Diferencia entre revisiones de «Relación 1»
De Razonamiento automático (2015-16)
Línea 19: | Línea 19: | ||
--"marsoldia2" | --"marsoldia2" | ||
− | fun | + | (* |
− | " | + | fun factorial2 :: "nat ⇒ nat" where |
− | " | + | "factorial2 0 = 1 " | |
+ | "factorial2 n = n * factorial2 (n-1)" | ||
+ | *) | ||
value "factorial 4" -- "24" | value "factorial 4" -- "24" | ||
Línea 44: | Línea 46: | ||
"longitud2 (x#xs) = 1 + longitud2 xs" | "longitud2 (x#xs) = 1 + longitud2 xs" | ||
− | value " | + | value "longitud2 [4,2,5]" -- "= 3" |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 57: | Línea 59: | ||
fun intercambia :: "'a × 'b ⇒ 'b × 'a" where | fun intercambia :: "'a × 'b ⇒ 'b × 'a" where | ||
"intercambia (x,y) = (y,x)" | "intercambia (x,y) = (y,x)" | ||
+ | |||
+ | value "intercambia (u,v)" -- "= (v,u)" | ||
--"marsoldia2" | --"marsoldia2" | ||
− | fun | + | fun intercambia2 :: "'a × 'b ⇒ 'b × 'a" where |
− | " | + | "intercambia2 (x,y) = (snd (x,y),fst (x,y))" |
− | value " | + | value "intercambia2 (u,v)" -- "= (v,u)" |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 92: | Línea 96: | ||
"repite 0 x = []" | | "repite 0 x = []" | | ||
"repite (Suc n) x = x#(repite n x)" | "repite (Suc n) x = x#(repite n x)" | ||
+ | |||
+ | value "repite 3 a" -- "= [a,a,a]" | ||
-- "marsoldia2" | -- "marsoldia2" | ||
− | fun | + | (* |
− | " | + | fun repite2 :: "nat ⇒ 'a ⇒ 'a list" where |
− | " | + | "repite2 0 x = []"| |
+ | "repite2 n x = x # (repite2 (n-1) x)" | ||
+ | *) | ||
− | value " | + | value "repite2 3 a" -- "= [a,a,a]" |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 124: | Línea 132: | ||
"conc2 (x#xs) ys = x#(conc2 xs ys)" | "conc2 (x#xs) ys = x#(conc2 xs ys)" | ||
− | value " | + | value "conc2 [a,d] [b,d,a,c]" -- "= [a,d,b,d,a,c]" |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 136: | Línea 144: | ||
-- "jospalhid" | -- "jospalhid" | ||
fun coge :: "nat ⇒ 'a list ⇒ 'a list" where | fun coge :: "nat ⇒ 'a list ⇒ 'a list" where | ||
− | "coge 0 xs = []" | | + | "coge 0 xs = []" | |
− | "coge n [] = []" | | + | "coge n [] = []" | |
− | "coge (Suc n) xs = hd xs#coge n (tl xs)" | + | "coge (Suc n) xs = (hd xs) # (coge n (tl xs))" |
value "coge 2 [a,c,d,b,e]" -- "= [a,c]" | value "coge 2 [a,c,d,b,e]" -- "= [a,c]" | ||
Línea 144: | Línea 152: | ||
-- "angfraalv" | -- "angfraalv" | ||
fun coge2 :: "nat ⇒ 'a list ⇒ 'a list" where | fun coge2 :: "nat ⇒ 'a list ⇒ 'a list" where | ||
− | "coge2 0 xs = []" | | + | "coge2 0 xs = []" | |
− | "coge2 (Suc n) [] = []" | | + | "coge2 (Suc n) [] = []" | |
− | "coge2 (Suc n) (x#xs) = x#(coge2 n xs)" | + | "coge2 (Suc n) (x#xs) = x # (coge2 n xs)" |
− | --" | + | value "coge2 2 [a,c,d,b,e]" -- "= [a,c]" |
− | |||
− | |||
− | |||
− | |||
− | + | -- "marsoldia2" | |
+ | (* | ||
+ | fun coge3 :: "nat ⇒ 'a list ⇒ 'a list" where | ||
+ | "coge3 0 xs = []" | | ||
+ | "coge3 n [] = []" | | ||
+ | "coge3 n xs = (hd xs) # (coge3 (n-1) (tl xs))" | ||
+ | *) | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 167: | Línea 177: | ||
-- "jospalhid" | -- "jospalhid" | ||
fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where | fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where | ||
− | "elimina 0 xs = xs" | | + | "elimina 0 xs = xs" | |
− | "elimina n [] = []" | | + | "elimina n [] = []" | |
"elimina (Suc n) xs = elimina n (tl xs)" | "elimina (Suc n) xs = elimina n (tl xs)" | ||
Línea 177: | Línea 187: | ||
"elimina2 n xs = inversa (coge (((length xs) - n)::nat) (inversa xs))" | "elimina2 n xs = inversa (coge (((length xs) - n)::nat) (inversa xs))" | ||
− | value " | + | value "elimina2 2 [a,c,d,b,e]" -- "= [d,b,e]" |
+ | |||
+ | -- "marsoldia2" | ||
+ | fun elimina3 :: "nat ⇒ 'a list ⇒ 'a list" where | ||
+ | "elimina3 0 xs = xs"| | ||
+ | "elimina3 n [] = []"| | ||
+ | "elimina3 n xs = elimina3 ( n-1) (tl xs)" | ||
− | + | value "elimina2 2 [a,c,d,b,e]" -- "= [d,b,e]" | |
− | |||
− | |||
− | |||
− | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 197: | Línea 209: | ||
"esVacia [] = True" | | "esVacia [] = True" | | ||
"esVacia xs = False" | "esVacia xs = False" | ||
− | |||
− | |||
− | |||
− | |||
− | |||
value "esVacia []" -- "= True" | value "esVacia []" -- "= True" | ||
value "esVacia [1]" -- "= False" | value "esVacia [1]" -- "= False" | ||
+ | |||
+ | -- "marsoldia2" | ||
+ | fun esVacia2 :: "'a list ⇒ bool" where | ||
+ | "esVacia2 [] = True" | | ||
+ | "esVacia2 [n] = False" | ||
+ | |||
+ | value "esVacia2 []" -- "= True" | ||
+ | value "esVacia2 [1]" -- "= False" | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 244: | Línea 259: | ||
"sum2 (x#xs) = x + sum2 xs" | "sum2 (x#xs) = x + sum2 xs" | ||
− | value " | + | value "sum2 [3,2,5]" -- "= 10" |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 251: | Línea 266: | ||
tal que (map f xs) es la lista obtenida aplicando la función f a los | tal que (map f xs) es la lista obtenida aplicando la función f a los | ||
elementos de xs. Por ejemplo, | elementos de xs. Por ejemplo, | ||
− | map (λx. 2*x) [3,2,5] = [6,4,10] | + | map (λx. 2*x) [3::int,2,5] = [6,4,10] |
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
Línea 259: | Línea 274: | ||
"map f xs = f(hd xs) # map f (tl xs)" | "map f xs = f(hd xs) # map f (tl xs)" | ||
− | value "map (λx. 2*x) [3:: | + | value "map (λx. 2*x) [3::int,2,5]" -- "= [6,4,10]" |
-- "angfraalv" | -- "angfraalv" | ||
Línea 266: | Línea 281: | ||
"map2 f (x#xs) = f(x)#(map2 f xs)" | "map2 f (x#xs) = f(x)#(map2 f xs)" | ||
− | value " | + | value "map2 (λx. 2*x) [3::int,2,5]" -- "= [6,4,10]" |
end | end | ||
</source> | </source> |
Revisión actual del 13:50 1 dic 2015
header {* R1: Programación funcional en Isabelle *}
theory R1
imports Main
begin
text {* ----------------------------------------------------------------
Ejercicio 0. Definir, por recursión, la función
factorial :: nat ⇒ nat
tal que (factorial n) es el factorial de n. Por ejemplo,
factorial 4 = 24
------------------------------------------------------------------- *}
-- "jospalhid angfraalv adacieizq"
fun factorial :: "nat ⇒ nat" where
"factorial 0 = 1" |
"factorial (Suc n) = Suc n * factorial n"
--"marsoldia2"
(*
fun factorial2 :: "nat ⇒ nat" where
"factorial2 0 = 1 " |
"factorial2 n = n * factorial2 (n-1)"
*)
value "factorial 4" -- "24"
text {* ----------------------------------------------------------------
Ejercicio 1. Definir, por recursión, la función
longitud :: 'a list ⇒ nat
tal que (longitud xs) es la longitud de la listas xs. Por ejemplo,
longitud [4,2,5] = 3
------------------------------------------------------------------- *}
-- "jospalhid, marsoldia2"
fun longitud :: "'a list ⇒ nat" where
"longitud [] = 0" |
"longitud xs = 1 + longitud (tl xs)"
value "longitud [4,2,5]" -- "= 3"
-- "angfraalv"
fun longitud2 :: "'a list ⇒ nat" where
"longitud2 [] = 0" |
"longitud2 (x#xs) = 1 + longitud2 xs"
value "longitud2 [4,2,5]" -- "= 3"
text {* ---------------------------------------------------------------
Ejercicio 2. Definir la función
fun intercambia :: 'a × 'b ⇒ 'b × 'a
tal que (intercambia p) es el par obtenido intercambiando las
componentes del par p. Por ejemplo,
intercambia (u,v) = (v,u)
------------------------------------------------------------------ *}
-- "jospalhid angfraalv adacieizq"
fun intercambia :: "'a × 'b ⇒ 'b × 'a" where
"intercambia (x,y) = (y,x)"
value "intercambia (u,v)" -- "= (v,u)"
--"marsoldia2"
fun intercambia2 :: "'a × 'b ⇒ 'b × 'a" where
"intercambia2 (x,y) = (snd (x,y),fst (x,y))"
value "intercambia2 (u,v)" -- "= (v,u)"
text {* ---------------------------------------------------------------
Ejercicio 3. Definir, por recursión, la función
inversa :: 'a list ⇒ 'a list
tal que (inversa xs) es la lista obtenida invirtiendo el orden de los
elementos de xs. Por ejemplo,
inversa [a,d,c] = [c,d,a]
------------------------------------------------------------------ *}
-- "jospalhid angfraalv"
fun inversa :: "'a list ⇒ 'a list" where
-- "se pude usar rev xs para invertir la lista directamente"
"inversa [] = []" |
"inversa xs = last xs # inversa (butlast xs)"
value "inversa [a,d,c]" -- "= [c,d,a]"
text {* ---------------------------------------------------------------
Ejercicio 4. Definir la función
repite :: nat ⇒ 'a ⇒ 'a list
tal que (repite n x) es la lista formada por n copias del elemento
x. Por ejemplo,
repite 3 a = [a,a,a]
------------------------------------------------------------------ *}
-- "jospalhid angfraalv adacieizq"
fun repite :: "nat ⇒ 'a ⇒ 'a list" where
"repite 0 x = []" |
"repite (Suc n) x = x#(repite n x)"
value "repite 3 a" -- "= [a,a,a]"
-- "marsoldia2"
(*
fun repite2 :: "nat ⇒ 'a ⇒ 'a list" where
"repite2 0 x = []"|
"repite2 n x = x # (repite2 (n-1) x)"
*)
value "repite2 3 a" -- "= [a,a,a]"
text {* ---------------------------------------------------------------
Ejercicio 5. Definir la función
conc :: 'a list ⇒ 'a list ⇒ 'a list
tal que (conc xs ys) es la concatención de las listas xs e ys. Por
ejemplo,
conc [a,d] [b,d,a,c] = [a,d,b,d,a,c]
------------------------------------------------------------------ *}
-- "jospalhid"
fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where
"conc [] [] = []" |
"conc [] ys = ys" |
"conc xs [] = xs" |
"conc xs ys = hd xs # conc (tl xs) ys"
value "conc [a,d] [b,d,a,c]" -- "= [a,d,b,d,a,c]"
-- "angfraalv"
fun conc2 :: "'a list ⇒ 'a list ⇒ 'a list" where
"conc2 [] [] = []" |
"conc2 xs [] = xs" |
"conc2 [] ys = ys" |
"conc2 (x#xs) ys = x#(conc2 xs ys)"
value "conc2 [a,d] [b,d,a,c]" -- "= [a,d,b,d,a,c]"
text {* ---------------------------------------------------------------
Ejercicio 6. Definir la función
coge :: nat ⇒ 'a list ⇒ 'a list
tal que (coge n xs) es la lista de los n primeros elementos de xs. Por
ejemplo,
coge 2 [a,c,d,b,e] = [a,c]
------------------------------------------------------------------ *}
-- "jospalhid"
fun coge :: "nat ⇒ 'a list ⇒ 'a list" where
"coge 0 xs = []" |
"coge n [] = []" |
"coge (Suc n) xs = (hd xs) # (coge n (tl xs))"
value "coge 2 [a,c,d,b,e]" -- "= [a,c]"
-- "angfraalv"
fun coge2 :: "nat ⇒ 'a list ⇒ 'a list" where
"coge2 0 xs = []" |
"coge2 (Suc n) [] = []" |
"coge2 (Suc n) (x#xs) = x # (coge2 n xs)"
value "coge2 2 [a,c,d,b,e]" -- "= [a,c]"
-- "marsoldia2"
(*
fun coge3 :: "nat ⇒ 'a list ⇒ 'a list" where
"coge3 0 xs = []" |
"coge3 n [] = []" |
"coge3 n xs = (hd xs) # (coge3 (n-1) (tl xs))"
*)
text {* ---------------------------------------------------------------
Ejercicio 7. Definir la función
elimina :: nat ⇒ 'a list ⇒ 'a list
tal que (elimina n xs) es la lista obtenida eliminando los n primeros
elementos de xs. Por ejemplo,
elimina 2 [a,c,d,b,e] = [d,b,e]
------------------------------------------------------------------ *}
-- "jospalhid"
fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina 0 xs = xs" |
"elimina n [] = []" |
"elimina (Suc n) xs = elimina n (tl xs)"
value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]"
-- "angfraalv"
fun elimina2 :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina2 n xs = inversa (coge (((length xs) - n)::nat) (inversa xs))"
value "elimina2 2 [a,c,d,b,e]" -- "= [d,b,e]"
-- "marsoldia2"
fun elimina3 :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina3 0 xs = xs"|
"elimina3 n [] = []"|
"elimina3 n xs = elimina3 ( n-1) (tl xs)"
value "elimina2 2 [a,c,d,b,e]" -- "= [d,b,e]"
text {* ---------------------------------------------------------------
Ejercicio 8. Definir la función
esVacia :: 'a list ⇒ bool
tal que (esVacia xs) se verifica si xs es la lista vacía. Por ejemplo,
esVacia [] = True
esVacia [1] = False
------------------------------------------------------------------ *}
-- "jospalhid angfraalv"
fun esVacia :: "'a list ⇒ bool" where
"esVacia [] = True" |
"esVacia xs = False"
value "esVacia []" -- "= True"
value "esVacia [1]" -- "= False"
-- "marsoldia2"
fun esVacia2 :: "'a list ⇒ bool" where
"esVacia2 [] = True" |
"esVacia2 [n] = False"
value "esVacia2 []" -- "= True"
value "esVacia2 [1]" -- "= False"
text {* ---------------------------------------------------------------
Ejercicio 9. Definir la función
inversaAc :: 'a list ⇒ 'a list
tal que (inversaAc xs) es a inversa de xs calculada usando
acumuladores. Por ejemplo,
inversaAc [a,c,b,e] = [e,b,c,a]
------------------------------------------------------------------ *}
-- "angfraalv"
fun inversaAcAux :: "'a list ⇒ 'a list ⇒ 'a list" where
-- "no se si he entendido bien la idea de acumular, pero funciona"
"inversaAcAux xs ys = conc ys xs "
fun inversaAc :: "'a list ⇒ 'a list" where
"inversaAc [] = []" |
"inversaAc (x#xs) = inversaAcAux [x] (inversaAc xs)"
value "inversaAc [a,c,b,e]" -- "= [e,b,c,a]"
text {* ---------------------------------------------------------------
Ejercicio 10. Definir la función
sum :: nat list ⇒ nat
tal que (sum xs) es la suma de los elementos de xs. Por ejemplo,
sum [3,2,5] = 10
------------------------------------------------------------------ *}
-- "jospalhid, marsoldia2"
fun sum :: "nat list ⇒ nat" where
"sum [] = 0" |
"sum xs = hd xs + sum (tl xs)"
value "sum [3,2,5]" -- "= 10"
-- "angfraalv"
fun sum2 :: "nat list ⇒ nat" where
"sum2 [] = 0" |
"sum2 (x#xs) = x + sum2 xs"
value "sum2 [3,2,5]" -- "= 10"
text {* ---------------------------------------------------------------
Ejercicio 11. Definir la función
map :: ('a ⇒ 'b) ⇒ 'a list ⇒ 'b list
tal que (map f xs) es la lista obtenida aplicando la función f a los
elementos de xs. Por ejemplo,
map (λx. 2*x) [3::int,2,5] = [6,4,10]
------------------------------------------------------------------ *}
-- "jospalhid"
fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
"map f [] = []" |
"map f xs = f(hd xs) # map f (tl xs)"
value "map (λx. 2*x) [3::int,2,5]" -- "= [6,4,10]"
-- "angfraalv"
fun map2 :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
"map2 f [] = []" |
"map2 f (x#xs) = f(x)#(map2 f xs)"
value "map2 (λx. 2*x) [3::int,2,5]" -- "= [6,4,10]"
end