Diferencia entre revisiones de «Relación 1»
De Razonamiento automático (2015-16)
Línea 16: | Línea 16: | ||
"factorial 0 = 1" | | "factorial 0 = 1" | | ||
"factorial (Suc n) = Suc n * factorial n" | "factorial (Suc n) = Suc n * factorial n" | ||
+ | |||
value "factorial 4" -- "24" | value "factorial 4" -- "24" | ||
Línea 25: | Línea 26: | ||
------------------------------------------------------------------- *} | ------------------------------------------------------------------- *} | ||
− | fun longitud :: "'a list ⇒ nat" where | + | fun longitud :: "'a list ⇒ nat" where --"jospalhid" |
− | "longitud xs = | + | "longitud [] = 0" | |
− | + | "longitud xs = 1 + longitud (tl xs)" | |
+ | |||
value "longitud [4,2,5]" -- "= 3" | value "longitud [4,2,5]" -- "= 3" | ||
Línea 38: | Línea 40: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | fun intercambia :: "'a × 'b ⇒ 'b × 'a" where | + | fun intercambia :: "'a × 'b ⇒ 'b × 'a" where --"jospalhid" |
− | "intercambia (x,y) = | + | "intercambia (x,y) = (y,x)" |
value "intercambia (u,v)" -- "= (v,u)" | value "intercambia (u,v)" -- "= (v,u)" | ||
Línea 51: | Línea 53: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | fun inversa :: "'a list ⇒ 'a list" where | + | fun inversa :: "'a list ⇒ 'a list" where --"jospalhid" |
− | "inversa xs = | + | -- "se pude usar rev xs para invertir la lista directamente" |
+ | "inversa [] = []" | | ||
+ | "inversa xs = last xs # inversa (butlast xs) | ||
value "inversa [a,d,c]" -- "= [c,d,a]" | value "inversa [a,d,c]" -- "= [c,d,a]" | ||
Línea 64: | Línea 68: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | fun repite :: "nat ⇒ 'a ⇒ 'a list" where | + | fun repite :: "nat ⇒ 'a ⇒ 'a list" where --"jospalhid" |
− | "repite n x = | + | "repite 0 x = []" | |
+ | "repite (Suc n) x = x#(repite n x)" | ||
value "repite 3 a" -- "= [a,a,a]" | value "repite 3 a" -- "= [a,a,a]" | ||
Línea 77: | Línea 82: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where | + | fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where --"jospalhid" |
− | "conc xs ys = | + | "conc [] [] = []" | |
+ | "conc [] ys = ys" | | ||
+ | "conc xs [] = xs" | | ||
+ | "conc xs ys = hd xs # conc (tl xs) ys" | ||
value "conc [a,d] [b,d,a,c]" -- "= [a,d,b,d,a,c]" | value "conc [a,d] [b,d,a,c]" -- "= [a,d,b,d,a,c]" |
Revisión del 20:04 29 nov 2015
header {* R1: Programación funcional en Isabelle *}
theory R1
imports Main
begin
text {* ----------------------------------------------------------------
Ejercicio 0. Definir, por recursión, la función
factorial :: nat ⇒ nat
tal que (factorial n) es el factorial de n. Por ejemplo,
factorial 4 = 24
------------------------------------------------------------------- *}
fun factorial :: "nat ⇒ nat" where --"jospalhid"
"factorial 0 = 1" |
"factorial (Suc n) = Suc n * factorial n"
value "factorial 4" -- "24"
text {* ----------------------------------------------------------------
Ejercicio 1. Definir, por recursión, la función
longitud :: 'a list ⇒ nat
tal que (longitud xs) es la longitud de la listas xs. Por ejemplo,
longitud [4,2,5] = 3
------------------------------------------------------------------- *}
fun longitud :: "'a list ⇒ nat" where --"jospalhid"
"longitud [] = 0" |
"longitud xs = 1 + longitud (tl xs)"
value "longitud [4,2,5]" -- "= 3"
text {* ---------------------------------------------------------------
Ejercicio 2. Definir la función
fun intercambia :: 'a × 'b ⇒ 'b × 'a
tal que (intercambia p) es el par obtenido intercambiando las
componentes del par p. Por ejemplo,
intercambia (u,v) = (v,u)
------------------------------------------------------------------ *}
fun intercambia :: "'a × 'b ⇒ 'b × 'a" where --"jospalhid"
"intercambia (x,y) = (y,x)"
value "intercambia (u,v)" -- "= (v,u)"
text {* ---------------------------------------------------------------
Ejercicio 3. Definir, por recursión, la función
inversa :: 'a list ⇒ 'a list
tal que (inversa xs) es la lista obtenida invirtiendo el orden de los
elementos de xs. Por ejemplo,
inversa [a,d,c] = [c,d,a]
------------------------------------------------------------------ *}
fun inversa :: "'a list ⇒ 'a list" where --"jospalhid"
-- "se pude usar rev xs para invertir la lista directamente"
"inversa [] = []" |
"inversa xs = last xs # inversa (butlast xs)
value "inversa [a,d,c]" -- "= [c,d,a]"
text {* ---------------------------------------------------------------
Ejercicio 4. Definir la función
repite :: nat ⇒ 'a ⇒ 'a list
tal que (repite n x) es la lista formada por n copias del elemento
x. Por ejemplo,
repite 3 a = [a,a,a]
------------------------------------------------------------------ *}
fun repite :: "nat ⇒ 'a ⇒ 'a list" where --"jospalhid"
"repite 0 x = []" |
"repite (Suc n) x = x#(repite n x)"
value "repite 3 a" -- "= [a,a,a]"
text {* ---------------------------------------------------------------
Ejercicio 5. Definir la función
conc :: 'a list ⇒ 'a list ⇒ 'a list
tal que (conc xs ys) es la concatención de las listas xs e ys. Por
ejemplo,
conc [a,d] [b,d,a,c] = [a,d,b,d,a,c]
------------------------------------------------------------------ *}
fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where --"jospalhid"
"conc [] [] = []" |
"conc [] ys = ys" |
"conc xs [] = xs" |
"conc xs ys = hd xs # conc (tl xs) ys"
value "conc [a,d] [b,d,a,c]" -- "= [a,d,b,d,a,c]"
text {* ---------------------------------------------------------------
Ejercicio 6. Definir la función
coge :: nat ⇒ 'a list ⇒ 'a list
tal que (coge n xs) es la lista de los n primeros elementos de xs. Por
ejemplo,
coge 2 [a,c,d,b,e] = [a,c]
------------------------------------------------------------------ *}
fun coge :: "nat ⇒ 'a list ⇒ 'a list" where
"coge n xs = undefined"
value "coge 2 [a,c,d,b,e]" -- "= [a,c]"
text {* ---------------------------------------------------------------
Ejercicio 7. Definir la función
elimina :: nat ⇒ 'a list ⇒ 'a list
tal que (elimina n xs) es la lista obtenida eliminando los n primeros
elementos de xs. Por ejemplo,
elimina 2 [a,c,d,b,e] = [d,b,e]
------------------------------------------------------------------ *}
fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina n xs = undefined"
value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]"
text {* ---------------------------------------------------------------
Ejercicio 8. Definir la función
esVacia :: 'a list ⇒ bool
tal que (esVacia xs) se verifica si xs es la lista vacía. Por ejemplo,
esVacia [] = True
esVacia [1] = False
------------------------------------------------------------------ *}
fun esVacia :: "'a list ⇒ bool" where
"esVacia xs = undefined"
value "esVacia []" -- "= True"
value "esVacia [1]" -- "= False"
text {* ---------------------------------------------------------------
Ejercicio 9. Definir la función
inversaAc :: 'a list ⇒ 'a list
tal que (inversaAc xs) es a inversa de xs calculada usando
acumuladores. Por ejemplo,
inversaAc [a,c,b,e] = [e,b,c,a]
------------------------------------------------------------------ *}
fun inversaAcAux :: "'a list ⇒ 'a list ⇒ 'a list" where
"inversaAcAux xs ys = undefined"
fun inversaAc :: "'a list ⇒ 'a list" where
"inversaAc xs = undefined"
value "inversaAc [a,c,b,e]" -- "= [e,b,c,a]"
text {* ---------------------------------------------------------------
Ejercicio 10. Definir la función
sum :: nat list ⇒ nat
tal que (sum xs) es la suma de los elementos de xs. Por ejemplo,
sum [3,2,5] = 10
------------------------------------------------------------------ *}
fun sum :: "nat list ⇒ nat" where
"sum xs = undefined"
value "sum [3,2,5]" -- "= 10"
text {* ---------------------------------------------------------------
Ejercicio 11. Definir la función
map :: ('a ⇒ 'b) ⇒ 'a list ⇒ 'b list
tal que (map f xs) es la lista obtenida aplicando la función f a los
elementos de xs. Por ejemplo,
map (λx. 2*x) [3,2,5] = [6,4,10]
------------------------------------------------------------------ *}
fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
"map f xs = undefined"
value "map (λx. 2*x) [3::nat,2,5]" -- "= [6,4,10]"
end