (inOrden a) = extremo_derecha a"
 
by (induct a)(auto simp add: Aux_ej12)
 
by (induct a)(auto simp add: Aux_ej12)
  
 
(* pabrodmac *)
 
(* pabrodmac *)
 
 
lemma
 
lemma
 
   fixes a ::"'b arbol"  
 
   fixes a ::"'b arbol"  
Línea 724: Línea 798:
 
   show "?P (N x i d)"   
 
   show "?P (N x i d)"   
 
   proof -               
 
   proof -               
     have "last (inOrden (N x i d)) = last((inOrden i)@ [x] @ (inOrden d))" by simp
+
     have "last (inOrden (N x i d)) = last((inOrden i)@ [x] @ (inOrden d))"  
     also have "… =last(inOrden d)" by (simp add: Aux_ej12)
+
      by simp
 +
     also have "… = last(inOrden d)" by (simp add: Aux_ej12)
 
     also have "… = extremo_derecha d" using h1 h2 by simp
 
     also have "… = extremo_derecha d" using h1 h2 by simp
 
     also have "… = extremo_derecha (N x i d)" by simp
 
     also have "… = extremo_derecha (N x i d)" by simp
 
     finally show ?thesis .
 
     finally show ?thesis .
qed
+
  qed
 
qed
 
qed
  
 
(* ferrenseg *)
 
(* ferrenseg *)
 
 
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
 
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 750: Línea 824:
 
     finally show ?thesis .
 
     finally show ?thesis .
 
   qed
 
   qed
 +
qed
 +
 +
(* fraortmoy *)
 +
lemma
 +
  fixes a ::"'b arbol"
 +
  shows "last (inOrden a) = extremo_derecha a" (is "?P a")
 +
proof (induct a)
 +
  fix x
 +
  show "?P (H x)" by simp
 +
next
 +
  fix x
 +
  fix i assume h1: "?P i"
 +
  fix d assume h2: "?P d"
 +
  show "?P (N x i d)" using h1 h2 by (simp add: Aux_ej12) 
 +
qed
 +
 +
(* dancorgar *)
 +
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
 +
proof (induct a)
 +
  fix t
 +
  show "?P (H t)" by simp
 +
next
 +
  fix t i d
 +
  assume H2: "?P d"
 +
  have "last (inOrden (N t i d)) = last ((inOrden i)@[t]@(inOrden d))"
 +
    by simp
 +
  also have "… = last (inOrden d)"
 +
  proof (induct d)
 +
    fix x
 +
    show "last (inOrden i @ [t] @ inOrden (H x)) = last (inOrden (H x))"
 +
      by simp
 +
  next
 +
    fix x1a d1 d2
 +
    show "last (inOrden i @ [t] @ inOrden (N x1a d1 d2)) =
 +
          last (inOrden (N x1a d1 d2))" by simp
 +
  qed
 +
  finally show "last (inOrden (N t i d)) = extremo_derecha (N t i d)"
 +
    using H2 by simp
 
qed
 
qed
  
Línea 759: Línea 871:
 
*}
 
*}
  
(* danrodcha pablucoto crigomgom juacabsou serrodcal jeamacpov marcarmor13 *)
+
(* danrodcha pablucoto crigomgom juacabsou serrodcal jeamacpov
 +
  marcarmor13 *)  
 
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
 
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 776: Línea 889:
 
qed
 
qed
  
(* bowma lucnovdos *)
+
(* bowma lucnovdos dancorgar anaprarod *)
 
theorem "hd (inOrden a) = extremo_izquierda a" (is "?p a")
 
theorem "hd (inOrden a) = extremo_izquierda a" (is "?p a")
 
proof (induct a)
 
proof (induct a)
fix t
+
  fix t
show "?p (H t)" by simp
+
  show "?p (H t)" by simp
 
next
 
next
fix t i d  
+
  fix t i d  
assume HI: "?p i"
+
  assume HI: "?p i"
have "hd (inOrden (N t i d)) = hd (inOrden i @ [t] @ inOrden d)" by simp
+
  have "hd (inOrden (N t i d)) = hd (inOrden i @ [t] @ inOrden d)"  
also have "… = hd (inOrden i)" by (simp add: aux_ej12)
+
    by simp
also have "… = extremo_izquierda i" using HI by simp
+
  also have "… = hd (inOrden i)" by (simp add: aux_ej12)
finally show "?p (N t i d)" by simp
+
  also have "… = extremo_izquierda i" using HI by simp
 +
  finally show "?p (N t i d)" by simp
 
qed
 
qed
  
Línea 793: Línea 907:
 
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
 
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
 
proof (induct a)
 
proof (induct a)
fix h
+
  fix h
show "?P (H h)" by simp
+
  show "?P (H h)" by simp
 
next
 
next
fix n d
+
  fix n d
fix i assume HId: "?P i"
+
  fix i assume HId: "?P i"
have AUX: "¬ (inOrden i = [])" (is "?Q i")
+
  have AUX: "¬ (inOrden i = [])" (is "?Q i")
 
     proof (induct i)
 
     proof (induct i)
 
       fix hi
 
       fix hi
Línea 808: Línea 922:
 
     show "?Q (N ni ii di)" using HIid HIdd by simp
 
     show "?Q (N ni ii di)" using HIid HIdd by simp
 
     qed
 
     qed
have "hd (inOrden (N n i d)) = hd (inOrden i @[n]@inOrden d)" by simp
+
  have "hd (inOrden (N n i d)) = hd (inOrden i @[n]@inOrden d)" by simp
also have "… = hd (inOrden i)" using AUX by simp
+
  also have "… = hd (inOrden i)" using AUX by simp
also have "… = extremo_izquierda i" using HId by simp
+
  also have "… = extremo_izquierda i" using HId by simp
finally show "?P (N n i d)"  by simp
+
  finally show "?P (N n i d)"  by simp
 
qed
 
qed
  
(* ivamenjim marpoldia1 wilmorort paupeddeg rubgonmar *)
+
(* ivamenjim marpoldia1 wilmorort paupeddeg rubgonmar antsancab1 *)
 
 
 
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
 
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 824: Línea 937:
 
   fix i assume h1: "?P i"
 
   fix i assume h1: "?P i"
 
   fix d assume h2: "?P d"
 
   fix d assume h2: "?P d"
   have "hd (inOrden (N x i d)) = hd ((inOrden i) @ [x] @ (inOrden d))" by simp
+
   have "hd (inOrden (N x i d)) = hd ((inOrden i) @ [x] @ (inOrden d))"  
 +
    by simp
 
   also have "... = hd (inOrden i)" by (simp add: aux_ej12_1)
 
   also have "... = hd (inOrden i)" by (simp add: aux_ej12_1)
 
   also have "... = extremo_izquierda i" using h1 by simp  
 
   also have "... = extremo_izquierda i" using h1 by simp  
   finally show "hd (inOrden (N x i d)) = extremo_izquierda (N x i d)" by simp
+
   finally show "hd (inOrden (N x i d)) = extremo_izquierda (N x i d)"  
 +
    by simp
 
qed
 
qed
  
 
(* pabrodmac paupeddeg*)
 
(* pabrodmac paupeddeg*)
 
 
theorem "hd (inOrden a) = extremo_izquierda a"
 
theorem "hd (inOrden a) = extremo_izquierda a"
 
by (induct a)(auto simp add: Aux_ej12)
 
by (induct a)(auto simp add: Aux_ej12)
  
 
(* pabrodmac *)
 
(* pabrodmac *)
 
 
lemma
 
lemma
 
   fixes a ::"'b arbol"  
 
   fixes a ::"'b arbol"  
Línea 849: Línea 962:
 
   show "?P (N x i d)"   
 
   show "?P (N x i d)"   
 
   proof -               
 
   proof -               
     have "hd (inOrden (N x i d)) =  hd((inOrden i)@ [x] @ (inOrden d))" by simp
+
     have "hd (inOrden (N x i d)) =  hd((inOrden i)@ [x] @ (inOrden d))"  
 +
      by simp
 
     also have "… = hd (inOrden i)"  by (simp add: Aux_ej12)
 
     also have "… = hd (inOrden i)"  by (simp add: Aux_ej12)
 
     also have "… = extremo_izquierda i" using h1 h2 by simp
 
     also have "… = extremo_izquierda i" using h1 h2 by simp
 
     also have "… = extremo_izquierda (N x i d)" by simp
 
     also have "… = extremo_izquierda (N x i d)" by simp
 
     finally show ?thesis .
 
     finally show ?thesis .
qed
+
  qed
 
qed
 
qed
  
 
(* ferrenseg *)
 
(* ferrenseg *)
 
 
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
 
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 870: Línea 983:
 
     have "hd (inOrden (N x l r)) =  
 
     have "hd (inOrden (N x l r)) =  
 
           hd (inOrden l @ [x] @ inOrden r)" by simp
 
           hd (inOrden l @ [x] @ inOrden r)" by simp
     also have "… = hd (inOrden l)"  by (simp add: inOrden)
+
     also have "… = hd (inOrden l)"  by (simp add: Aux_ej12)
 
     also have "… = extremo_izquierda l" using HI by simp
 
     also have "… = extremo_izquierda l" using HI by simp
 
     also have "… = extremo_izquierda (N x l r)" by simp
 
     also have "… = extremo_izquierda (N x l r)" by simp
Línea 877: Línea 990:
 
qed
 
qed
  
 +
(* fraortmoy *)
 +
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
 +
proof (induct a)
 +
  fix x
 +
  show "?P (H x)" by simp
 +
next
 +
  fix x i d
 +
  assume h1: "?P i"
 +
  assume h2: "?P d"
 +
  show "?P (N x i d)" using h1 h2 by (simp add: Aux_ej12)
 +
qed
  
 
text {*   
 
text {*   
Línea 885: Línea 1009:
 
*}
 
*}
  
(* danrodcha pabrodmac *)
+
(* danrodcha pabrodmac dancorgar anaprarod *)
 
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
 
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 895: Línea 1019:
  
 
(* danrodcha *)
 
(* danrodcha *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
+
theorem "hd (preOrden1 a) = last (postOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
 
   fix x
 
   fix x
Línea 902: Línea 1026:
 
   assume HIi: "?P i"
 
   assume HIi: "?P i"
 
   assume HId: "?P d"
 
   assume HId: "?P d"
   have "hd (preOrden (N x i d)) = hd (x#preOrden i @ preOrden d)"
+
   have "hd (preOrden1 (N x i d)) = hd (x#preOrden1 i @ preOrden1 d)"
     by (simp only: preOrden.simps(2))
+
     by (simp only: preOrden1.simps(2))
 
   also have "… = x" by simp
 
   also have "… = x" by simp
 
   also have "… = last (postOrden i @ postOrden d @ [x])" by simp
 
   also have "… = last (postOrden i @ postOrden d @ [x])" by simp
Línea 911: Línea 1035:
 
qed
 
qed
  
(* pablucoto crigomgom bowma marpoldia1 wilmorort lucnovdos juacabsou jeamacpov paupeddeg rubgonmar marcarmor13*) (*Similar al anterior*)
+
(* pablucoto crigomgom bowma marpoldia1 wilmorort lucnovdos juacabsou
 +
  jeamacpov paupeddeg rubgonmar marcarmor13 anaprarod *)  
 +
(*Similar al anterior*)  
 
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
 
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 920: Línea 1046:
 
   assume HI1: "?P i"
 
   assume HI1: "?P i"
 
   assume HI2: "?P d"
 
   assume HI2: "?P d"
   have " hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d)"  by simp
+
   have " hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d)"   
 +
    by simp
 
   also have "... = x" by simp
 
   also have "... = x" by simp
 
   also have "... = last ( postOrden i @ postOrden d @ [x]) " by simp
 
   also have "... = last ( postOrden i @ postOrden d @ [x]) " by simp
Línea 934: Línea 1061:
 
next
 
next
 
  fix n i d
 
  fix n i d
  have "hd (preOrden (N n (i :: 'a arbol) (d :: 'a arbol))) = hd ([n]@preOrden i@preOrden d)"  
+
  have "hd (preOrden (N n (i :: 'a arbol) (d :: 'a arbol))) =  
      by simp
+
      hd ([n]@preOrden i@preOrden d)" by simp
  (* Si no especifico que i y d son árboles, salta un error de tipo. Supongo que será por
+
  (* Si no especifico que i y d son árboles, salta un error de tipo.  
    no haber asumido hipótesis sobre ellos *)
+
    Supongo que será por no haber asumido hipótesis sobre ellos *)
 
  also have "… = last (postOrden (N n i d))" by simp
 
  also have "… = last (postOrden (N n i d))" by simp
 
  show "?P (N n i d)" by simp
 
  show "?P (N n i d)" by simp
 
qed
 
qed
  
(* ivamenjim serrodcal *)
+
(* ivamenjim serrodcal antsancab1 *)
 
 
 
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
 
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 952: Línea 1078:
 
   fix i assume h1: "?P i"
 
   fix i assume h1: "?P i"
 
   fix d assume h2: "?P d"
 
   fix d assume h2: "?P d"
   have "hd (preOrden (N x i d)) = hd ([x] @ (preOrden i) @ (preOrden d))" by simp
+
   have "hd (preOrden (N x i d)) = hd ([x] @ (preOrden i) @ (preOrden d))"  
 +
    by simp
 
   also have "... = hd ([x])" by simp
 
   also have "... = hd ([x])" by simp
   finally show "hd (preOrden (N x i d)) = last (postOrden (N x i d))" by simp
+
   finally show "hd (preOrden (N x i d)) = last (postOrden (N x i d))"  
 +
    by simp
 
qed
 
qed
  
(* pabrodmac paupeddeg *)
+
(* pabrodmac paupeddeg fraortmoy *)
 
 
 
theorem "hd (preOrden a) = last (postOrden a)"
 
theorem "hd (preOrden a) = last (postOrden a)"
 
by (induct a) auto   
 
by (induct a) auto   
  
 
(* pabrodmac *)
 
(* pabrodmac *)
 
 
lemma
 
lemma
 
   fixes a ::"'b arbol"  
 
   fixes a ::"'b arbol"  
Línea 982: Línea 1108:
 
qed
 
qed
  
(*Me he dado cuenta que no es necesario asumir ninguna hipótesis de inducción puesto que no es necesario utilizarlas, así que no se si está bien hecho puesto que no se aplicaría inducción *)
+
(* Me he dado cuenta que no es necesario asumir ninguna hipótesis de
 +
  inducción puesto que no es necesario utilizarlas, así que no se si
 +
  está bien hecho puesto que no se aplicaría inducción *)
  
 
(* ferrenseg *)
 
(* ferrenseg *)
 
+
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
theorem "hd (preOrden a) = last (postOrden a)"(is "?P a")
 
 
proof (cases a)
 
proof (cases a)
 
   fix x
 
   fix x
Línea 1005: Línea 1132:
 
   qed
 
   qed
 
qed   
 
qed   
 +
 +
(* fraortmoy *)
 +
theorem "hd (preOrden a) = last (postOrden a)"
 +
apply (induct a)
 +
apply simp
 +
apply simp
 +
done
 +
 +
(* fraortmoy *)
 +
(* como ya se ha comentado antes, no se usan hipótesis de inducción *)
 +
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
 +
proof (induct a)
 +
  fix x
 +
  show "?P (H x)" by simp
 +
next
 +
  fix x i d
 +
  show "?P (N x i d)" by simp
 +
qed
 +
  
 
text {*   
 
text {*   
Línea 1014: Línea 1160:
  
 
(* danrodcha *)
 
(* danrodcha *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
+
theorem "hd (preOrden1 a) = raiz a" (is "?P a")
 
proof (induct a)
 
proof (induct a)
 
   fix x
 
   fix x
 
   show "?P (H x)" by simp
 
   show "?P (H x)" by simp
 +
next 
 
   fix x i d
 
   fix x i d
 
   assume HIi: "?P i"
 
   assume HIi: "?P i"
 
   assume HId: "?P d"
 
   assume HId: "?P d"
   have "hd (preOrden (N x i d)) = hd (x#preOrden i @ preOrden d)"
+
   have "hd (preOrden1 (N x i d)) = hd (x#preOrden1 i @ preOrden1 d)"
     by (simp only: preOrden.simps(2))
+
     by (simp only: preOrden1.simps(2))
 
   also have "… = x" by simp
 
   also have "… = x" by simp
 
   also have "… = raiz (N x i d)" by simp
 
   also have "… = raiz (N x i d)" by simp
Línea 1028: Línea 1175:
 
qed
 
qed
  
(* danrodcha pabrodmac *)
+
(* danrodcha pabrodmac dancorgar anaprarod *)
 
theorem "hd (preOrden a) = raiz a" (is "?P a")
 
theorem "hd (preOrden a) = raiz a" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 1037: Línea 1184:
 
qed
 
qed
  
(* pablucoto crigomgom ivamenjim marpoldia1 wilmorort lucnovdos juacabsou serrodcal jeamacpov paupeddeg rubgonmar marcarmor13*)
+
(* pablucoto crigomgom ivamenjim marpoldia1 wilmorort lucnovdos
 +
  juacabsou serrodcal jeamacpov paupeddeg rubgonmar marcarmor13 anaprarod *)  
 
theorem "hd (preOrden a) = raiz a" (is "?P a")
 
theorem "hd (preOrden a) = raiz a" (is "?P a")
 
proof (induct a)  
 
proof (induct a)  
Línea 1046: Línea 1194:
 
   assume HI1: " ?P i"
 
   assume HI1: " ?P i"
 
   assume HI2: " ?P d"
 
   assume HI2: " ?P d"
   have " hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d) " by simp
+
   have " hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d) "  
 +
    by simp
 
   also have "... = x" by simp
 
   also have "... = x" by simp
 
   also have "... = raiz (N x i d)" by simp
 
   also have "... = raiz (N x i d)" by simp
Línea 1061: Línea 1210:
 
   fix t i d
 
   fix t i d
 
   assume HI: "?p i"
 
   assume HI: "?p i"
   have "hd (preOrden (N t i d)) = hd ([t] @ preOrden i @ preOrden d)" by simp
+
   have "hd (preOrden (N t i d)) = hd ([t] @ preOrden i @ preOrden d)"  
 +
    by simp
 
   also have "… = t" by simp
 
   also have "… = t" by simp
 
   also have "… = last (postOrden i @ postOrden d @ [t])" by simp
 
   also have "… = last (postOrden i @ postOrden d @ [t])" by simp
Línea 1075: Línea 1225:
 
next
 
next
 
  fix n i d
 
  fix n i d
  have "hd (preOrden (N n (i :: 'a arbol) (d :: 'a arbol))) = hd ([n]@preOrden i@preOrden d)"
+
  have "hd (preOrden (N n (i :: 'a arbol) (d :: 'a arbol))) =  
      by simp
+
      hd ([n]@preOrden i@preOrden d)" by simp
 
  also have "… = raiz (N n i d)" by simp
 
  also have "… = raiz (N n i d)" by simp
 
  finally show "?P (N n i d)" by simp
 
  finally show "?P (N n i d)" by simp
Línea 1082: Línea 1232:
  
 
(* ivamenjim: sin usar patrones *)
 
(* ivamenjim: sin usar patrones *)
 
 
theorem "hd (preOrden a) = raiz a"  
 
theorem "hd (preOrden a) = raiz a"  
 
proof (induct a)
 
proof (induct a)
Línea 1091: Línea 1240:
 
   fix i ::"'a arbol" assume h1: "hd (preOrden i) = raiz i"
 
   fix i ::"'a arbol" assume h1: "hd (preOrden i) = raiz i"
 
   fix d ::"'a arbol" assume h2: "hd (preOrden d) = raiz d"
 
   fix d ::"'a arbol" assume h2: "hd (preOrden d) = raiz d"
   have "hd (preOrden (N x i d)) = hd ([x] @ (preOrden i) @ (preOrden d))" by simp
+
   have "hd (preOrden (N x i d)) = hd ([x] @ (preOrden i) @ (preOrden d))"  
 +
    by simp
 
   also have "... = hd ([x])" by simp
 
   also have "... = hd ([x])" by simp
 
   finally show "hd (preOrden (N x i d)) = raiz (N x i d)" by simp
 
   finally show "hd (preOrden (N x i d)) = raiz (N x i d)" by simp
 
qed
 
qed
  
(* pabrodmac paupeddeg *)
+
(* pabrodmac paupeddeg fraortmoy *)
 
 
 
theorem "hd (preOrden a) = raiz a"
 
theorem "hd (preOrden a) = raiz a"
 
by (induct a) auto
 
by (induct a) auto
  
 
(* pabrodmac *)
 
(* pabrodmac *)
 
 
lemma
 
lemma
 
   fixes a ::"'b arbol"  
 
   fixes a ::"'b arbol"  
Línea 1121: Línea 1269:
 
qed
 
qed
  
(*Me he dado cuenta que no es necesario asumir ninguna hipótesis de inducción puesto que no es necesario utilizarlas, así que no se si está bien hecho puesto que no se aplicaría inducción *)
+
(* Me he dado cuenta que no es necesario asumir ninguna hipótesis de
 +
  inducción puesto que no es necesario utilizarlas, así que no se si
 +
  está bien hecho puesto que no se aplicaría inducción *)
  
 
(* ferrenseg *)
 
(* ferrenseg *)
 
 
theorem "hd (preOrden a) = raiz a" (is "?P a")
 
theorem "hd (preOrden a) = raiz a" (is "?P a")
 
proof (cases a)
 
proof (cases a)
Línea 1143: Línea 1292:
 
   qed
 
   qed
 
qed   
 
qed   
 +
 +
(* fraortmoy *)
 +
theorem "hd (preOrden a) = raiz a"
 +
  apply (induct a)
 +
  apply simp
 +
  apply simp
 +
done
 +
 +
(* fraortmoy *)
 +
theorem "hd (preOrden a) = raiz  a" (is "?P a")
 +
proof (induct a)
 +
  fix x
 +
  show "?P (H x)" by simp
 +
next
 +
  fix x i d
 +
  show "?P (N x i d)" by simp
 +
qed
 +
 +
(* antsancab1 *)
 +
theorem "hd (preOrden a) = raiz a" (is "?P a")
 +
proof (induct a)
 +
  fix x
 +
  show "?P (H x)" by simp
 +
next
 +
  fix x
 +
  fix i assume H1: "?P i"
 +
  fix d assume H2: "?P d"
 +
  have "hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d)" by simp
 +
  also have "... = hd [x]" by simp
 +
  also have "... = raiz (H x)" by simp
 +
  also have "... = raiz (N x i d)" by simp (* estos dos últimos no eran necesarios pero me queda más claro *)
 +
  finally show "hd (preOrden (N x i d)) = raiz (N x i d)" by simp
 +
qed
  
 
text {*   
 
text {*   
Línea 1151: Línea 1333:
 
*}
 
*}
  
(*crigomgom pablucoto bowma migtermor ivamenjim wilmorort lucnovdos juacabsou pabrodmac serrodcal ferrenseg jeamacpov paupeddeg rubgonmar marcarmor13 *)
+
(* crigomgom pablucoto bowma migtermor ivamenjim wilmorort lucnovdos
 +
  juacabsou pabrodmac serrodcal ferrenseg jeamacpov paupeddeg rubgonmar
 +
  marcarmor13 fraortmoy dancorgar anaprarod antsancab1 *)
 
theorem "hd (inOrden a) = raiz a"
 
theorem "hd (inOrden a) = raiz a"
 
quickcheck
 
quickcheck
 
oops
 
oops
  
(* danrodcha:
+
(* danrodcha anaprarod:
 
Auto Quickcheck found a counterexample:
 
Auto Quickcheck found a counterexample:
   a = N a⇩1 (H a⇩2) (H a⇩1)
+
   a = N a1 (H a2) (H a1)
 
Evaluated terms:
 
Evaluated terms:
   hd (inOrden a) = a⇩2
+
   hd (inOrden a) = a2
   raiz a = a⇩1 *)
+
   raiz a = a1 *)
  
 
(* ivamenjim marpoldia1 *)
 
(* ivamenjim marpoldia1 *)
 
 
theorem "hd (inOrden a) = raiz a" (is "?P a")
 
theorem "hd (inOrden a) = raiz a" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 1176: Línea 1359:
 
   also have "... = hd (inOrden i)" by (simp add: aux_ej12_1)  
 
   also have "... = hd (inOrden i)" by (simp add: aux_ej12_1)  
 
   (* Perdemos la x, luego se refuta el enunciado del teorema *)
 
   (* Perdemos la x, luego se refuta el enunciado del teorema *)
qed
+
oops
  
 
text {*   
 
text {*   
Línea 1185: Línea 1368:
 
*}
 
*}
  
(* danrodcha pabrodmac*)
+
(* danrodcha pabrodmac dancorgar anaprarod *)
 
theorem "last (postOrden a) = raiz a" (is "?P a")
 
theorem "last (postOrden a) = raiz a" (is "?P a")
 
proof (induct a)
 
proof (induct a)
Línea 1202: Línea 1385:
 
   assume HIi: "?P i"
 
   assume HIi: "?P i"
 
   assume HId: "?P d"
 
   assume HId: "?P d"
   have "last (postOrden (N x i d)) = last (postOrden i @ postOrden d @ [x])"
+
   have "last (postOrden (N x i d)) =  
 +
        last (postOrden i @ postOrden d @ [x])"
 
     by (simp only: postOrden.simps(2))
 
     by (simp only: postOrden.simps(2))
 
   also have "… = x" by simp
 
   also have "… = x" by simp
Línea 1209: Línea 1393:
 
qed
 
qed
  
(* pablucoto crigomgom ivamenjim marpoldia1 wilmorort lucnovdos juacabsou serrodcal jeamacpov paupeddeg rubgonmar marcarmor13 *) (*Similar al anterior*)
+
(* pablucoto crigomgom ivamenjim marpoldia1 wilmorort lucnovdos
 
+
  juacabsou serrodcal jeamacpov paupeddeg rubgonmar marcarmor13 anaprarod *)  
 +
(* Similar al anterior *)  
 
theorem "last (postOrden a) = raiz a" (is "?P a")
 
theorem "last (postOrden a) = raiz a" (is "?P a")
 
proof (induct a )
 
proof (induct a )
Línea 1219: Línea 1404:
 
   assume HI1: "?P i"
 
   assume HI1: "?P i"
 
   assume HI2: "?P d"
 
   assume HI2: "?P d"
   have "last (postOrden (N x i d)) = last ( postOrden i @ postOrden d @ [x])" by simp
+
   have "last (postOrden (N x i d)) =  
 +
        last ( postOrden i @ postOrden d @ [x])" by simp
 
   also have "... = x" by simp
 
   also have "... = x" by simp
 
   also have "... = raiz (N x i d) " by simp
 
   also have "... = raiz (N x i d) " by simp
Línea 1229: Línea 1415:
 
theorem "last (postOrden a) = raiz a" (is "?p a")
 
theorem "last (postOrden a) = raiz a" (is "?p a")
 
proof (induct a)
 
proof (induct a)
fix t
+
  fix t
show "?p (H t)" by simp
+
  show "?p (H t)" by simp
 
next
 
next
fix t i d
+
  fix t i d
assume "?p i"
+
  assume "?p i"
(* si quito este supuesto, hay error pero no sé dónde se lo está usando *)
+
  (* si quito este supuesto, hay error pero no sé dónde se lo está
have "last (postOrden (N t i d)) = last (postOrden i @ postOrden d @ [t])" by simp
+
    usando *)  
also have "... = t" by simp
+
  have "last (postOrden (N t i d)) =  
also have "... = raiz (N t i d)" by simp
+
        last (postOrden i @ postOrden d @ [t])" by simp
finally show "?p (N t i d)" by simp
+
  also have "... = t" by simp
 +
  also have "... = raiz (N t i d)" by simp
 +
  finally show "?p (N t i d)" by simp
 
qed
 
qed
 +
(*
 +
Comentario de antsancab1:
 +
No tengo muy claro por qué es, pero si en lugar de utilizar ?p al final lo pones completo:
 +
finally show "last (postOrden (N t i d)) = raiz (N t i d)" by simp
 +
No devuelve ningún error. No se si será que después de ?p espera un único elemento
 +
*)
  
 
(* migtermor *)
 
(* migtermor *)
Línea 1255: Línea 1449:
  
 
(* ivamenjim: sin usar patrones *)
 
(* ivamenjim: sin usar patrones *)
 
 
theorem "last (postOrden a) = raiz a"  
 
theorem "last (postOrden a) = raiz a"  
 
proof (induct a)
 
proof (induct a)
Línea 1264: Línea 1457:
 
   fix i::"'a arbol" assume h1: "last (postOrden i) = raiz i"
 
   fix i::"'a arbol" assume h1: "last (postOrden i) = raiz i"
 
   fix d::"'a arbol" assume h2: "last (postOrden d) = raiz d"
 
   fix d::"'a arbol" assume h2: "last (postOrden d) = raiz d"
   have "last (postOrden (N x i d)) = last ((postOrden i) @ (postOrden d) @ [x])" by simp
+
   have "last (postOrden (N x i d)) =  
 +
        last ((postOrden i) @ (postOrden d) @ [x])" by simp
 
   also have "... = last ([x])" by simp  
 
   also have "... = last ([x])" by simp  
 
   finally show "last (postOrden (N x i d)) = raiz (N x i d)" by simp
 
   finally show "last (postOrden (N x i d)) = raiz (N x i d)" by simp
 
qed
 
qed
  
(*pabrodmac paupeddeg*)
+
(* pabrodmac paupeddeg fraortmoy *)
 
 
 
theorem "last (postOrden a) = raiz a"
 
theorem "last (postOrden a) = raiz a"
 
by (induct a) auto
 
by (induct a) auto
 
   
 
   
(*pabrodmac*)
+
(* pabrodmac *)
 
 
 
lemma
 
lemma
 
   fixes a ::"'b arbol"  
 
   fixes a ::"'b arbol"  
Línea 1294: Línea 1486:
 
qed
 
qed
  
(*Me he dado cuenta que no es necesario asumir ninguna hipótesis de inducción puesto que no es necesario utilizarlas, así que no se si está bien hecho puesto que no se aplicaría inducción *)
+
(* Me he dado cuenta que no es necesario asumir ninguna hipótesis de
 +
  inducción puesto que no es necesario utilizarlas, así que no se si
 +
  está bien hecho puesto que no se aplicaría inducción *)
  
 
(* ferrenseg *)
 
(* ferrenseg *)
Línea 1315: Línea 1509:
 
   qed
 
   qed
 
qed   
 
qed   
 +
 +
(* fraortmoy *)
 +
theorem "last (postOrden a) = raiz a"
 +
apply (induct a)
 +
apply simp
 +
apply simp
 +
done
 +
 +
(* fraortmoy *)
 +
theorem "last (postOrden a) = raiz a" (is "?P a")
 +
proof (induct a)
 +
  fix x
 +
  show "?P (H x)" by simp
 +
next
 +
  fix x i d
 +
  show "?P (N x i d)" by simp
 +
qed
  
 
end
 
end
 +
 +
(* antsancab1 *)
 +
theorem "last (postOrden a) = raiz a" (is "?P a")
 +
proof (induct a)
 +
  fix x
 +
  show "?P (H x)" by simp
 +
next
 +
  fix x
 +
  fix i assume H1: "?P i"
 +
  fix d assume H2: "?P d"
 +
  have "last (postOrden (N x i d)) = last (postOrden i @ postOrden d @ [x])" by simp
 +
  also have "... = last [x]" by simp
 +
  also have "... = x" by simp
 +
  also have "... = raiz (H x)" by simp
 +
  also have "... = raiz (N x i d)" by simp
 +
  finally show "last (postOrden (N x i d)) = raiz (N x i d)" by simp
 +
qed
 +
 
</source>
 
</source>

Revisión actual del 13:11 16 jul 2018

chapter {* R6: Recorridos de árboles *}

theory R6_Recorridos_de_arboles
imports Main 
begin 

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 1. Definir el tipo de datos arbol para representar los
  árboles binarios que tiene información en los nodos y en las hojas. 
  Por ejemplo, el árbol
          e
         / \
        /   \
       c     g
      / \   / \
     a   d f   3
  se representa por "N e (N c (H a) (H d)) (N g (H f) (H h))".
  --------------------------------------------------------------------- 
*}

(* ivamenjim marpoldia1 manmorjim1 bowma migtermor wilmorort 
   juacabsou serrodcal pabrodmac ferrenseg rubgonmar paupeddeg 
   crigomgom danrodcha jeamacpov marcarmor13 josgarsan fraortmoy 
   dancorgar fracorjim1 anaprarod antsancab1 *)

datatype 'a arbol = H "'a" | N "'a" "'a arbol" "'a arbol"

value "N e (N c (H a) (H d)) (N g (H f) (H h))" 

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 2. Definir la función 
     preOrden :: "'a arbol ⇒ 'a list"
  tal que (preOrden a) es el recorrido pre orden del árbol a. Por
  ejemplo, 
     preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
     = [e,c,a,d,g,f,h] 
  --------------------------------------------------------------------- 
*}

(* ivamenjim marpoldia1 pablucoto bowma fraortmoy migtermor 
   wilmorort lucnovdos serrodcal pabrodmac jeamacpov paupeddeg
   marcarmor13 josgarsan dancorgar anaprarod antsancab1 *)

fun preOrden :: "'a arbol ⇒ 'a list" where
  "preOrden (H t)     = [t]"
| "preOrden (N t i d) = [t] @ (preOrden i) @ (preOrden d)"

(* danrodcha crigomgom manmorjim1 bowma juacabsou ferrenseg 
   rubgonmar paupeddeg fracorjim1 *)
fun preOrden1 :: "'a arbol ⇒ 'a list" where
  "preOrden1 (H x)     = [x]"
| "preOrden1 (N x i d) = x # preOrden1 i @ preOrden1 d"

value "preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))  
      = [e,c,a,d,g,f,h]" 
value "preOrden1 (N e (N c (H a) (H d)) (N g (H f) (H h)))  
      = [e,c,a,d,g,f,h]" 

(* danrodcha *)
lemma "preOrden a = preOrden1 a"
by (induct a) simp_all

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 3. Definir la función 
     postOrden :: "'a arbol ⇒ 'a list"
  tal que (postOrden a) es el recorrido post orden del árbol a. Por
  ejemplo, 
     postOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
     = [e,c,a,d,g,f,h] 
  --------------------------------------------------------------------- 
*}

(* ivamenjim  danrodcha crigomgom marpoldia1 manmorjim1
    pablucoto bowma fraortmoy migtermor wilmorort lucnovdos
    juacabsou serrodcal pabrodmac  ferrenseg jeamacpov 
    rubgonmar paupeddeg marcarmor13 josgarsan dancorgar fracorjim1 anaprarod antsancab1 *)

fun postOrden :: "'a arbol ⇒ 'a list" where
  "postOrden (H t)     = [t]"
| "postOrden (N t i d) = (postOrden i) @ (postOrden d) @ [t]"

value "postOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
       = [a,d,c,f,h,g,e]"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 4. Definir la función 
     inOrden :: "'a arbol ⇒ 'a list"
  tal que (inOrden a) es el recorrido in orden del árbol a. Por
  ejemplo, 
     inOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
     = [a,c,d,e,f,g,h]
  --------------------------------------------------------------------- 
*}

(* ivamenjim crigomgom marpoldia1 pablucoto bowma fraortmoy 
   migtermor wilmorort lucnovdos juacabsou serrodcal pabrodmac 
   ferrenseg jeamacpov rubgonmar paupeddeg marcarmor13 josgarsan
   dancorgar anaprarod antsancab1 *)
fun inOrden :: "'a arbol ⇒ 'a list" where
  "inOrden (H t)     = [t]"
| "inOrden (N t i d) = (inOrden i) @ [t] @ (inOrden d)"

(* danrodcha manmorjim1 fracorjim1 *)
fun inOrden1 :: "'a arbol ⇒ 'a list" where
  "inOrden1 (H t)     = [t]"
| "inOrden1 (N t i d) = inOrden1 i @ t#inOrden1 d"

value "inOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
       = [a,c,d,e,f,g,h]"
value "inOrden1 (N e (N c (H a) (H d)) (N g (H f) (H h)))
       = [a,c,d,e,f,g,h]"

(* manmorjim1 *)
lemma "inOrden t = inOrden1 t"
apply (induct t)
apply auto
done

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 5. Definir la función 
     espejo :: "'a arbol ⇒ 'a arbol"
  tal que (espejo a) es la imagen especular del árbol a. Por ejemplo, 
     espejo (N e (N c (H a) (H d)) (N g (H f) (H h)))
     = N e (N g (H h) (H f)) (N c (H d) (H a))
  --------------------------------------------------------------------- 
*}

(* ivamenjim danrodcha crigomgom marpoldia1 manmorjim1 
   pablucoto bowma fraortmoy migtermor wilmorort lucnovdos 
   juacabsou serrodcal pabrodmac ferrenseg jeamacpov rubgonmar 
   paupeddeg marcarmor13 josgarsan dancorgar fracorjim1 anaprarod antsancab1 *)
fun espejo :: "'a arbol ⇒ 'a arbol" where
  "espejo (H t)     = H t"
| "espejo (N t i d) = N t (espejo d) (espejo i)"

value "espejo (N e (N c (H a) (H d)) (N g (H f) (H h))) 
       = N e (N g (H h) (H f)) (N c (H d) (H a))"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 6. Demostrar que
     preOrden (espejo a) = rev (postOrden a)
  --------------------------------------------------------------------- 
*}

(* ivamenjim migtermor wilmorort juacabsou serrodcal dancorgar josgarsan
*) 
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x 
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  have "preOrden (espejo (N x i d)) = 
        preOrden (N x (espejo d) (espejo i))" by simp
  also have "... = [x] @ (preOrden (espejo d)) @ (preOrden (espejo i))" 
    by simp
  also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)" 
    using h1 h2 by simp 
  finally show "preOrden (espejo (N x i d)) = rev (postOrden (N x i d))" 
    by simp
qed

(* danrodcha paupeddeg anaprarod *)
lemma  "preOrden (espejo a) = rev (postOrden a)"
by (induct a) simp_all


(* danrodcha crigomgom fracorjim1 *)
lemma  "preOrden1 (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d 
  assume HIi: "?P i"
  assume HId: "?P d"
  have "preOrden1 (espejo (N x i d)) = 
        preOrden1 (N x (espejo d) (espejo i))"
    by (simp only: espejo.simps(2))
  also have "… = x#preOrden1 (espejo d) @ preOrden1 (espejo i)"
    by (simp only: preOrden1.simps(2))
  also have"… = x#rev (postOrden d) @ rev (postOrden i)" 
    using HIi HId by simp
  also have "… = rev (postOrden (N x i d))" by simp
  finally show "?P (N x i d)" by simp
qed

(* danrodcha fraortmoy anaprarod *)
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d 
  assume HIi: "?P i"
  assume HId: "?P d"
  show "?P (N x i d)" using HIi HId by simp
qed

(* bowma *)
lemma  "preOrden (espejo a) = rev (postOrden a)"
apply (induct a)
apply simp_all
done

(* pablucoto marpoldia1 jeamacpov paupeddeg marcarmor13 anaprarod *)
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x i d 
  assume h1: "?P i"
  assume h2: "?P d"
  have "preOrden (espejo (N x i d)) = 
        preOrden (N x (espejo d) (espejo i))" by simp
  also have "... = [x] @ (preOrden (espejo d)) @ (preOrden (espejo i))" 
    by simp
  also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)" 
    using h1 h2 by simp
  also have "... = [x] @ rev (postOrden i @ postOrden d)" by simp 
  also have "... = rev ( postOrden i @ postOrden d @ [x] ) " by simp
  also have "... = rev (postOrden (N x i d)) " by simp
  finally show "?P (N x i d)" by simp  
qed

(* bowma *)
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?p a")
proof (induct a)
  fix t
  show "?p (H t)" by simp
  (* Aquí si le diga "preOrden (espejo (H t)) = rev (postOrden (H t))",
     isabelle dice: 
  proof (prove)
  goal (1 subgoal):
  1. preOrden (espejo (H t)) = rev (postOrden (H t)) 
  Introduced fixed type variable(s): 'b in "t__" 
  No entiendo porqué *)
next 
  fix t i d
  assume H1: "?p i"
  assume H2: "?p d"
  have "preOrden (espejo (N t i d)) = 
        preOrden (N t (espejo d) (espejo i))" by simp
  also have "... = [t] @ (preOrden (espejo d)) @ (preOrden (espejo i))" 
    by simp
  also have "... = [t] @ rev (postOrden d) @ rev (postOrden i)" 
    using H1 H2 by simp
  finally show "?p (N t i d)" by simp
qed 

(* Comentario sobre tipo inducido. *)

(* fraortmoy lucnovdos pabrodmac*)
lemma  "preOrden (espejo a) = rev (postOrden a)"
by (induct a) auto

(*pabrodmac*)
lemma
  fixes a ::"'b arbol" 
  shows "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  show "?P (N x i d)"   
  proof -               
    have "preOrden (espejo (N x i d)) =  
          preOrden(N x (espejo d) (espejo i))" by simp
    also have "… = [x]@rev(postOrden d)@rev(postOrden i)" 
      using h1 h2 by simp
    also have "… = rev(postOrden (N x i d))" by simp
    finally show ?thesis .
 qed
qed

(* ferrenseg rubgonmar *)
lemma  "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x l r
  assume H1: "?P l"
  assume H2: "?P r"
  show "?P (N x l r)"
  proof -
    have "preOrden (espejo (N x l r)) = 
          preOrden (N x (espejo r) (espejo l))" by simp
    also have "… = x # (preOrden (espejo r) @ preOrden (espejo l))" by simp
    also have "… = x # (rev (postOrden r) @ rev (postOrden l))" 
       using H1 H2 by simp 
    also have "… = x # rev (postOrden l @ postOrden r)" by simp
    also have "… = rev ((postOrden l) @ (postOrden r) @ [x])" by simp
    also have "… = rev (postOrden (N x l r))" by simp
    finally show ?thesis .
  qed
qed

(* antsancab1 *)
(* Le he puesto el nombre para utilizarlo en la siguiente demostración *)
lemma  pre_es_rev_post: "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x
  fix i assume H1: "?P i"
  fix d assume H2: "?P d"
  have "preOrden (espejo (N x i d)) = preOrden (N x (espejo d) (espejo i))" by simp
  also have "... = [x] @ preOrden (espejo d) @ preOrden (espejo i)" by simp
  also have "... = [x] @ rev (postOrden d) @ rev (postOrden i)" using H1 H2 by simp
  finally show "preOrden (espejo (N x i d)) = rev (postOrden (N x i d))" by simp
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 7. Demostrar que
     postOrden (espejo a) = rev (preOrden a)
  --------------------------------------------------------------------- 
*}

(* ivamenjim crigomgom bowma migtermor wilmorort juacabsou serrodcal
   dancorgar josgarsan antsancab1 *) 
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x 
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  have "postOrden (espejo (N x i d)) = 
        postOrden (N x (espejo d) (espejo i))" by simp
  also have "... = (postOrden (espejo d)) @ (postOrden (espejo i)) @ [x]" 
    by simp
  also have "... = rev (preOrden d) @ rev (preOrden i) @ [x]" 
    using h1 h2 by simp 
  finally show "postOrden (espejo (N x i d)) = rev (preOrden (N x i d))" 
    by simp
    (* "?p (N x i d)" más corto *)
qed

(* danrodcha fraortmoy anaprarod *)
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d 
  assume HIi: "?P i"
  assume HId: "?P d"
  show "?P (N x i d)" using HIi HId by simp
qed

(* pablucoto marpoldia1 jeamacpov paupeddeg rubgonmar anaprarod *)
lemma "postOrden (espejo a) = rev (preOrden a)"  (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp 
next 
  fix x i d
  assume H1: "?P i"
  assume H2: "?P d"
  have " postOrden (espejo (N x i d)) = 
         postOrden ( N x (espejo d) (espejo i)) " by simp
  also have "... = postOrden (espejo d) @ postOrden (espejo i) @ [x]" 
    by simp
  also have "... = rev (preOrden d) @ rev (preOrden i) @ [x] " 
    using H1 H2 by simp
  also have "... = rev (preOrden d) @ rev (x # preOrden i)"  by simp
  also have "... = rev (x # preOrden i @ preOrden d)" by simp
  also have "... = rev (preOrden (N x i d)) " by simp
  finally show "?P (N x i d)" by simp
 qed

(* fraortmoy lucnovdos pabrodmac paupeddeg marcarmor13 *)
lemma "postOrden (espejo a) = rev (preOrden a)"
by (induct a) auto

(* anaprarod *)
lemma "postOrden (espejo a) = rev (preOrden a)"
by (induct a) simp_all

(*pabrodmac*)
lemma
  fixes a ::"'b arbol" 
  shows "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  show "?P (N x i d)"   
  proof -               
    have "postOrden (espejo (N x i d)) =  
          postOrden(N x (espejo d) (espejo i))" by simp
    also have "… = rev (preOrden d) @ rev (preOrden i) @ [x]" 
      using h1 h2 by simp
    also have "… = rev (preOrden (N x i d))" by simp
    finally show ?thesis.
 qed
qed

(* ferrenseg *)
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x l r
  assume H1: "?P l"
  assume H2: "?P r"
  show "?P (N x l r)"
  proof -
    have "postOrden (espejo (N x l r)) = 
          postOrden (N x (espejo r) (espejo l))" by simp
    also have "… = postOrden (espejo r) @ postOrden (espejo l) @ [x]" 
      by simp
    also have "… = rev (preOrden r) @ rev (preOrden l) @ [x]" 
      using H1 H2 by simp
    also have "… = rev (preOrden l @ preOrden r) @ [x]" by simp
    also have "… = rev ([x] @ preOrden l @ preOrden r)" by simp
    also have "… = rev (preOrden (N x l r))" by simp
    finally show ?thesis .
  qed
qed

(* antsancab1 *)
(* Después de hacerlo como en la anterior demostración se me ocurrió cómo
relacionar ambas demostraciones.
Como hemos demostrado que
preOrden (espejo a) = rev (postOrden a)
a la inversa también queda demostrado *)
lemma "postOrden (espejo a) = rev (preOrden a)"
apply (induct a)
apply simp
apply (simp add:pre_es_rev_post)
done

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 8. Demostrar que
     inOrden (espejo a) = rev (inOrden a)
  --------------------------------------------------------------------- 
*}

(* ivamenjim crigomgom bowma migtermor wilmorort juacabsou serrodcal
   dancorgar josgarsan antsancab1 *) 
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x 
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  have "inOrden (espejo (N x i d)) = inOrden (N x (espejo d) (espejo i))" 
    by simp
  also have "... = (inOrden (espejo d)) @ [x] @ (inOrden (espejo i))" 
    by simp
  also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)" 
    using h1 h2 by simp 
  finally show "inOrden (espejo (N x i d)) = rev (inOrden (N x i d))" 
    by simp
qed

(* danrodcha anaprarod *)
theorem "inOrden (espejo a) = rev (inOrden a)"
by (induct a) simp_all

(* danrodcha anaprarod *)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d 
  assume HIi: "?P i"
  assume HId: "?P d"
  show "?P (N x i d)" using HIi HId by simp
qed

(* pablucoto marpoldia1 jeamacpov paupeddeg marcarmor13 anaprarod *)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x) " by simp
next 
  fix x i d 
  assume HI1: "?P i"
  assume HI2: "?P d"
  have "inOrden (espejo (N x i d)) = 
        inOrden ( N x (espejo d) (espejo i) )" by simp
  also have "... = inOrden (espejo d) @ [x] @ inOrden (espejo i)" 
    by simp
  also have "... = rev (inOrden d) @ [x] @ rev (inOrden i)" 
    using HI1 HI2 by simp
  also have "... = rev (x # inOrden d ) @ rev (inOrden i)" by simp
  also have "... = rev ( inOrden i @ x # inOrden d) " by simp
  also have "... = rev (inOrden (N x i d))" by simp
  finally show "?P (N x i d)" by simp
qed

(* lucnovdos pabrodmac paupeddeg fraortmoy *)
theorem "inOrden (espejo a) = rev (inOrden a)"
by (induct a) auto

(* pabrodmac *)
lemma
  fixes a ::"'b arbol" 
  shows "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  show "?P (N x i d)"   
  proof -               
    have "inOrden (espejo (N x i d)) =  
          inOrden(N x (espejo d) (espejo i))" by simp
    also have "… =rev(inOrden d)@[x]@rev(inOrden i)" using h1 h2 by simp
    also have "… =rev(inOrden (N x i d))" by simp
    finally show ?thesis .
 qed
qed

(* ferrenseg rubgonmar *)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x l r  
  assume H1: "?P l"
  assume H2: "?P r"
  show "?P (N x l r)"
  proof -
    have "inOrden (espejo (N x l r)) = 
          inOrden (N x (espejo r) (espejo l))" by simp
    also have "… = inOrden (espejo r) @ [x] @ inOrden (espejo l)" 
      by simp
    also have "… = rev (inOrden r) @ [x] @ rev (inOrden l)" 
      using H1 H2 by simp
    also have "… = rev (inOrden l @ [x] @ inOrden r)" by simp
    also have "… = rev (inOrden (N x l r))" by simp
    finally show ?thesis .
  qed
qed

(* fraortmoy *)
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x 
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  show "inOrden (espejo (N x i d)) = rev (inOrden (N x i d))" 
    using h1 h2  by simp
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 9. Definir la función 
     raiz :: "'a arbol ⇒ 'a"
  tal que (raiz a) es la raiz del árbol a. Por ejemplo, 
     raiz (N e (N c (H a) (H d)) (N g (H f) (H h))) = e
  --------------------------------------------------------------------- 
*}

(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto 
   migtermor marpoldia1 wilmorort lucnovdos  juacabsou serrodcal 
   ferrenseg paupeddeg rubgonmar jeamacpov marcarmor13 fraortmoy 
   fracorjim1 josgarsan dancorgar anaprarod antsancab1 *)
fun raiz :: "'a arbol ⇒ 'a" where
  "raiz (H x)     = x"
| "raiz (N x i d) = x"

value "raiz (N e (N c (H a) (H d)) (N g (H f) (H h))) = e"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 10. Definir la función 
     extremo_izquierda :: "'a arbol ⇒ 'a"
  tal que (extremo_izquierda a) es el nodo más a la izquierda del árbol
  a. Por ejemplo,  
     extremo_izquierda (N e (N c (H a) (H d)) (N g (H f) (H h))) = a
  --------------------------------------------------------------------- 
*}

(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto 
   migtermor marpoldia1 wilmorort lucnovdos  juacabsou serrodcal 
   pabrodmac ferrenseg jeamacpov paupeddeg rubgonmar marcarmor13
   fraortmoy fracorjim1 josgarsan dancorgar  anaprarod antsancab1 *)
fun extremo_izquierda :: "'a arbol ⇒ 'a" where
  "extremo_izquierda (H x)     = x"
| "extremo_izquierda (N x i d) = extremo_izquierda i"

value "extremo_izquierda (N e (N c (H a) (H d)) (N g (H f) (H h))) = a"

(* bowma *)
fun extremo_izquierda_1 :: "'a arbol ⇒ 'a" where
  "extremo_izquierda_1 (H t)     = t"
| "extremo_izquierda_1 (N t i d) = hd (inOrden (N t i d))"

(* ivamenjim *)
(* Metaejercicio de demostración. 
   Llamando teorema_13 al teorema del ejercicio 13 *)

lemma "extremo_izquierda a = extremo_izquierda_1 a"
by (induct a, simp_all add: aux_ej12_1 teorema_13)

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 11. Definir la función 
     extremo_derecha :: "'a arbol ⇒ 'a"
  tal que (extremo_derecha a) es el nodo más a la derecha del árbol
  a. Por ejemplo,  
     extremo_derecha (N e (N c (H a) (H d)) (N g (H f) (H h))) = h
  --------------------------------------------------------------------- 
*}

(* danrodcha crigomgom manmorjim1 ivamenjim bowma pablucoto 
   migtermor marpoldia1 wilmorort lucnovdos  juacabsou pabrodmac 
   serrodcal ferrenseg jeamacpov paupeddeg rubgonmar marcarmor13
   fraortmoy fracorjim1 josgarsan dancorgar anaprarod antsancab1 *)
fun extremo_derecha :: "'a arbol ⇒ 'a" where
  "extremo_derecha (H x) = x"
| "extremo_derecha (N x i d) = extremo_derecha d"

value "extremo_derecha (N e (N c (H a) (H d)) (N g (H f) (H h))) = h"

(* bowma *)
fun extremo_derecha_1 :: "'a arbol ⇒ 'a" where
  "extremo_derecha_1 (H t) = t"
| "extremo_derecha_1 (N t i d) = last (inOrden (N t i d))"

(* ivamenjim *)
(* Metaejercicio de demostración. 
   Llamando teorema_12 al teorema del ejercicio 12 *)

(*
lemma "extremo_derecha a = extremo_derecha_1 a"
by (induct a, simp_all add: aux_ej12_1 teorema_12)
*)

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 12. Demostrar o refutar
     last (inOrden a) = extremo_derecha a
  --------------------------------------------------------------------- 
*}

(* danrodcha anaprarod *)
lemma aux_ej12: "inOrden a ≠ []"
apply (induct a) 
apply simp  (* poniendo simp_all se agrupan estos dos *)
apply simp
done

(* danrodcha pablucoto crigomgom  wilmorort juacabsou serrodcal 
   rubgonmar jeamacpov marcarmor13*)
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d 
  assume HIi: "?P i"
  assume HId: "?P d"
  have "last (inOrden (N x i d)) = last (inOrden i @ [x] @ inOrden d)" 
    by (simp only: inOrden.simps(2))
  also have "… = last (inOrden d)" by (simp add: aux_ej12)
  also have "… = extremo_derecha d" using HId by simp
  also have "… = extremo_derecha (N x i d)" by simp
  finally show "?P (N x i d)" by simp
qed

(* ivamenjim *)
lemma aux_ej12_1: "inOrden a ≠ []"
by (induct a) simp_all 

(* ivamenjim marpoldia1 paupeddeg anaprarod antsancab1 *)
(* Igual que la anterior, pero poniendo solo by simp en el primer have *)
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x 
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  have "last (inOrden (N x i d)) = 
        last ((inOrden i) @ [x] @ (inOrden d))" by simp 
  also have "... = last (inOrden d)" by (simp add: aux_ej12_1)
  also have "... = extremo_derecha d" using h2 by simp 
  finally show "last (inOrden (N x i d)) = extremo_derecha (N x i d)" 
    by simp
qed

(* bowma *)
(* Casi lo mismo que el anterior,pero no hace falta suponer "?p i" *)
theorem "last (inOrden a) = extremo_derecha a" (is "?p a")
proof (induct a)
  fix t
  show "?p (H t)" by simp
next 
  fix t i d
  assume HI: "?p d"
  have "last (inOrden (N t i d)) = last (inOrden i @ [t] @ inOrden d)" 
    by simp
  also have "... = last (inOrden d)" by (simp add:aux_ej12)
  also have "... = extremo_derecha d" using HI by simp
  finally show "?p (N t i d)" by simp
qed

(* lucnovdos*)
(* El mismo que el anterior,pero sin usar patrones *)
theorem "last (inOrden a) = extremo_derecha a"
proof (induct a)
  fix x ::"'a"
  show "last (inOrden (H x)) = extremo_derecha (H x)" by simp
next
  fix x   ::"'a"
  fix i d ::"'a arbol"
  assume HI: "last (inOrden d) = extremo_derecha d"
  have "last (inOrden (N x i d)) = 
        last ((inOrden i) @ [x] @ (inOrden d))" by simp 
  also have "… = last (inOrden d)" by (simp add: aux_ej12)
  also have "… = extremo_derecha d" using HI by simp
  also have "… = extremo_derecha (N x i d)" by simp
  finally show "last (inOrden (N x i d)) = extremo_derecha (N x i d)" 
    by simp
qed

(* migtermor *)
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
  fix h
  show "?P (H h)" by simp
next
  fix n i
  fix d assume HId: "?P d"
  have AUX: "¬ (inOrden d = [])" (is "?Q d")
     proof (induct d)
      fix hd
      show "?Q (H hd)" by simp
     next
     fix nd
     fix id assume HIid: "?Q id"
     fix dd assume HIdd: "?Q dd"
     show "?Q (N nd id dd)" using HIid HIdd by simp
     qed
  have "last (inOrden (N n i d)) = last (inOrden i @[n]@inOrden d)" 
    by simp
  also have "… = last (inOrden d)" using AUX by simp
  also have "… = extremo_derecha d" using HId by simp
  finally show "?P (N n i d)"  by simp
qed

(* pabrodmac fraortmoy *)
lemma Aux_ej12: "inOrden a ≠ []"
by (induct a) auto

(* pabrodmac fraortmoy *)
theorem "last (inOrden a) = extremo_derecha a"
by (induct a)(auto simp add: Aux_ej12)

(* pabrodmac *)
lemma
  fixes a ::"'b arbol" 
  shows "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  show "?P (N x i d)"   
  proof -               
    have "last (inOrden (N x i d)) = last((inOrden i)@ [x] @ (inOrden d))" 
      by simp
    also have "… = last(inOrden d)" by (simp add: Aux_ej12)
    also have "… = extremo_derecha d" using h1 h2 by simp
    also have "… = extremo_derecha (N x i d)" by simp
    finally show ?thesis .
  qed
qed

(* ferrenseg *)
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x l r
  assume HI: "?P r"
  show "?P (N x l r)"
  proof -  
    have "last (inOrden (N x l r)) = 
          last (inOrden r @ [x] @ inOrden r)" by simp
    also have "… = last (inOrden r)"  by (simp add: inOrden)
    also have "… = extremo_derecha r" using HI by simp
    also have "… =  extremo_derecha (N x l r)" by simp
    finally show ?thesis .
  qed
qed

(* fraortmoy *)
lemma
  fixes a ::"'b arbol" 
  shows "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  show "?P (N x i d)" using h1 h2 by (simp add: Aux_ej12)  
qed

(* dancorgar *)
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
  fix t
  show "?P (H t)" by simp
next
  fix t i d
  assume H2: "?P d"
  have "last (inOrden (N t i d)) = last ((inOrden i)@[t]@(inOrden d))" 
    by simp
  also have "… = last (inOrden d)"
  proof (induct d)
    fix x
    show "last (inOrden i @ [t] @ inOrden (H x)) = last (inOrden (H x))" 
      by simp
  next
    fix x1a d1 d2
    show "last (inOrden i @ [t] @ inOrden (N x1a d1 d2)) = 
          last (inOrden (N x1a d1 d2))" by simp
  qed
  finally show "last (inOrden (N t i d)) = extremo_derecha (N t i d)" 
    using H2 by simp
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 13. Demostrar o refutar
     hd (inOrden a) = extremo_izquierda a
  --------------------------------------------------------------------- 
*}

(* danrodcha pablucoto crigomgom juacabsou serrodcal jeamacpov
   marcarmor13 *) 
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d 
  assume HIi: "?P i"
  assume HId: "?P d"
  have "hd (inOrden (N x i d)) = hd (inOrden i @ [x] @ inOrden d)" 
    by (simp only: inOrden.simps(2))
  also have "… = hd (inOrden i)" by (simp add: aux_ej12)
  also have "… = extremo_izquierda i" using HIi by simp
  also have "… = extremo_izquierda (N x i d)" by simp
  finally show "?P (N x i d)" by simp
qed

(* bowma lucnovdos dancorgar anaprarod *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?p a")
proof (induct a)
  fix t
  show "?p (H t)" by simp
next
  fix t i d 
  assume HI: "?p i"
  have "hd (inOrden (N t i d)) = hd (inOrden i @ [t] @ inOrden d)" 
    by simp
  also have "… = hd (inOrden i)" by (simp add: aux_ej12)
  also have "… = extremo_izquierda i" using HI by simp
  finally show "?p (N t i d)" by simp
qed

(* migtermor *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
  fix h
  show "?P (H h)" by simp
next
  fix n d
  fix i assume HId: "?P i"
  have AUX: "¬ (inOrden i = [])" (is "?Q i")
     proof (induct i)
      fix hi
      show "?Q (H hi)" by simp
     next
     fix ni
     fix ii assume HIid: "?Q ii"
     fix di assume HIdd: "?Q di"
     show "?Q (N ni ii di)" using HIid HIdd by simp
     qed
  have "hd (inOrden (N n i d)) = hd (inOrden i @[n]@inOrden d)" by simp
  also have "… = hd (inOrden i)" using AUX by simp
  also have "… = extremo_izquierda i" using HId by simp
  finally show "?P (N n i d)"  by simp
qed

(* ivamenjim marpoldia1 wilmorort paupeddeg rubgonmar antsancab1 *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x 
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  have "hd (inOrden (N x i d)) = hd ((inOrden i) @ [x] @ (inOrden d))" 
    by simp
  also have "... = hd (inOrden i)" by (simp add: aux_ej12_1)
  also have "... = extremo_izquierda i" using h1 by simp 
  finally show "hd (inOrden (N x i d)) = extremo_izquierda (N x i d)" 
    by simp
qed

(* pabrodmac paupeddeg*)
theorem "hd (inOrden a) = extremo_izquierda a"
by (induct a)(auto simp add: Aux_ej12)

(* pabrodmac *)
lemma
  fixes a ::"'b arbol" 
  shows "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  show "?P (N x i d)"   
  proof -               
    have "hd (inOrden (N x i d)) =  hd((inOrden i)@ [x] @ (inOrden d))" 
      by simp
    also have "… = hd (inOrden i)"  by (simp add: Aux_ej12)
    also have "… = extremo_izquierda i" using h1 h2 by simp
    also have "… = extremo_izquierda (N x i d)" by simp
    finally show ?thesis .
  qed
qed

(* ferrenseg *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x l r
  assume HI: "?P l"
  show "?P (N x l r)"
  proof - 
    have "hd (inOrden (N x l r)) = 
          hd (inOrden l @ [x] @ inOrden r)" by simp
    also have "… = hd (inOrden l)"  by (simp add: Aux_ej12)
    also have "… = extremo_izquierda l" using HI by simp
    also have "… = extremo_izquierda (N x l r)" by simp
    finally show ?thesis .
  qed
qed

(* fraortmoy *)
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume h1: "?P i"
  assume h2: "?P d"
  show "?P (N x i d)" using h1 h2 by (simp add: Aux_ej12)
qed 

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 14. Demostrar o refutar
     hd (preOrden a) = last (postOrden a)
  --------------------------------------------------------------------- 
*}

(* danrodcha pabrodmac dancorgar anaprarod *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
  fix x i d
  show "?P (N x i d)" by simp
qed

(* danrodcha *)
theorem "hd (preOrden1 a) = last (postOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
  fix x i d
  assume HIi: "?P i"
  assume HId: "?P d"
  have "hd (preOrden1 (N x i d)) = hd (x#preOrden1 i @ preOrden1 d)"
    by (simp only: preOrden1.simps(2))
  also have "… = x" by simp
  also have "… = last (postOrden i @ postOrden d @ [x])" by simp
  also have "… = last (postOrden (N x i d))" 
    by (simp only: postOrden.simps(2))
  finally show "?P (N x i d)" by simp
qed

(* pablucoto crigomgom bowma marpoldia1 wilmorort lucnovdos juacabsou
   jeamacpov paupeddeg rubgonmar marcarmor13 anaprarod *) 
(*Similar al anterior*) 
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next   
  fix x i d
  assume HI1: "?P i"
  assume HI2: "?P d"
  have " hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d)"  
    by simp
  also have "... = x" by simp
  also have "... = last ( postOrden i @ postOrden d @ [x]) " by simp
  also have "... = last ( postOrden (N x i d) )" by simp  
  finally show "?P (N x i d)" by simp
qed

(* migtermor *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
 fix h
 show "?P (H h)" by simp
next
 fix n i d
 have "hd (preOrden (N n (i :: 'a arbol) (d :: 'a arbol))) = 
       hd ([n]@preOrden i@preOrden d)" by simp
 (* Si no especifico que i y d son árboles, salta un error de tipo. 
    Supongo que será por no haber asumido hipótesis sobre ellos *)
 also have "… = last (postOrden (N n i d))" by simp
 show "?P (N n i d)" by simp
qed

(* ivamenjim serrodcal antsancab1 *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x 
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  have "hd (preOrden (N x i d)) = hd ([x] @ (preOrden i) @ (preOrden d))" 
    by simp
  also have "... = hd ([x])" by simp
  finally show "hd (preOrden (N x i d)) = last (postOrden (N x i d))" 
    by simp
qed

(* pabrodmac paupeddeg fraortmoy *)
theorem "hd (preOrden a) = last (postOrden a)"
by (induct a) auto  

(* pabrodmac *)
lemma
  fixes a ::"'b arbol" 
  shows "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  show "?P (N x i d)"   
  proof -               
    have "hd (preOrden (N x i d) )= x" by simp
    also have "… = last (postOrden (N x i d))" by simp
    finally show ?thesis .
 qed
qed

(* Me he dado cuenta que no es necesario asumir ninguna hipótesis de
   inducción puesto que no es necesario utilizarlas, así que no se si
   está bien hecho puesto que no se aplicaría inducción *)  

(* ferrenseg *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (cases a)
  fix x
  assume "a = H x"
  then show "?P a" by simp
next
  fix x l r
  assume H: "a = N x l r"
  show "?P a"
  proof - 
    have "hd (preOrden a) = hd (preOrden (N x l r))" using H by simp
    also have "… = hd (x # (preOrden l @ preOrden r))" by simp
    also have "… = x" by simp
    also have "… = last (postOrden l @ postOrden r @ [x])" by simp
    also have "… = last (postOrden (N x l r))" by simp
    also have "… = last (postOrden a)" using H by simp
    finally show ?thesis .
  qed
qed  

(* fraortmoy *)
theorem "hd (preOrden a) = last (postOrden a)"
apply (induct a)
apply simp
apply simp
done

(* fraortmoy *)
(* como ya se ha comentado antes, no se usan hipótesis de inducción *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  show "?P (N x i d)" by simp
qed


text {*  
  --------------------------------------------------------------------- 
  Ejercicio 15. Demostrar o refutar
     hd (preOrden a) = raiz a
  --------------------------------------------------------------------- 
*}

(* danrodcha *)
theorem "hd (preOrden1 a) = raiz a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next  
  fix x i d
  assume HIi: "?P i"
  assume HId: "?P d"
  have "hd (preOrden1 (N x i d)) = hd (x#preOrden1 i @ preOrden1 d)"
    by (simp only: preOrden1.simps(2))
  also have "… = x" by simp
  also have "… = raiz (N x i d)" by simp
  finally show "?P (N x i d)" by simp
qed

(* danrodcha pabrodmac dancorgar anaprarod *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
  fix x i d
  show "?P (N x i d)" by simp
qed

(* pablucoto crigomgom ivamenjim marpoldia1 wilmorort lucnovdos
   juacabsou serrodcal jeamacpov paupeddeg rubgonmar marcarmor13 anaprarod *) 
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a) 
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume HI1: " ?P i"
  assume HI2: " ?P d"
  have " hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d) " 
    by simp
  also have "... = x" by simp
  also have "... = raiz (N x i d)" by simp
  finally show " ?P (N x i d)" by simp
qed

(* bowma *)
(* similar al anterior pero sin suponer "?p d" *)
theorem "hd (preOrden a) = last (postOrden a)" (is "?p a")
proof (induct a)
  fix t
  show "?p (H t)" by simp
next
  fix t i d
  assume HI: "?p i"
  have "hd (preOrden (N t i d)) = hd ([t] @ preOrden i @ preOrden d)" 
    by simp
  also have "… = t" by simp
  also have "… = last (postOrden i @ postOrden d @ [t])" by simp
  also have "… = last (postOrden (N t i d))" by simp
  finally show "?p (N t i d)" by simp
qed

(* migtermor *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
 fix h
 show "?P (H h)" by simp
next
 fix n i d
 have "hd (preOrden (N n (i :: 'a arbol) (d :: 'a arbol))) = 
       hd ([n]@preOrden i@preOrden d)" by simp
 also have "… = raiz (N n i d)" by simp
 finally show "?P (N n i d)" by simp
qed

(* ivamenjim: sin usar patrones *)
theorem "hd (preOrden a) = raiz a" 
proof (induct a)
  fix x ::"'a"
  show "hd (preOrden (H x)) = raiz (H x)" by simp 
next
  fix x ::"'a"
  fix i ::"'a arbol" assume h1: "hd (preOrden i) = raiz i"
  fix d ::"'a arbol" assume h2: "hd (preOrden d) = raiz d"
  have "hd (preOrden (N x i d)) = hd ([x] @ (preOrden i) @ (preOrden d))" 
    by simp
  also have "... = hd ([x])" by simp
  finally show "hd (preOrden (N x i d)) = raiz (N x i d)" by simp
qed

(* pabrodmac paupeddeg fraortmoy *)
theorem "hd (preOrden a) = raiz a"
by (induct a) auto

(* pabrodmac *)
lemma
  fixes a ::"'b arbol" 
  shows "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  show "?P (N x i d)"   
  proof -               
    have "hd (preOrden (N x i d) )= x" by simp
    also have "… = raiz (N x i d)" by simp
    finally show ?thesis .
 qed
qed

(* Me he dado cuenta que no es necesario asumir ninguna hipótesis de
   inducción puesto que no es necesario utilizarlas, así que no se si
   está bien hecho puesto que no se aplicaría inducción *)  

(* ferrenseg *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (cases a)
  fix x
  assume "a = H x"
  then show "?P a" by simp
next
  fix x l r
  assume H: "a = N x l r"
  show "?P a"
  proof -
    have "hd (preOrden a) = hd (preOrden (N x l r))" using H by simp
    also have "… = hd (x#(preOrden l @ preOrden r))" by simp
    also have "… = x" by simp
    also have "… = raiz (N x l r)" by simp
    also have "… = raiz a" using H by simp
    finally show ?thesis .
  qed
qed  

(* fraortmoy *)
theorem "hd (preOrden a) = raiz a"
  apply (induct a)
  apply simp
  apply simp
done

(* fraortmoy *)
theorem "hd (preOrden a) = raiz  a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  show "?P (N x i d)" by simp
qed

(* antsancab1 *)
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x
  fix i assume H1: "?P i"
  fix d assume H2: "?P d"
  have "hd (preOrden (N x i d)) = hd ([x] @ preOrden i @ preOrden d)" by simp
  also have "... = hd [x]" by simp
  also have "... = raiz (H x)" by simp
  also have "... = raiz (N x i d)" by simp (* estos dos últimos no eran necesarios pero me queda más claro *)
  finally show "hd (preOrden (N x i d)) = raiz (N x i d)" by simp
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 16. Demostrar o refutar
     hd (inOrden a) = raiz a
  --------------------------------------------------------------------- 
*}

(* crigomgom pablucoto bowma migtermor ivamenjim wilmorort lucnovdos
   juacabsou pabrodmac serrodcal ferrenseg jeamacpov paupeddeg rubgonmar
   marcarmor13 fraortmoy dancorgar anaprarod antsancab1 *)  
theorem "hd (inOrden a) = raiz a"
quickcheck
oops

(* danrodcha anaprarod:
Auto Quickcheck found a counterexample:
  a = N a1 (H a2) (H a1)
Evaluated terms:
  hd (inOrden a) = a2
  raiz a = a1 *)

(* ivamenjim marpoldia1 *)
theorem "hd (inOrden a) = raiz a" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x 
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  have "hd (inOrden (N x i d)) = hd ((inOrden i) @ [x] @ (inOrden d))" by simp
  also have "... = hd (inOrden i)" by (simp add: aux_ej12_1) 
  (* Perdemos la x, luego se refuta el enunciado del teorema *)
oops

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 17. Demostrar o refutar
     last (postOrden a) = raiz a
  --------------------------------------------------------------------- 
*}

(* danrodcha pabrodmac dancorgar anaprarod *)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
  fix x i d
  show "?P (N x i d)" by simp
qed

(* danrodcha *)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
  fix x i d
  assume HIi: "?P i"
  assume HId: "?P d"
  have "last (postOrden (N x i d)) = 
        last (postOrden i @ postOrden d @ [x])"
    by (simp only: postOrden.simps(2))
  also have "… = x" by simp
  also have "… = raiz (N x i d)" by (simp only: raiz.simps(2))
  finally show "?P (N x i d)" by simp
qed

(* pablucoto crigomgom ivamenjim marpoldia1 wilmorort lucnovdos
   juacabsou serrodcal jeamacpov paupeddeg rubgonmar marcarmor13 anaprarod *) 
(* Similar al anterior *) 
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a )
  fix x
  show "?P (H x)" by simp
next 
  fix x i d
  assume HI1: "?P i"
  assume HI2: "?P d"
  have "last (postOrden (N x i d)) = 
        last ( postOrden i @ postOrden d @ [x])" by simp
  also have "... = x" by simp
  also have "... = raiz (N x i d) " by simp
  finally show " ?P (N x i d)" by simp
qed

(* bowma *)
(* También sin usar el supuesto "?p d" *)
theorem "last (postOrden a) = raiz a" (is "?p a")
proof (induct a)
  fix t
  show "?p (H t)" by simp
next
  fix t i d
  assume "?p i"
  (* si quito este supuesto, hay error pero no sé dónde se lo está
     usando *) 
  have "last (postOrden (N t i d)) = 
        last (postOrden i @ postOrden d @ [t])" by simp
  also have "... = t" by simp
  also have "... = raiz (N t i d)" by simp
  finally show "?p (N t i d)" by simp
qed
(*
Comentario de antsancab1:
No tengo muy claro por qué es, pero si en lugar de utilizar ?p al final lo pones completo:
finally show "last (postOrden (N t i d)) = raiz (N t i d)" by simp
No devuelve ningún error. No se si será que después de ?p espera un único elemento
*)

(* migtermor *)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
 fix h
 show "?P (H h)" by simp
next
 fix n i d
 have "last (postOrden (N n (i :: 'a arbol) (d :: 'a arbol))) = 
       last (postOrden i@postOrden d@[n])" by simp
 also have "… = raiz (N n i d)" by simp
 finally show "?P (N n i d)" by simp
qed

(* ivamenjim: sin usar patrones *)
theorem "last (postOrden a) = raiz a" 
proof (induct a)
  fix x::"'a" 
  show "last (postOrden (H x)) = raiz (H x)" by simp 
next
  fix x::"'a"  
  fix i::"'a arbol" assume h1: "last (postOrden i) = raiz i"
  fix d::"'a arbol" assume h2: "last (postOrden d) = raiz d"
  have "last (postOrden (N x i d)) = 
        last ((postOrden i) @ (postOrden d) @ [x])" by simp
  also have "... = last ([x])" by simp 
  finally show "last (postOrden (N x i d)) = raiz (N x i d)" by simp
qed

(* pabrodmac paupeddeg fraortmoy *)
theorem "last (postOrden a) = raiz a"
by (induct a) auto
 
(* pabrodmac *)
lemma
  fixes a ::"'b arbol" 
  shows "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
  fix x 
  show "?P (H x)" by simp 
next
  fix x
  fix i assume h1: "?P i"
  fix d assume h2: "?P d"
  show "?P (N x i d)"   
  proof -               
    have "last (postOrden (N x i d))= x" by simp
    also have "… = raiz (N x i d)" by simp
    finally show ?thesis .
 qed
qed

(* Me he dado cuenta que no es necesario asumir ninguna hipótesis de
   inducción puesto que no es necesario utilizarlas, así que no se si
   está bien hecho puesto que no se aplicaría inducción *)  

(* ferrenseg *)

theorem "last (postOrden a) = raiz a" (is "?P a")
proof (cases a)
  fix x
  assume "a = H x"
  then show "?P a" by simp
next
  fix x l r
  assume H: "a = N x l r"
  show "?P a"
  proof -
    have "last (postOrden a) = last (postOrden (N x l r))" using H by simp
    also have "… = last (postOrden l @ preOrden r @ [x])" by simp
    also have "… = x" by simp
    also have "… = raiz a" using H by simp
    finally show ?thesis .
  qed
qed  

(* fraortmoy *)
theorem "last (postOrden a) = raiz a"
apply (induct a)
apply simp
apply simp
done

(* fraortmoy *)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  show "?P (N x i d)" by simp
qed

end

(* antsancab1 *)
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x
  fix i assume H1: "?P i"
  fix d assume H2: "?P d"
  have "last (postOrden (N x i d)) = last (postOrden i @ postOrden d @ [x])" by simp
  also have "... = last [x]" by simp
  also have "... = x" by simp
  also have "... = raiz (H x)" by simp
  also have "... = raiz (N x i d)" by simp
  finally show "last (postOrden (N x i d)) = raiz (N x i d)" by simp
qed