Diferencia entre revisiones de «Relación 1»
De Razonamiento automático (2015-16)
Línea 92: | Línea 92: | ||
"repite 0 x = []" | | "repite 0 x = []" | | ||
"repite (Suc n) x = x#(repite n x)" | "repite (Suc n) x = x#(repite n x)" | ||
+ | |||
+ | -- "marsoldia2" | ||
+ | fun repite :: "nat ⇒ 'a ⇒ 'a list" where | ||
+ | "repite 0 x =[]"| | ||
+ | "repite n x = x#(repite( n-1) x)" | ||
value "repite 3 a" -- "= [a,a,a]" | value "repite 3 a" -- "= [a,a,a]" | ||
Línea 142: | Línea 147: | ||
"coge2 (Suc n) [] = []" | | "coge2 (Suc n) [] = []" | | ||
"coge2 (Suc n) (x#xs) = x#(coge2 n xs)" | "coge2 (Suc n) (x#xs) = x#(coge2 n xs)" | ||
+ | |||
+ | --"marsoldia2 | ||
+ | |||
+ | fun coge :: "nat ⇒ 'a list ⇒ 'a list" where | ||
+ | "coge 0 xs = []"| | ||
+ | "coge n [] = []"| | ||
+ | "coge n xs = (hd xs)#coge (n-1) (tl xs)" | ||
value "coge 2 [a,c,d,b,e]" -- "= [a,c]" | value "coge 2 [a,c,d,b,e]" -- "= [a,c]" | ||
Línea 166: | Línea 178: | ||
value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]" | value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]" | ||
+ | |||
+ | --"marsoldia2" | ||
+ | fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where | ||
+ | "elimina 0 xs = xs"| | ||
+ | "elimina n [] = []"| | ||
+ | "elimina n xs = elimina ( n-1) (tl xs)" | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 179: | Línea 197: | ||
"esVacia [] = True" | | "esVacia [] = True" | | ||
"esVacia xs = False" | "esVacia xs = False" | ||
+ | |||
+ | --"marsoldia2" | ||
+ | fun esVacia :: "'a list ⇒ bool" where | ||
+ | "esVacia [] = True" | | ||
+ | "esVacia [n] = False" | ||
value "esVacia []" -- "= True" | value "esVacia []" -- "= True" | ||
Línea 209: | Línea 232: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "jospalhid" | + | -- "jospalhid, marsoldia2" |
fun sum :: "nat list ⇒ nat" where | fun sum :: "nat list ⇒ nat" where | ||
"sum [] = 0" | | "sum [] = 0" | |
Revisión del 03:17 1 dic 2015
header {* R1: Programación funcional en Isabelle *}
theory R1
imports Main
begin
text {* ----------------------------------------------------------------
Ejercicio 0. Definir, por recursión, la función
factorial :: nat ⇒ nat
tal que (factorial n) es el factorial de n. Por ejemplo,
factorial 4 = 24
------------------------------------------------------------------- *}
-- "jospalhid angfraalv adacieizq"
fun factorial :: "nat ⇒ nat" where
"factorial 0 = 1" |
"factorial (Suc n) = Suc n * factorial n"
--"marsoldia2"
fun factorial :: "nat ⇒ nat" where
"factorial 0 = 1 " |
"factorial( n) = n*factorial(n-1)"
value "factorial 4" -- "24"
text {* ----------------------------------------------------------------
Ejercicio 1. Definir, por recursión, la función
longitud :: 'a list ⇒ nat
tal que (longitud xs) es la longitud de la listas xs. Por ejemplo,
longitud [4,2,5] = 3
------------------------------------------------------------------- *}
-- "jospalhid, marsoldia2"
fun longitud :: "'a list ⇒ nat" where
"longitud [] = 0" |
"longitud xs = 1 + longitud (tl xs)"
value "longitud [4,2,5]" -- "= 3"
-- "angfraalv"
fun longitud2 :: "'a list ⇒ nat" where
"longitud2 [] = 0" |
"longitud2 (x#xs) = 1 + longitud2 xs"
value "longitud [4,2,5]" -- "= 3"
text {* ---------------------------------------------------------------
Ejercicio 2. Definir la función
fun intercambia :: 'a × 'b ⇒ 'b × 'a
tal que (intercambia p) es el par obtenido intercambiando las
componentes del par p. Por ejemplo,
intercambia (u,v) = (v,u)
------------------------------------------------------------------ *}
-- "jospalhid angfraalv adacieizq"
fun intercambia :: "'a × 'b ⇒ 'b × 'a" where
"intercambia (x,y) = (y,x)"
--"marsoldia2"
fun intercambia :: "'a × 'b ⇒ 'b × 'a" where
"intercambia (x,y) = (snd (x,y),fst (x,y))"
value "intercambia (u,v)" -- "= (v,u)"
text {* ---------------------------------------------------------------
Ejercicio 3. Definir, por recursión, la función
inversa :: 'a list ⇒ 'a list
tal que (inversa xs) es la lista obtenida invirtiendo el orden de los
elementos de xs. Por ejemplo,
inversa [a,d,c] = [c,d,a]
------------------------------------------------------------------ *}
-- "jospalhid angfraalv"
fun inversa :: "'a list ⇒ 'a list" where
-- "se pude usar rev xs para invertir la lista directamente"
"inversa [] = []" |
"inversa xs = last xs # inversa (butlast xs)"
value "inversa [a,d,c]" -- "= [c,d,a]"
text {* ---------------------------------------------------------------
Ejercicio 4. Definir la función
repite :: nat ⇒ 'a ⇒ 'a list
tal que (repite n x) es la lista formada por n copias del elemento
x. Por ejemplo,
repite 3 a = [a,a,a]
------------------------------------------------------------------ *}
-- "jospalhid angfraalv adacieizq"
fun repite :: "nat ⇒ 'a ⇒ 'a list" where
"repite 0 x = []" |
"repite (Suc n) x = x#(repite n x)"
-- "marsoldia2"
fun repite :: "nat ⇒ 'a ⇒ 'a list" where
"repite 0 x =[]"|
"repite n x = x#(repite( n-1) x)"
value "repite 3 a" -- "= [a,a,a]"
text {* ---------------------------------------------------------------
Ejercicio 5. Definir la función
conc :: 'a list ⇒ 'a list ⇒ 'a list
tal que (conc xs ys) es la concatención de las listas xs e ys. Por
ejemplo,
conc [a,d] [b,d,a,c] = [a,d,b,d,a,c]
------------------------------------------------------------------ *}
-- "jospalhid"
fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where
"conc [] [] = []" |
"conc [] ys = ys" |
"conc xs [] = xs" |
"conc xs ys = hd xs # conc (tl xs) ys"
value "conc [a,d] [b,d,a,c]" -- "= [a,d,b,d,a,c]"
-- "angfraalv"
fun conc2 :: "'a list ⇒ 'a list ⇒ 'a list" where
"conc2 [] [] = []" |
"conc2 xs [] = xs" |
"conc2 [] ys = ys" |
"conc2 (x#xs) ys = x#(conc2 xs ys)"
value "conc [a,d] [b,d,a,c]" -- "= [a,d,b,d,a,c]"
text {* ---------------------------------------------------------------
Ejercicio 6. Definir la función
coge :: nat ⇒ 'a list ⇒ 'a list
tal que (coge n xs) es la lista de los n primeros elementos de xs. Por
ejemplo,
coge 2 [a,c,d,b,e] = [a,c]
------------------------------------------------------------------ *}
-- "jospalhid"
fun coge :: "nat ⇒ 'a list ⇒ 'a list" where
"coge 0 xs = []" |
"coge n [] = []" |
"coge (Suc n) xs = hd xs#coge n (tl xs)"
value "coge 2 [a,c,d,b,e]" -- "= [a,c]"
-- "angfraalv"
fun coge2 :: "nat ⇒ 'a list ⇒ 'a list" where
"coge2 0 xs = []" |
"coge2 (Suc n) [] = []" |
"coge2 (Suc n) (x#xs) = x#(coge2 n xs)"
--"marsoldia2
fun coge :: "nat ⇒ 'a list ⇒ 'a list" where
"coge 0 xs = []"|
"coge n [] = []"|
"coge n xs = (hd xs)#coge (n-1) (tl xs)"
value "coge 2 [a,c,d,b,e]" -- "= [a,c]"
text {* ---------------------------------------------------------------
Ejercicio 7. Definir la función
elimina :: nat ⇒ 'a list ⇒ 'a list
tal que (elimina n xs) es la lista obtenida eliminando los n primeros
elementos de xs. Por ejemplo,
elimina 2 [a,c,d,b,e] = [d,b,e]
------------------------------------------------------------------ *}
-- "jospalhid"
fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina 0 xs = xs" |
"elimina n [] = []" |
"elimina (Suc n) xs = elimina n (tl xs)"
value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]"
-- "angfraalv"
fun elimina2 :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina2 n xs = inversa (coge (((length xs) - n)::nat) (inversa xs))"
value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]"
--"marsoldia2"
fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina 0 xs = xs"|
"elimina n [] = []"|
"elimina n xs = elimina ( n-1) (tl xs)"
text {* ---------------------------------------------------------------
Ejercicio 8. Definir la función
esVacia :: 'a list ⇒ bool
tal que (esVacia xs) se verifica si xs es la lista vacía. Por ejemplo,
esVacia [] = True
esVacia [1] = False
------------------------------------------------------------------ *}
-- "jospalhid angfraalv"
fun esVacia :: "'a list ⇒ bool" where
"esVacia [] = True" |
"esVacia xs = False"
--"marsoldia2"
fun esVacia :: "'a list ⇒ bool" where
"esVacia [] = True" |
"esVacia [n] = False"
value "esVacia []" -- "= True"
value "esVacia [1]" -- "= False"
text {* ---------------------------------------------------------------
Ejercicio 9. Definir la función
inversaAc :: 'a list ⇒ 'a list
tal que (inversaAc xs) es a inversa de xs calculada usando
acumuladores. Por ejemplo,
inversaAc [a,c,b,e] = [e,b,c,a]
------------------------------------------------------------------ *}
-- "angfraalv"
fun inversaAcAux :: "'a list ⇒ 'a list ⇒ 'a list" where
-- "no se si he entendido bien la idea de acumular, pero funciona"
"inversaAcAux xs ys = conc ys xs "
fun inversaAc :: "'a list ⇒ 'a list" where
"inversaAc [] = []" |
"inversaAc (x#xs) = inversaAcAux [x] (inversaAc xs)"
value "inversaAc [a,c,b,e]" -- "= [e,b,c,a]"
text {* ---------------------------------------------------------------
Ejercicio 10. Definir la función
sum :: nat list ⇒ nat
tal que (sum xs) es la suma de los elementos de xs. Por ejemplo,
sum [3,2,5] = 10
------------------------------------------------------------------ *}
-- "jospalhid, marsoldia2"
fun sum :: "nat list ⇒ nat" where
"sum [] = 0" |
"sum xs = hd xs + sum (tl xs)"
value "sum [3,2,5]" -- "= 10"
-- "angfraalv"
fun sum2 :: "nat list ⇒ nat" where
"sum2 [] = 0" |
"sum2 (x#xs) = x + sum2 xs"
value "sum [3,2,5]" -- "= 10"
text {* ---------------------------------------------------------------
Ejercicio 11. Definir la función
map :: ('a ⇒ 'b) ⇒ 'a list ⇒ 'b list
tal que (map f xs) es la lista obtenida aplicando la función f a los
elementos de xs. Por ejemplo,
map (λx. 2*x) [3,2,5] = [6,4,10]
------------------------------------------------------------------ *}
-- "jospalhid"
fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
"map f [] = []" |
"map f xs = f(hd xs) # map f (tl xs)"
value "map (λx. 2*x) [3::nat,2,5]" -- "= [6,4,10]"
-- "angfraalv"
fun map2 :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
"map2 f [] = []" |
"map2 f (x#xs) = f(x)#(map2 f xs)"
value "map (λx. 2*x) [3::nat,2,5]" -- "= [6,4,10]"
end