Diferencia entre revisiones de «Relación 5»
De Razonamiento automático (2016-17)
m (Texto reemplazado: «isar» por «isabelle») |
|||
(No se muestran 8 ediciones intermedias de 6 usuarios) | |||
Línea 1: | Línea 1: | ||
− | <source lang=" | + | <source lang="isabelle"> |
chapter {* R5: Eliminación de duplicados *} | chapter {* R5: Eliminación de duplicados *} | ||
Línea 19: | Línea 19: | ||
(* crigomgom rubgonmar bowma wilmorort pablucoto serrodcal | (* crigomgom rubgonmar bowma wilmorort pablucoto serrodcal | ||
anaprarod migtermor paupeddeg fraortmoy marpoldia1 | anaprarod migtermor paupeddeg fraortmoy marpoldia1 | ||
− | danrodcha manmorjim1 jeamacpov *) | + | danrodcha manmorjim1 jeamacpov marcarmor13*) |
fun estaEn :: "'a ⇒ 'a list ⇒ bool" where | fun estaEn :: "'a ⇒ 'a list ⇒ bool" where | ||
"estaEn _ [] = False" | "estaEn _ [] = False" | ||
Línea 28: | Línea 28: | ||
(* ivamenjim ferrenseg josgarsan juacabsou dancorgar pabrodmac lucnovdos | (* ivamenjim ferrenseg josgarsan juacabsou dancorgar pabrodmac lucnovdos | ||
− | fracorjim1 *) | + | fracorjim1 antsancab1 *) |
(* Igual que la anterior pero con x en lugar de _ en el caso base *) | (* Igual que la anterior pero con x en lugar de _ en el caso base *) | ||
fun estaEn1 :: "'a ⇒ 'a list ⇒ bool" where | fun estaEn1 :: "'a ⇒ 'a list ⇒ bool" where | ||
Línea 64: | Línea 64: | ||
serrodcal anaprarod migtermor paupeddeg fraortmoy marpoldia1 | serrodcal anaprarod migtermor paupeddeg fraortmoy marpoldia1 | ||
ferrenseg josgarsan danrodcha manmorjim1 juacabsou dancorgar | ferrenseg josgarsan danrodcha manmorjim1 juacabsou dancorgar | ||
− | pabrodmac lucnovdos jeamacpov *) | + | pabrodmac lucnovdos jeamacpov marcarmor13 antsancab1 *) |
fun sinDuplicados :: "'a list ⇒ bool" where | fun sinDuplicados :: "'a list ⇒ bool" where | ||
"sinDuplicados [] = True" | "sinDuplicados [] = True" | ||
Línea 108: | Línea 108: | ||
anaprarod migtermor paupeddeg fraortmoy marpoldia1 ferrenseg | anaprarod migtermor paupeddeg fraortmoy marpoldia1 ferrenseg | ||
josgarsan danrodcha juacabsou dancorgar manmorjim1 pabrodmac | josgarsan danrodcha juacabsou dancorgar manmorjim1 pabrodmac | ||
− | lucnovdos jeamacpov *) | + | lucnovdos jeamacpov marcarmor13 antsancab1 *) |
− | fun | + | fun borraDuplicados :: "'a list ⇒ 'a list" where |
− | " | + | "borraDuplicados [] = []" |
− | | " | + | | "borraDuplicados (x#xs) = (if estaEn x xs |
− | + | then borraDuplicados xs | |
− | + | else x#borraDuplicados xs)" | |
value "borraDuplicados0 [1::nat,2,4,2,3] = [1,4,2,3]" | value "borraDuplicados0 [1::nat,2,4,2,3] = [1,4,2,3]" | ||
Línea 149: | Línea 149: | ||
value "borraDuplicados3 [1::nat,2,4,2,3] = [1,4,2,3]" | value "borraDuplicados3 [1::nat,2,4,2,3] = [1,4,2,3]" | ||
− | |||
− | |||
− | |||
− | |||
(* fracorjim1. Utilizo un acumulador para optimizar la eficiencia *) | (* fracorjim1. Utilizo un acumulador para optimizar la eficiencia *) | ||
− | |||
fun borraDuplicadosAc :: "'a list ⇒ 'a list ⇒ 'a list" where | fun borraDuplicadosAc :: "'a list ⇒ 'a list ⇒ 'a list" where | ||
"borraDuplicadosAc [] ys = ys" | "borraDuplicadosAc [] ys = ys" | ||
− | | "borraDuplicadosAc (x#xs) ys = (if (estaEn x ys) then (borraDuplicadosAc xs ys) | + | | "borraDuplicadosAc (x#xs) ys = (if (estaEn x ys) |
+ | then (borraDuplicadosAc xs ys) | ||
else (borraDuplicadosAc xs (x#ys)))" | else (borraDuplicadosAc xs (x#ys)))" | ||
(* fracorjim1. Uso un caso base *) | (* fracorjim1. Uso un caso base *) | ||
fun borraDuplicados4 :: "'a list ⇒ 'a list" where | fun borraDuplicados4 :: "'a list ⇒ 'a list" where | ||
− | "borraDuplicados4 xs = (if (sinDuplicados xs) then xs else borraDuplicadosAc xs [])" | + | "borraDuplicados4 xs = (if (sinDuplicados xs) |
− | + | then xs | |
+ | else borraDuplicadosAc xs [])" | ||
+ | value "borraDuplicados4 [1::nat,2,4,2,3] = [1,4,2,3]" | ||
+ | (* Comentario: Falla en el ejemplo anterior. Su valor es [3,4,2,1] *) | ||
+ | |||
text {* | text {* | ||
--------------------------------------------------------------------- | --------------------------------------------------------------------- | ||
Línea 183: | Línea 183: | ||
(* rubgonmar wilmorort pablucoto serrodcal migtermor paupeddeg | (* rubgonmar wilmorort pablucoto serrodcal migtermor paupeddeg | ||
fraortmoy marpoldia1 danrodcha juacabsou dancorgar josgarsan | fraortmoy marpoldia1 danrodcha juacabsou dancorgar josgarsan | ||
− | pabrodmac lucnovdos *) | + | pabrodmac lucnovdos antsancab1 *) |
lemma length_borraDuplicados2: | lemma length_borraDuplicados2: | ||
"length ( borraDuplicados xs ) ≤ length xs" | "length ( borraDuplicados xs ) ≤ length xs" | ||
by (induct xs) auto | by (induct xs) auto | ||
− | (* manmorjim1 *) | + | (* manmorjim1 marcarmor13 *) |
(* soy de ponerlo mejor por pasos *) | (* soy de ponerlo mejor por pasos *) | ||
lemma length_borraDuplicados3: | lemma length_borraDuplicados3: | ||
Línea 284: | Línea 284: | ||
qed | qed | ||
− | (* pablucoto jeamacpov *) | + | (* pablucoto jeamacpov marcarmor13*) |
lemma length_borraDuplicados_2d: | lemma length_borraDuplicados_2d: | ||
"length (borraDuplicados xs) ≤ length xs" | "length (borraDuplicados xs) ≤ length xs" | ||
Línea 380: | Línea 380: | ||
by simp | by simp | ||
qed | qed | ||
+ | |||
+ | (* antsancab1 *) | ||
+ | (* En este ejercicio probé a mantener el elemento 'a' dentro del métodos length y funciona | ||
+ | Para no tener que hacer 1 + length xs *) | ||
+ | (* Duda: | ||
+ | ¿Por qué aparece este mensaje en Isabelle al asumir la hipótesis de inducción? | ||
+ | Introduced fixed type variable(s): 'b in "xsa__" *) | ||
+ | |||
+ | lemma length_borraDuplicados_2j: "length (borraDuplicados xs) ≤ length xs" | ||
+ | proof (induct xs) | ||
+ | show "length (borraDuplicados []) ≤ length []" by simp | ||
+ | next | ||
+ | fix a xs | ||
+ | assume HI: "length (borraDuplicados xs) ≤ length xs" | ||
+ | have "length (borraDuplicados (a # xs)) ≤ length (a # borraDuplicados (xs))" by simp | ||
+ | also have "... ≤ length (a # xs)" using HI by simp | ||
+ | finally show "length (borraDuplicados (a # xs)) ≤ length (a # xs) " by simp | ||
+ | qed | ||
+ | |||
text {* | text {* | ||
Línea 389: | Línea 408: | ||
(* crigomgom rubgonmar wilmorort pablucoto serrodcal bowma | (* crigomgom rubgonmar wilmorort pablucoto serrodcal bowma | ||
− | + | migtermor fraortmoy marpoldia1 ferrenseg danrodcha juacabsou | |
+ | paupeddeg pabrodmac lucnovdos dancorgar jeamacpov marcarmor13 antsancab1 *) | ||
lemma estaEn_borraDuplicados: | lemma estaEn_borraDuplicados: | ||
"estaEn a (borraDuplicados xs) = estaEn a xs" | "estaEn a (borraDuplicados xs) = estaEn a xs" | ||
Línea 481: | Línea 501: | ||
qed | qed | ||
qed | qed | ||
+ | |||
+ | (* Comentario: Tiene pasos incompletos.*) | ||
(* anaprarod marpoldia1 ferrenseg juacabsou *) | (* anaprarod marpoldia1 ferrenseg juacabsou *) | ||
Línea 541: | Línea 563: | ||
qed | qed | ||
− | (* crigomgom paupeddeg pabrodmac*) | + | (* crigomgom paupeddeg pabrodmac marcarmor13*) |
lemma estaEn_borraDuplicados_2d: | lemma estaEn_borraDuplicados_2d: | ||
"estaEn a (borraDuplicados xs) = estaEn a xs" | "estaEn a (borraDuplicados xs) = estaEn a xs" | ||
Línea 658: | Línea 680: | ||
finally show "?p (x#xs)" by simp | finally show "?p (x#xs)" by simp | ||
qed | qed | ||
+ | oops | ||
+ | |||
+ | (* Comentario: Demostración incompleta. *) | ||
− | (* danrodcha *) | + | (* danrodcha pablucoto *) |
(* es como la de ruben pero con diferencias de estilo *) | (* es como la de ruben pero con diferencias de estilo *) | ||
lemma estaEn_borraDuplicados_2g: | lemma estaEn_borraDuplicados_2g: | ||
Línea 700: | Línea 725: | ||
(* ivamenjim wilmorort serrodcal crigomgom anaprarod fraortmoy | (* ivamenjim wilmorort serrodcal crigomgom anaprarod fraortmoy | ||
− | + | marpoldia1 ferrenseg danrodcha juacabsou paupeddeg josgarsan | |
+ | pabrodmac dancorgar jeamacpov rubgonmar marcarmor13 *) | ||
lemma sinDuplicados_borraDuplicados: | lemma sinDuplicados_borraDuplicados: | ||
"sinDuplicados (borraDuplicados xs)" | "sinDuplicados (borraDuplicados xs)" | ||
Línea 706: | Línea 732: | ||
(* migtermor bowma *) | (* migtermor bowma *) | ||
− | lemma | + | lemma sinDuplicados_borraDuplicados_2: |
"sinDuplicados (borraDuplicados xs)" | "sinDuplicados (borraDuplicados xs)" | ||
by (induct xs, simp_all add: estaEn_borraDuplicados_2) | by (induct xs, simp_all add: estaEn_borraDuplicados_2) | ||
(* manmorjim1 no caí en usar la demostración anterior y he realizado | (* manmorjim1 no caí en usar la demostración anterior y he realizado | ||
− | + | la demostración de que si un elemento no estaba en una lista seguirá | |
− | + | sin estar después de eliminar los duplicados en esa lista... *) | |
lemma noEsta_tras_borrarDuplicados: | lemma noEsta_tras_borrarDuplicados: | ||
"(¬estaEn x xs) ⟶ (¬estaEn x (borraDuplicados xs))" | "(¬estaEn x xs) ⟶ (¬estaEn x (borraDuplicados xs))" | ||
Línea 719: | Línea 745: | ||
done | done | ||
− | lemma | + | lemma sinDuplicados_borraDuplicados_3: |
"sinDuplicados (borraDuplicados xs)" | "sinDuplicados (borraDuplicados xs)" | ||
apply (induct xs) | apply (induct xs) | ||
Línea 726: | Línea 752: | ||
apply auto | apply auto | ||
apply (simp add: noEsta_tras_borrarDuplicados) | apply (simp add: noEsta_tras_borrarDuplicados) | ||
+ | done | ||
+ | |||
+ | (* antsancab1 *) | ||
+ | lemma sinDuplicados_borraDuplicados_4: | ||
+ | "sinDuplicados (borraDuplicados xs)" | ||
+ | apply (induct xs) | ||
+ | apply simp | ||
+ | apply (simp add:estaEn_borraDuplicados) | ||
done | done | ||
Línea 735: | Línea 769: | ||
*} | *} | ||
− | (*wilmorort*) | + | (* wilmorort pablucoto marcarmor13*) |
− | + | lemma sinDuplicados_borraDuplicados_2a: | |
− | |||
− | lemma | ||
"sinDuplicados (borraDuplicados xs)" | "sinDuplicados (borraDuplicados xs)" | ||
proof (induct xs) | proof (induct xs) | ||
− | show " sinDuplicados (borraDuplicados [])" by simp | + | show "sinDuplicados (borraDuplicados [])" by simp |
next | next | ||
− | fix a xs | + | fix a xs |
− | assume HI: "sinDuplicados (borraDuplicados xs)" | + | assume HI: "sinDuplicados (borraDuplicados xs)" |
− | show "sinDuplicados (borraDuplicados (a # xs))" | + | show "sinDuplicados (borraDuplicados (a # xs))" |
− | proof (cases) | + | proof (cases) |
− | assume "estaEn a xs" | + | assume "estaEn a xs" |
− | then show "sinDuplicados (borraDuplicados (a#xs))" using HI by simp | + | then show "sinDuplicados (borraDuplicados (a#xs))" using HI by simp |
− | next | + | next |
− | assume"¬ estaEn a xs" | + | assume"¬ estaEn a xs" |
− | then have "¬ (estaEn a xs) ∧ sinDuplicados (borraDuplicados xs)" using HI by simp | + | then have "¬ (estaEn a xs) ∧ sinDuplicados (borraDuplicados xs)" |
− | then have "¬ estaEn a (borraDuplicados xs) ∧ sinDuplicados (borraDuplicados xs)" | + | using HI by simp |
− | + | then have "¬ estaEn a (borraDuplicados xs) ∧ | |
− | then have " sinDuplicados (a#borraDuplicados xs)" by simp | + | sinDuplicados (borraDuplicados xs)" |
− | then show " sinDuplicados (borraDuplicados(a #xs))" by simp | + | by (simp add: estaEn_borraDuplicados) |
− | qed | + | then have " sinDuplicados (a#borraDuplicados xs)" by simp |
+ | then show " sinDuplicados (borraDuplicados(a #xs))" by simp | ||
+ | qed | ||
qed | qed | ||
− | (* ivamenjim migtermor crigomgom rubgonmar fraortmoy marpoldia1 ferrenseg bowma juacabsou serrodcal josgarsan pabrodmac dancorgar jeamacpov *) | + | (* ivamenjim migtermor crigomgom rubgonmar fraortmoy marpoldia1 |
− | + | ferrenseg bowma juacabsou serrodcal josgarsan pabrodmac dancorgar | |
− | lemma | + | jeamacpov lucnovdos antsancab1 *) |
+ | lemma sinDuplicados_borraDuplicados_2b: | ||
"sinDuplicados (borraDuplicados xs)" | "sinDuplicados (borraDuplicados xs)" | ||
proof (induct xs) | proof (induct xs) | ||
Línea 771: | Línea 806: | ||
proof (cases) | proof (cases) | ||
assume "estaEn a xs" | assume "estaEn a xs" | ||
− | then show "sinDuplicados (borraDuplicados (a # xs))" using HI by simp | + | then show "sinDuplicados (borraDuplicados (a # xs))" |
+ | using HI by simp | ||
next | next | ||
assume "¬(estaEn a xs)" | assume "¬(estaEn a xs)" | ||
− | then show "sinDuplicados (borraDuplicados (a # xs))" using HI by (simp add: estaEn_borraDuplicados) | + | then show "sinDuplicados (borraDuplicados (a # xs))" |
+ | using HI by (simp add: estaEn_borraDuplicados) | ||
qed | qed | ||
qed | qed | ||
(* anaprarod paupeddeg*) | (* anaprarod paupeddeg*) | ||
− | lemma | + | lemma sinDuplicados_borraDuplicados_2c: |
"sinDuplicados (borraDuplicados xs)" (is "?P xs") | "sinDuplicados (borraDuplicados xs)" (is "?P xs") | ||
proof (induct xs) | proof (induct xs) | ||
Línea 788: | Línea 825: | ||
show "?P (x#xs)" | show "?P (x#xs)" | ||
proof (cases) | proof (cases) | ||
− | + | assume c1: "estaEn x xs" | |
− | + | then show "sinDuplicados (borraDuplicados (x#xs))" using HI by simp | |
next | next | ||
− | + | assume c2: "¬ estaEn x xs" | |
− | + | then have "sinDuplicados (borraDuplicados (x#xs)) = | |
− | + | sinDuplicados (x#borraDuplicados xs)" by simp | |
− | + | also have "…= (¬estaEn x (borraDuplicados xs) ∧ | |
− | + | sinDuplicados (borraDuplicados xs))" by simp | |
− | + | also have "… = (¬estaEn x (borraDuplicados xs))" using HI by simp | |
− | + | also have "… = (¬(estaEn x xs))" | |
− | + | by (simp add:estaEn_borraDuplicados) | |
+ | also have "… = True" using c2 by simp | ||
+ | finally show "?P (x#xs)" by simp | ||
+ | qed | ||
qed | qed | ||
(* danrodcha *) | (* danrodcha *) | ||
− | lemma | + | lemma sinDuplicados_borraDuplicados_2d: |
"sinDuplicados (borraDuplicados xs)" (is "?P xs") | "sinDuplicados (borraDuplicados xs)" (is "?P xs") | ||
proof (induct xs) | proof (induct xs) | ||
Línea 812: | Línea 852: | ||
case True | case True | ||
then have 1: "sinDuplicados (borraDuplicados (x#xs)) | then have 1: "sinDuplicados (borraDuplicados (x#xs)) | ||
− | = sinDuplicados (borraDuplicados xs)" by (simp add: estaEn_borraDuplicados_2) | + | = sinDuplicados (borraDuplicados xs)" |
+ | by (simp add: estaEn_borraDuplicados_2) | ||
show "?P (x#xs)" using HI 1 by simp | show "?P (x#xs)" using HI 1 by simp | ||
next | next | ||
Línea 820: | Línea 861: | ||
also have "… = (¬ (estaEn x (borraDuplicados xs)) ∧ | also have "… = (¬ (estaEn x (borraDuplicados xs)) ∧ | ||
sinDuplicados (borraDuplicados xs))" by simp | sinDuplicados (borraDuplicados xs))" by simp | ||
− | also have "… = True" using `¬ estaEn x xs` HI by (simp add:estaEn_borraDuplicados) | + | also have "… = True" using `¬ estaEn x xs` |
+ | using HI by (simp add:estaEn_borraDuplicados) | ||
finally show "?P (x#xs)" by simp | finally show "?P (x#xs)" by simp | ||
qed | qed | ||
Línea 832: | Línea 874: | ||
*} | *} | ||
− | (*crigomgom rubgonmar ivamenjim wilmorort pablucoto migtermor | + | (* crigomgom rubgonmar ivamenjim wilmorort pablucoto migtermor |
− | anaprarod fraortmoy ferrenseg marpoldia1 bowma danrodcha juacabsou paupeddeg manmorjim1 serrodcal josgarsan pabrodmac lucnovdos dancorgar jeamacpov *) | + | anaprarod fraortmoy ferrenseg marpoldia1 bowma danrodcha juacabsou |
+ | paupeddeg manmorjim1 serrodcal josgarsan pabrodmac lucnovdos | ||
+ | dancorgar jeamacpov marcarmor13 antsancab1 *) | ||
lemma "borraDuplicados (rev xs) = rev (borraDuplicados xs)" | lemma "borraDuplicados (rev xs) = rev (borraDuplicados xs)" | ||
quickcheck | quickcheck |
Revisión actual del 13:11 16 jul 2018
chapter {* R5: Eliminación de duplicados *}
theory R5_Eliminacion_de_duplicados
imports Main
begin
text {*
---------------------------------------------------------------------
Ejercicio 1. Definir la funcion primitiva recursiva
estaEn :: 'a ⇒ 'a list ⇒ bool
tal que (estaEn x xs) se verifica si el elemento x está en la lista
xs. Por ejemplo,
estaEn (2::nat) [3,2,4] = True
estaEn (1::nat) [3,2,4] = False
---------------------------------------------------------------------
*}
(* crigomgom rubgonmar bowma wilmorort pablucoto serrodcal
anaprarod migtermor paupeddeg fraortmoy marpoldia1
danrodcha manmorjim1 jeamacpov marcarmor13*)
fun estaEn :: "'a ⇒ 'a list ⇒ bool" where
"estaEn _ [] = False"
| "estaEn x (a#xs) = ((a = x) ∨ (estaEn x xs))"
value "estaEn (2::nat) [3,2,4] = True"
value "estaEn (1::nat) [3,2,4] = False"
(* ivamenjim ferrenseg josgarsan juacabsou dancorgar pabrodmac lucnovdos
fracorjim1 antsancab1 *)
(* Igual que la anterior pero con x en lugar de _ en el caso base *)
fun estaEn1 :: "'a ⇒ 'a list ⇒ bool" where
"estaEn1 x [] = False"
| "estaEn1 x (a#xs) = ((x=a) ∨ estaEn1 x xs)"
value "estaEn1 (2::nat) [3,2,4] = True"
value "estaEn1 (1::nat) [3,2,4] = False"
(* wilmorort *)
(* reutilizando la funcion "algunos" de R4.thy*)
fun algunos :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where
"algunos p [] = False"
| "algunos p (x#xs) = (p x ∨ algunos p xs)"
fun estaEn2 :: "'a ⇒ 'a list ⇒ bool" where
"estaEn2 a xs = algunos (λx. x = a) xs"
value "estaEn2 (2::nat) [3,2,4] = True"
value "estaEn2 (1::nat) [3,2,4] = False"
text {*
---------------------------------------------------------------------
Ejercicio 2. Definir la función primitiva recursiva
sinDuplicados :: 'a list ⇒ bool
tal que (sinDuplicados xs) se verifica si la lista xs no contiene
duplicados. Por ejemplo,
sinDuplicados [1::nat,4,2] = True
sinDuplicados [1::nat,4,2,4] = False
---------------------------------------------------------------------
*}
(* crigomgom rubgonmar ivamenjim wilmorort bowma pablucoto
serrodcal anaprarod migtermor paupeddeg fraortmoy marpoldia1
ferrenseg josgarsan danrodcha manmorjim1 juacabsou dancorgar
pabrodmac lucnovdos jeamacpov marcarmor13 antsancab1 *)
fun sinDuplicados :: "'a list ⇒ bool" where
"sinDuplicados [] = True"
| "sinDuplicados (x#xs) = (¬ estaEn x xs ∧ sinDuplicados xs)"
value "sinDuplicados [1::nat,4,2] = True"
value "sinDuplicados [1::nat,4,2,4] = False"
(* fracorjim1 - La versión anterior no prueba el segundo enunciado. La
que propongo demuestra ambos. *)
fun sinDuplicados1 :: "'a list ⇒ bool" where
"sinDuplicados1 [] = True"
| "sinDuplicados1 (x#xs) = (¬(estaEn x xs ∧ sinDuplicados xs))"
value "sinDuplicados1 [1::nat,4,2] = True"
value "sinDuplicados1 [1::nat,4,2,4] = False"
(* Comentario: La definición sinDuplicados1 no cumple el segundo
ejemplo. *)
(* paupeddeg *)
(* Utilizando la función ∉ de Isabelle *)
fun sinDuplicados2 :: "'a list ⇒ bool" where
"sinDuplicados2 [] = True"
| "sinDuplicados2 (a#xs) = ((a ∉ set xs) ∧ sinDuplicados2 xs ) "
(* Comentario: Uso de ∉ y set *)
text {*
---------------------------------------------------------------------
Ejercicio 3. Definir la función primitiva recursiva
borraDuplicados :: 'a list ⇒ bool
tal que (borraDuplicados xs) es la lista obtenida eliminando los
elementos duplicados de la lista xs. Por ejemplo,
borraDuplicados [1::nat,2,4,2,3] = [1,4,2,3]
Nota: La función borraDuplicados es equivalente a la predefinida
remdups.
---------------------------------------------------------------------
*}
(* crigomgom rubgonmar wilmorort bowma pablucoto serrodcal
anaprarod migtermor paupeddeg fraortmoy marpoldia1 ferrenseg
josgarsan danrodcha juacabsou dancorgar manmorjim1 pabrodmac
lucnovdos jeamacpov marcarmor13 antsancab1 *)
fun borraDuplicados :: "'a list ⇒ 'a list" where
"borraDuplicados [] = []"
| "borraDuplicados (x#xs) = (if estaEn x xs
then borraDuplicados xs
else x#borraDuplicados xs)"
value "borraDuplicados0 [1::nat,2,4,2,3] = [1,4,2,3]"
(* rubgonmar *)
(* Otra forma Sin usar if
Utilizando case aunque se le sacaría más partido con más de 2 casos *)
fun borraDuplicados1 :: "'a list ⇒ 'a list" where
"borraDuplicados1 [] = []"
| "borraDuplicados1 (x#xs) = (case estaEn x xs of
False => x#borraDuplicados1 xs
| True => borraDuplicados1 xs )"
value "borraDuplicados1 [1::nat,2,4,2,3] = [1,4,2,3]"
(* rubgonmar *)
(* Otra forma utilizando let *)
fun borraDuplicados2 :: "'a list ⇒ 'a list" where
"borraDuplicados2 [] = []"
| "borraDuplicados2 (x#xs) =
(let condicion = estaEn x xs::bool in
if condicion
then borraDuplicados2 xs
else x # borraDuplicados2 xs)"
value "borraDuplicados2 [1::nat,2,4,2,3] = [1,4,2,3]"
(* ivamenjim *)
(* Utilizando la negación primero *)
fun borraDuplicados3 :: "'a list ⇒ 'a list" where
"borraDuplicados3 [] = []"
| "borraDuplicados3 (x#xs) = (if ¬(estaEn x xs)
then (x#(borraDuplicados3 xs))
else borraDuplicados3 xs)"
value "borraDuplicados3 [1::nat,2,4,2,3] = [1,4,2,3]"
(* fracorjim1. Utilizo un acumulador para optimizar la eficiencia *)
fun borraDuplicadosAc :: "'a list ⇒ 'a list ⇒ 'a list" where
"borraDuplicadosAc [] ys = ys"
| "borraDuplicadosAc (x#xs) ys = (if (estaEn x ys)
then (borraDuplicadosAc xs ys)
else (borraDuplicadosAc xs (x#ys)))"
(* fracorjim1. Uso un caso base *)
fun borraDuplicados4 :: "'a list ⇒ 'a list" where
"borraDuplicados4 xs = (if (sinDuplicados xs)
then xs
else borraDuplicadosAc xs [])"
value "borraDuplicados4 [1::nat,2,4,2,3] = [1,4,2,3]"
(* Comentario: Falla en el ejemplo anterior. Su valor es [3,4,2,1] *)
text {*
---------------------------------------------------------------------
Ejercicio 4.1. Demostrar o refutar automáticamente
length (borraDuplicados xs) ≤ length xs
---------------------------------------------------------------------
*}
(* crigomgom anaprarod ferrenseg *)
lemma length_borraDuplicados:
"length (borraDuplicados xs) ≤ length xs"
by (induct xs, simp_all)
(* Comentario: Falla para borraDuplicados1. *)
(* rubgonmar wilmorort pablucoto serrodcal migtermor paupeddeg
fraortmoy marpoldia1 danrodcha juacabsou dancorgar josgarsan
pabrodmac lucnovdos antsancab1 *)
lemma length_borraDuplicados2:
"length ( borraDuplicados xs ) ≤ length xs"
by (induct xs) auto
(* manmorjim1 marcarmor13 *)
(* soy de ponerlo mejor por pasos *)
lemma length_borraDuplicados3:
"length ( borraDuplicados xs ) ≤ length xs"
apply (induct xs)
apply auto
done
(* ivamenjim *)
(* Demostrando objetivo a objetivo *)
lemma length_borraDuplicados4:
"length (borraDuplicados xs) ≤ length xs"
apply (induct xs)
apply simp
apply auto
done
(* bowma anaprarod *)
lemma length_borraDuplicados5:
"length (borraDuplicados xs) ≤ length xs"
apply (induct xs)
apply (simp, simp) (* creo que es mejor poner aquí simp_all *)
done
(* ferrenseg *)
lemma length_borraDuplicados6:
"length (borraDuplicados xs) ≤ length xs"
by (induct xs) simp_all (* Creo que se puede poner simp_all fuera de
paréntesis *)
text {*
---------------------------------------------------------------------
Ejercicio 4.2. Demostrar o refutar detalladamente
length (borraDuplicados xs) ≤ length xs
---------------------------------------------------------------------
*}
(* crigomgom *)
lemma length_borraDuplicados_2:
"length (borraDuplicados xs) ≤ length xs"
proof (induct xs)
show "length (borraDuplicados []) ≤ length []" by simp
next
fix x xs
assume HI: "length (borraDuplicados xs) ≤ length xs"
show "length (borraDuplicados (x#xs)) ≤ length (x#xs)"
proof (cases)
assume "estaEn x xs"
then have "length (borraDuplicados (x#xs)) =
length (borraDuplicados xs)" by simp
also have "... ≤ length xs" using HI by simp
also have "... ≤ length (x#xs)" by simp
finally show "length (borraDuplicados (x#xs)) ≤ length (x#xs)"
by simp
next
assume "(¬ estaEn x xs)"
then have "length (borraDuplicados (x#xs)) =
length (x#borraDuplicados xs)" by simp
also have "... = 1 + length (borraDuplicados xs)" by simp
also have "... ≤ 1 + length xs" using HI by simp
also have "... = length (x#xs)" by simp
finally show "length (borraDuplicados (x#xs)) ≤ length (x#xs)"
by simp
qed
qed
(* ivamenjim wilmorort ferrenseg rubgonmar juacabsou dancorgar
josgarsan lucnovdos *)
lemma length_borraDuplicados_2b:
"length (borraDuplicados xs) ≤ length xs"
proof (induct xs)
show "length (borraDuplicados []) ≤ length []" by simp
next
fix a xs
assume HI: "length (borraDuplicados xs) ≤ length xs"
have "length (borraDuplicados (a # xs)) ≤
1+length (borraDuplicados xs)" by simp
also have "... ≤ 1+length xs" using HI by simp
finally show "length (borraDuplicados (a # xs)) ≤ length (a # xs)"
by simp
qed
(* serrodcal anaprarod danrodcha *)
lemma length_borraDuplicados_2c:
"length (borraDuplicados xs) ≤ length xs" (is "?P xs")
proof (induct xs)
show "?P []" by simp
next
fix a xs
assume HI: "?P xs"
have "length (borraDuplicados (a # xs)) ≤
1+length (borraDuplicados xs)" by simp
also have "... ≤ 1+length xs" using HI by simp
finally show "?P (a # xs)" by simp
qed
(* pablucoto jeamacpov marcarmor13*)
lemma length_borraDuplicados_2d:
"length (borraDuplicados xs) ≤ length xs"
proof(induct xs)
show "length (borraDuplicados []) ≤ length [] " by simp
next
fix a xs
assume HI: " length (borraDuplicados xs) ≤ length xs "
have "length (borraDuplicados (a # xs)) ≤
1 + length(borraDuplicados xs)" by simp
also have "... ≤ 1 + length xs" using HI by simp
also have "... ≤ length (a#xs)" by simp
finally show "length (borraDuplicados (a # xs)) ≤ length (a # xs) "
by simp
qed
(* bowma *)
lemma length_borraDuplicados_2f:
"length (borraDuplicados xs) ≤ length xs" (is "?p xs")
proof (induct xs)
show "length (borraDuplicados []) ≤ length []" by simp
next
fix a xs
assume HI: "?p xs"
have c1: "1+length xs = length (a#xs)" by simp
also have "length(borraDuplicados (a#xs)) ≤
1 + length(borraDuplicados xs)" by simp
also have "... ≤ 1+length xs" using HI by simp
then show "length(borraDuplicados (a#xs)) ≤ length (a#xs)"
using c1 by simp
(* ¿Aquí porqué no puedo usar "finally show "?p (a # xs)" using c1 by simp?
Y porque no puedo añadir "finally show "?p (a # xs)" by simp al final? *)
qed
(* Comentario: Responder la pregunta. *)
(* migtermor *)
lemma length_borraDuplicados_2g:
"length (borraDuplicados xs) ≤ length xs" (is "?P xs")
proof (induct xs)
show "?P []" by simp
next
fix a xs
assume HI: "?P xs"
have "length (borraDuplicados (a#xs)) ≤ (length (a#xs))"
proof (cases)
assume "(estaEn a xs)"
then have Aux: "length (borraDuplicados (a#xs)) =
length (borraDuplicados xs)" by simp
also have "… ≤ length (a#xs)" using HI by simp
then show "length (borraDuplicados (a#xs)) ≤ (length (a#xs))"
using Aux by simp
next
assume "¬ (estaEn a xs)"
then have Aux: "length (borraDuplicados (a#xs)) =
1+ length (borraDuplicados xs)" by simp
also have "… ≤ length (a#xs)" using HI by simp
then show "length (borraDuplicados (a#xs)) ≤ (length (a#xs))"
using Aux by simp
qed
then show "?P (a#xs)" by simp
qed
(* paupeddeg marpoldia1 pabrodmac*)
lemma length_borraDuplicados_2h:
"length (borraDuplicados xs) ≤ length xs"
proof (induct xs)
show "length (borraDuplicados []) ≤ length []" by simp
next
fix a xs
assume HI: "length (borraDuplicados xs) ≤ length xs"
have "length (borraDuplicados (a # xs)) ≤
length [a] + length (borraDuplicados xs) " by simp
also have "... ≤ 1 + length (borraDuplicados xs)" by simp
also have "... ≤ 1 + length xs" using HI by simp
finally show "length (borraDuplicados (a # xs)) ≤
length (a # xs)" by simp
qed
(* fraortmoy *)
(* muy parecida a alguna anterior, pero yo dí más pasos *)
lemma length_borraDuplicados_2i:
"length (borraDuplicados xs) ≤ length xs"
proof (induct xs)
show "length (borraDuplicados []) ≤ length []" by simp
next
fix a xs
assume H1: "length (borraDuplicados xs) ≤ length xs"
have "length (borraDuplicados (a # xs)) ≤
length(borraDuplicados [a])+length (borraDuplicados xs)"
by simp
also have "… ≤ 1 + length (borraDuplicados xs)" by simp
also have "… ≤ 1 + length xs" using H1 by simp
finally show "length (borraDuplicados (a # xs)) ≤ length (a # xs)"
by simp
qed
(* antsancab1 *)
(* En este ejercicio probé a mantener el elemento 'a' dentro del métodos length y funciona
Para no tener que hacer 1 + length xs *)
(* Duda:
¿Por qué aparece este mensaje en Isabelle al asumir la hipótesis de inducción?
Introduced fixed type variable(s): 'b in "xsa__" *)
lemma length_borraDuplicados_2j: "length (borraDuplicados xs) ≤ length xs"
proof (induct xs)
show "length (borraDuplicados []) ≤ length []" by simp
next
fix a xs
assume HI: "length (borraDuplicados xs) ≤ length xs"
have "length (borraDuplicados (a # xs)) ≤ length (a # borraDuplicados (xs))" by simp
also have "... ≤ length (a # xs)" using HI by simp
finally show "length (borraDuplicados (a # xs)) ≤ length (a # xs) " by simp
qed
text {*
---------------------------------------------------------------------
Ejercicio 5.1. Demostrar o refutar automáticamente
estaEn a (borraDuplicados xs) = estaEn a xs
---------------------------------------------------------------------
*}
(* crigomgom rubgonmar wilmorort pablucoto serrodcal bowma
migtermor fraortmoy marpoldia1 ferrenseg danrodcha juacabsou
paupeddeg pabrodmac lucnovdos dancorgar jeamacpov marcarmor13 antsancab1 *)
lemma estaEn_borraDuplicados:
"estaEn a (borraDuplicados xs) = estaEn a xs"
by (induct xs) auto
(* ivamenjim manmorjim1 *)
lemma estaEn_borraDuplicados2:
"estaEn a (borraDuplicados xs) = estaEn a xs"
apply (induct xs)
apply auto
done
(* anaprarod *)
lemma estaEn_borraDuplicados3:
"estaEn a (borraDuplicados xs) = estaEn a xs"
by (induct xs, simp_all, blast)
(* anaprarod *)
lemma estaEn_borraDuplicados4:
"estaEn a (borraDuplicados xs) = estaEn a xs"
apply (induct xs)
apply (cases "estaEn x xs")
apply (simp_all)
apply blast
done
(* bowma *)
lemma estaEn_borraDuplicados5:
"estaEn a (borraDuplicados xs) = estaEn a xs"
apply (induct xs)
apply simp
apply (simp, blast)
done
text {*
---------------------------------------------------------------------
Ejercicio 5.2. Demostrar o refutar detalladamente
estaEn a (borraDuplicados xs) = estaEn a xs
Nota: Para la demostración de la equivalencia se puede usar
proof (rule iffI)
La regla iffI es
⟦P ⟹ Q ; Q ⟹ P⟧ ⟹ P = Q
---------------------------------------------------------------------
*}
(* wilmorort *)
lemma estaEn_borraDuplicados_2:
"estaEn a (borraDuplicados xs) = estaEn a xs"
proof (induct xs)
show "estaEn a (borraDuplicados []) = estaEn a []" by simp
next
fix b xs
assume HI: "estaEn a (borraDuplicados xs) = estaEn a xs"
show "estaEn a (borraDuplicados (b#xs)) = estaEn a (b#xs)"
proof (rule iffI)
assume H1: "estaEn a (borraDuplicados (b#xs))"
show "estaEn a (b#xs)"
proof (cases)
assume "estaEn b xs"
then have "estaEn a (borraDuplicados xs)" using H1 by simp
then have "estaEn a xs" using HI by simp
then show "estaEn a (b#xs)" by simp
next
assume "¬ estaEn b xs"
then have "estaEn a (b#(borraDuplicados xs))" using H1 by simp
then have "a=b ∨ (estaEn a (borraDuplicados xs))" by simp
then have " a=b ∨ (estaEn a xs)" using HI by simp
then show "estaEn a (b#xs)" by simp
qed
next
assume H2: "estaEn a (b#xs)"
show "estaEn a (borraDuplicados (b#xs))"
proof (cases)
assume "a=b"
then have "estaEn b (borraDuplicados xs) = estaEn b xs"
using HI by simp
then have "(estaEn b xs ⟶ estaEn b (borraDuplicados xs)) ∧
(¬ estaEn b xs ⟶ estaEn b (b # borraDuplicados xs))"
by simp
then have "estaEn b (borraDuplicados (b#xs))" by simp
then show "estaEn a (borraDuplicados (b#xs))" using `a=b` by simp
next
assume "a≠b"
then have "estaEn a (b#xs)" using H2 by simp
then have "a = b ∨ estaEn a xs" by simp
then have "False ∨ estaEn a xs " using `a≠b` by simp
then have "estaEn a xs" by simp
then have "estaEn a (borraDuplicados xs)" using HI by simp
then show "estaEn a (borraDuplicados (b#xs))" using `a≠b` by simp
qed
qed
qed
(* Comentario: Tiene pasos incompletos.*)
(* anaprarod marpoldia1 ferrenseg juacabsou *)
lemma estaEn_borraDuplicados_2b:
"estaEn a (borraDuplicados xs) = estaEn a xs" (is "?P xs")
proof (induct xs)
show "?P []" by simp
next
fix x xs
assume HI: "?P xs"
show "?P (x#xs)"
proof (cases)
assume "estaEn x xs"
then have "estaEn a (borraDuplicados (x#xs)) =
estaEn a (borraDuplicados xs)" by simp
also have "...= estaEn a xs" using HI by simp
finally show "?P (x#xs)" by auto
next
assume "¬estaEn x xs"
then have "estaEn a (borraDuplicados (x#xs)) =
estaEn a (x#borraDuplicados xs)" by simp
also have "...= (x = a ∨ estaEn a (borraDuplicados xs))" by simp
finally show "?P (x#xs)" using HI by simp
qed
qed
(* migtermor *)
lemma estaEn_borraDuplicados_2c:
"estaEn a (borraDuplicados xs) = estaEn a xs" (is "?P xs")
proof (induct xs)
show "?P []" by simp
next
fix aa xs
assume HI: "?P xs"
have P1: "estaEn a (borraDuplicados (aa#xs)) = estaEn a (aa#xs)"
proof (cases)
assume C1: "(estaEn aa xs)"
have "estaEn a (borraDuplicados (aa#xs)) =
estaEn a (borraDuplicados xs)"
using C1 by simp
also have P3: "… = estaEn a xs" using HI by simp
also have "… = estaEn a (aa#xs)"
proof (cases)
assume "(a=aa)"
then show "estaEn a xs = estaEn a (aa#xs)" using C1 by simp
next
assume "¬(a=aa)"
then show "estaEn a xs = estaEn a (aa#xs)" by simp
qed
then show "estaEn a (borraDuplicados (aa#xs)) = estaEn a (aa#xs)"
using P3 by simp
next
assume C2: "¬(estaEn aa xs)"
then show "estaEn a (borraDuplicados (aa#xs)) =
estaEn a (aa#xs)" using HI by simp
qed
also have Conc: "estaEn a (borraDuplicados (aa#xs)) = estaEn a (aa#xs)"
using P1 by simp
finally show "?P (aa#xs)" using Conc by simp
qed
(* crigomgom paupeddeg pabrodmac marcarmor13*)
lemma estaEn_borraDuplicados_2d:
"estaEn a (borraDuplicados xs) = estaEn a xs"
proof (induct xs)
show "estaEn a (borraDuplicados []) = estaEn a []" by simp
next
fix x xs
assume HI: "estaEn a (borraDuplicados xs) = estaEn a xs"
show "estaEn a (borraDuplicados (x#xs)) = estaEn a (x#xs)"
proof (rule iffI)
assume a1: "estaEn a (borraDuplicados (x#xs))"
show "estaEn a (x#xs)"
proof (cases)
assume "estaEn x xs"
then have "estaEn a (borraDuplicados xs)" using a1 by simp
then have "estaEn a xs" using HI by simp
then show "estaEn a (x#xs)" by simp
next
assume "¬ estaEn x xs"
then have "estaEn a (x#(borraDuplicados xs))" using a1 by simp
then have " x=a ∨ (estaEn a (borraDuplicados xs))" by simp
then have " x=a ∨ (estaEn a xs)" using HI by simp
then show "estaEn a (x#xs)" by simp
qed
next
assume a2: "estaEn a (x#xs)"
show "estaEn a (borraDuplicados (x#xs))"
proof (cases)
assume "a=x"
then show "estaEn a (borraDuplicados (x#xs))" using HI by simp
next
assume b1: "a≠x"
then have "estaEn a (x#xs)" using a2 by simp
then have "x = a ∨ estaEn a xs" by simp
then have "estaEn a xs " using b1 by simp
then have "estaEn a (borraDuplicados xs)" using HI by simp
then show "estaEn a (borraDuplicados (x#xs))" using b1 by simp
qed
qed
qed
(* rubgonmar jeamacpov *)
lemma estaEn_borraDuplicados_2e:
"estaEn a ( borraDuplicados xs ) = estaEn a xs"
proof (induct xs)
show "estaEn a (borraDuplicados []) = estaEn a []" by simp
next
fix x
fix xs
assume HI: "estaEn a (borraDuplicados xs) = estaEn a xs"
show "estaEn a (borraDuplicados (x#xs)) = estaEn a (x#xs)"
proof (rule iffI) (* usamos proof de la regla dada iffI*)
assume cprim: "estaEn a (borraDuplicados (x#xs))"
show "estaEn a (x#xs)"
proof (cases)
assume "estaEn x xs"
then show "estaEn a (x#xs)" using cprim HI by simp
next
assume "¬ estaEn x xs"
then show "estaEn a (x#xs)" using cprim HI by simp
qed
next
assume cseg: "estaEn a (x#xs)"
show "estaEn a (borraDuplicados (x#xs))"
proof (cases)
assume "a=x"
then show "estaEn a (borraDuplicados (x#xs))" using HI by auto
next
assume "a≠x"
then show "estaEn a (borraDuplicados (x#xs))" using `a≠x`
cseg HI by simp
qed
qed
qed
(*
Aplico la regla iffI:
⟦P ⟹ Q ; Q ⟹ P⟧ ⟹ P = Q
Así:
[estaEn a (borraDuplicados (x # xs))
⟹ estaEn a (x # xs); estaEn a (x # xs)
⟹ estaEn a (borraDuplicados (x # xs))]
⟹ estaEn a (borraDuplicados (x # xs)) = estaEn a (x # xs)
*)
(* bowma ivamenjim *)
lemma estaEn_borraDuplicados_2f:
"estaEn a (borraDuplicados xs) = estaEn a xs" (is "?p xs")
proof (induct xs)
show "?p []" by simp
next
fix x xs
assume HI: "?p xs"
show "?p (x#xs)"
proof (cases)
assume H1:"estaEn x xs"
then have "estaEn a (borraDuplicados (x#xs)) =
estaEn a (borraDuplicados xs)" by simp
also have "... = estaEn a xs" using HI by simp
also have "... = estaEn a (x#xs)"
proof(cases)
assume "x=a"
then show "estaEn a xs = estaEn a (x#xs)" using H1 by simp
next
assume "x≠a"
then show "estaEn a xs = estaEn a (x#xs)" by simp
qed
finally show "?p (x#xs)" by simp
next
assume H2:"¬estaEn x xs"
then have "estaEn a (borraDuplicados (x#xs)) =
estaEn a (x#borraDuplicados xs)" by simp
also have "... = ((x=a) ∨ estaEn a (borraDuplicados xs))" by simp
also have "... = ((x=a) ∨ estaEn a xs)" using HI by simp
also have "... = estaEn a (x#xs)" by simp
finally show "?p (x#xs)" by simp
qed
oops
(* Comentario: Demostración incompleta. *)
(* danrodcha pablucoto *)
(* es como la de ruben pero con diferencias de estilo *)
lemma estaEn_borraDuplicados_2g:
"estaEn a (borraDuplicados xs) = estaEn a xs" (is "?P xs")
proof (induct xs)
show "?P []" by simp
next
fix x xs assume HI: "?P xs"
show "?P (x#xs)"
proof (rule iffI)
assume H1: "estaEn a (borraDuplicados (x # xs))"
show "estaEn a (x#xs)"
proof (cases "estaEn x xs")
case True
then show "estaEn a (x#xs)" using H1 HI by simp
next
case False
then show "estaEn a (x#xs)" using H1 HI by simp
qed
next
assume H2: "estaEn a (x#xs)"
show "estaEn a (borraDuplicados (x # xs))"
proof (cases "x=a")
case True
then show "estaEn a (borraDuplicados (x # xs))" using HI by simp
next
case False
then show "estaEn a (borraDuplicados (x # xs))" using H2 HI
by simp
qed
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 6.1. Demostrar o refutar automáticamente
sinDuplicados (borraDuplicados xs)
---------------------------------------------------------------------
*}
(* ivamenjim wilmorort serrodcal crigomgom anaprarod fraortmoy
marpoldia1 ferrenseg danrodcha juacabsou paupeddeg josgarsan
pabrodmac dancorgar jeamacpov rubgonmar marcarmor13 *)
lemma sinDuplicados_borraDuplicados:
"sinDuplicados (borraDuplicados xs)"
by (induct xs) (auto simp add: estaEn_borraDuplicados)
(* migtermor bowma *)
lemma sinDuplicados_borraDuplicados_2:
"sinDuplicados (borraDuplicados xs)"
by (induct xs, simp_all add: estaEn_borraDuplicados_2)
(* manmorjim1 no caí en usar la demostración anterior y he realizado
la demostración de que si un elemento no estaba en una lista seguirá
sin estar después de eliminar los duplicados en esa lista... *)
lemma noEsta_tras_borrarDuplicados:
"(¬estaEn x xs) ⟶ (¬estaEn x (borraDuplicados xs))"
apply (induct xs)
apply auto
done
lemma sinDuplicados_borraDuplicados_3:
"sinDuplicados (borraDuplicados xs)"
apply (induct xs)
apply simp
apply (induct xs)
apply auto
apply (simp add: noEsta_tras_borrarDuplicados)
done
(* antsancab1 *)
lemma sinDuplicados_borraDuplicados_4:
"sinDuplicados (borraDuplicados xs)"
apply (induct xs)
apply simp
apply (simp add:estaEn_borraDuplicados)
done
text {*
---------------------------------------------------------------------
Ejercicio 6.2. Demostrar o refutar detalladamente
sinDuplicados (borraDuplicados xs)
---------------------------------------------------------------------
*}
(* wilmorort pablucoto marcarmor13*)
lemma sinDuplicados_borraDuplicados_2a:
"sinDuplicados (borraDuplicados xs)"
proof (induct xs)
show "sinDuplicados (borraDuplicados [])" by simp
next
fix a xs
assume HI: "sinDuplicados (borraDuplicados xs)"
show "sinDuplicados (borraDuplicados (a # xs))"
proof (cases)
assume "estaEn a xs"
then show "sinDuplicados (borraDuplicados (a#xs))" using HI by simp
next
assume"¬ estaEn a xs"
then have "¬ (estaEn a xs) ∧ sinDuplicados (borraDuplicados xs)"
using HI by simp
then have "¬ estaEn a (borraDuplicados xs) ∧
sinDuplicados (borraDuplicados xs)"
by (simp add: estaEn_borraDuplicados)
then have " sinDuplicados (a#borraDuplicados xs)" by simp
then show " sinDuplicados (borraDuplicados(a #xs))" by simp
qed
qed
(* ivamenjim migtermor crigomgom rubgonmar fraortmoy marpoldia1
ferrenseg bowma juacabsou serrodcal josgarsan pabrodmac dancorgar
jeamacpov lucnovdos antsancab1 *)
lemma sinDuplicados_borraDuplicados_2b:
"sinDuplicados (borraDuplicados xs)"
proof (induct xs)
show "sinDuplicados (borraDuplicados [])" by simp
next
fix a xs
assume HI: "sinDuplicados (borraDuplicados xs)"
show "sinDuplicados (borraDuplicados (a # xs))"
proof (cases)
assume "estaEn a xs"
then show "sinDuplicados (borraDuplicados (a # xs))"
using HI by simp
next
assume "¬(estaEn a xs)"
then show "sinDuplicados (borraDuplicados (a # xs))"
using HI by (simp add: estaEn_borraDuplicados)
qed
qed
(* anaprarod paupeddeg*)
lemma sinDuplicados_borraDuplicados_2c:
"sinDuplicados (borraDuplicados xs)" (is "?P xs")
proof (induct xs)
show "?P []" by simp
next
fix x xs
assume HI: "?P xs"
show "?P (x#xs)"
proof (cases)
assume c1: "estaEn x xs"
then show "sinDuplicados (borraDuplicados (x#xs))" using HI by simp
next
assume c2: "¬ estaEn x xs"
then have "sinDuplicados (borraDuplicados (x#xs)) =
sinDuplicados (x#borraDuplicados xs)" by simp
also have "…= (¬estaEn x (borraDuplicados xs) ∧
sinDuplicados (borraDuplicados xs))" by simp
also have "… = (¬estaEn x (borraDuplicados xs))" using HI by simp
also have "… = (¬(estaEn x xs))"
by (simp add:estaEn_borraDuplicados)
also have "… = True" using c2 by simp
finally show "?P (x#xs)" by simp
qed
qed
(* danrodcha *)
lemma sinDuplicados_borraDuplicados_2d:
"sinDuplicados (borraDuplicados xs)" (is "?P xs")
proof (induct xs)
show "?P []" by simp
next
fix x xs assume HI: "?P xs"
show "?P (x#xs)"
proof (cases "estaEn x xs")
case True
then have 1: "sinDuplicados (borraDuplicados (x#xs))
= sinDuplicados (borraDuplicados xs)"
by (simp add: estaEn_borraDuplicados_2)
show "?P (x#xs)" using HI 1 by simp
next
case False
then have "sinDuplicados (borraDuplicados (x#xs))
= sinDuplicados (x#borraDuplicados xs)" by simp
also have "… = (¬ (estaEn x (borraDuplicados xs)) ∧
sinDuplicados (borraDuplicados xs))" by simp
also have "… = True" using `¬ estaEn x xs`
using HI by (simp add:estaEn_borraDuplicados)
finally show "?P (x#xs)" by simp
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 7. Demostrar o refutar:
borraDuplicados (rev xs) = rev (borraDuplicados xs)
---------------------------------------------------------------------
*}
(* crigomgom rubgonmar ivamenjim wilmorort pablucoto migtermor
anaprarod fraortmoy ferrenseg marpoldia1 bowma danrodcha juacabsou
paupeddeg manmorjim1 serrodcal josgarsan pabrodmac lucnovdos
dancorgar jeamacpov marcarmor13 antsancab1 *)
lemma "borraDuplicados (rev xs) = rev (borraDuplicados xs)"
quickcheck
oops
(* ivamenjim: Quickcheck encuentra el siguiente contraejemplo:
xs = [a1, a2, a1]
Por lo que:
· "borraDuplicados (rev xs) = [a2, a1]"
· "rev (borraDuplicados xs) = [a1, a2]" *)
end