Diferencia entre revisiones de «Relación 1»
De Razonamiento automático (2014-15)
Línea 13: | Línea 13: | ||
------------------------------------------------------------------- *} | ------------------------------------------------------------------- *} | ||
− | -- "jeshorcob","javrodviv1", "danrodcha", "juacorvic" | + | -- "jeshorcob","javrodviv1", "danrodcha", "juacorvic", "carvelcab" |
fun factorial :: "nat ⇒ nat" where | fun factorial :: "nat ⇒ nat" where | ||
"factorial 0 = 1 " | "factorial 0 = 1 " | ||
Línea 35: | Línea 35: | ||
------------------------------------------------------------------- *} | ------------------------------------------------------------------- *} | ||
− | -- "jeshorcob","javrodviv1","danrodcha", "juacorvic" | + | -- "jeshorcob","javrodviv1","danrodcha", "juacorvic", "carvelcab" |
fun longitud :: "'a list ⇒ nat" where | fun longitud :: "'a list ⇒ nat" where | ||
"longitud [] = 0" | "longitud [] = 0" | ||
Línea 58: | Línea 58: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "jeshorcob","javrodviv1","danrodcha" | + | -- "jeshorcob","javrodviv1","danrodcha", "carvelcab" |
fun intercambia :: "'a × 'b ⇒ 'b × 'a" where | fun intercambia :: "'a × 'b ⇒ 'b × 'a" where | ||
"intercambia (x,y) = (y,x)" | "intercambia (x,y) = (y,x)" | ||
Línea 72: | Línea 72: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "jeshorcob","danrodcha" | + | -- "jeshorcob","danrodcha", "carvelcab" |
fun inversa :: "'a list ⇒ 'a list" where | fun inversa :: "'a list ⇒ 'a list" where | ||
"inversa [] = []" | "inversa [] = []" | ||
Línea 93: | Línea 93: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "jeshorcob","javrodviv1","danrodcha" | + | -- "jeshorcob","javrodviv1","danrodcha", "carvelcab" |
fun repite :: "nat ⇒ 'a ⇒ 'a list" where | fun repite :: "nat ⇒ 'a ⇒ 'a list" where | ||
"repite 0 x = []" | "repite 0 x = []" | ||
Línea 108: | Línea 108: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "jeshorcob","javrodviv1","danrodcha" | + | -- "jeshorcob","javrodviv1","danrodcha", "carvelcab" |
fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where | fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where | ||
"conc [] ys = ys" | "conc [] ys = ys" | ||
Línea 123: | Línea 123: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "jeshorcob","javrodviv1","danrodcha" | + | -- "jeshorcob","javrodviv1","danrodcha", "carvelcab" |
fun coge :: "nat ⇒ 'a list ⇒ 'a list" where | fun coge :: "nat ⇒ 'a list ⇒ 'a list" where | ||
"coge _ [] = []" | "coge _ [] = []" | ||
Línea 139: | Línea 139: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "jeshorcob","javrodviv1","danrodcha" | + | -- "jeshorcob","javrodviv1","danrodcha", "carvelcab" |
fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where | fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where | ||
"elimina _ [] = []" | "elimina _ [] = []" | ||
Línea 155: | Línea 155: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "jeshorcob","javrodviv1" | + | -- "jeshorcob","javrodviv1", "carvelcab" |
fun esVacia :: "'a list ⇒ bool" where | fun esVacia :: "'a list ⇒ bool" where | ||
"esVacia [] = True" | "esVacia [] = True" | ||
Línea 189: | Línea 189: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "jeshorcob","javrodviv1","danrodcha" | + | -- "jeshorcob","javrodviv1","danrodcha", "carvelcab" |
fun sum :: "nat list ⇒ nat" where | fun sum :: "nat list ⇒ nat" where | ||
"sum [] = 0" | "sum [] = 0" | ||
Línea 208: | Línea 208: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "jeshorcob","javrodviv1","danrodcha" | + | -- "jeshorcob","javrodviv1","danrodcha", "carvelcab" |
fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where | fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where | ||
"map f [] = []" | "map f [] = []" |
Revisión del 16:38 3 nov 2014
header {* R1: Programación funcional en Isabelle *}
theory R1
imports Main
begin
text {* ----------------------------------------------------------------
Ejercicio 0. Definir, por recursión, la función
factorial :: nat ⇒ nat
tal que (factorial n) es el factorial de n. Por ejemplo,
factorial 4 = 24
------------------------------------------------------------------- *}
-- "jeshorcob","javrodviv1", "danrodcha", "juacorvic", "carvelcab"
fun factorial :: "nat ⇒ nat" where
"factorial 0 = 1 "
|"factorial (Suc m) = (Suc m) * factorial m"
value "factorial 4" -- "24"
-- "juacorvic"
fun factorial2 :: "nat ⇒ nat" where
"factorial2 0 = 1"
| "factorial2 n = n * factorial2 (n - 1)"
value "factorial 4" -- "24"
text {* ----------------------------------------------------------------
Ejercicio 1. Definir, por recursión, la función
longitud :: 'a list ⇒ nat
tal que (longitud xs) es la longitud de la listas xs. Por ejemplo,
longitud [4,2,5] = 3
------------------------------------------------------------------- *}
-- "jeshorcob","javrodviv1","danrodcha", "juacorvic", "carvelcab"
fun longitud :: "'a list ⇒ nat" where
"longitud [] = 0"
|"longitud (x#xs) = 1 + longitud xs"
value "longitud [4,2,5]" -- "= 3"
-- "juacorvic"
fun longitud2 :: "'a list ⇒ nat" where
"longitud2 [] = 0"
| "longitud2 xs = 1 + longitud2 (tl (xs))"
value "longitud2 [4,2,5]" -- "= 3"
text {* ---------------------------------------------------------------
Ejercicio 2. Definir la función
fun intercambia :: 'a × 'b ⇒ 'b × 'a
tal que (intercambia p) es el par obtenido intercambiando las
componentes del par p. Por ejemplo,
intercambia (u,v) = (v,u)
------------------------------------------------------------------ *}
-- "jeshorcob","javrodviv1","danrodcha", "carvelcab"
fun intercambia :: "'a × 'b ⇒ 'b × 'a" where
"intercambia (x,y) = (y,x)"
value "intercambia (u,v)" -- "= (v,u)"
text {* ---------------------------------------------------------------
Ejercicio 3. Definir, por recursión, la función
inversa :: 'a list ⇒ 'a list
tal que (inversa xs) es la lista obtenida invirtiendo el orden de los
elementos de xs. Por ejemplo,
inversa [a,d,c] = [c,d,a]
------------------------------------------------------------------ *}
-- "jeshorcob","danrodcha", "carvelcab"
fun inversa :: "'a list ⇒ 'a list" where
"inversa [] = []"
|"inversa (x#xs) = (inversa xs) @ [x]"
--"javrodviv1"
fun inversa2 :: "'a list ⇒ 'a list" where
"inversa2 [] = []"
| "inversa2 xs = (last xs)#(inversa2 (butlast xs))"
value "inversa [a,d,c]" -- "= [c,d,a]"
text {* ---------------------------------------------------------------
Ejercicio 4. Definir la función
repite :: nat ⇒ 'a ⇒ 'a list
tal que (repite n x) es la lista formada por n copias del elemento
x. Por ejemplo,
repite 3 a = [a,a,a]
------------------------------------------------------------------ *}
-- "jeshorcob","javrodviv1","danrodcha", "carvelcab"
fun repite :: "nat ⇒ 'a ⇒ 'a list" where
"repite 0 x = []"
|"repite (Suc m) x = x # (repite m x)"
value "repite 3 a" -- "= [a,a,a]"
text {* ---------------------------------------------------------------
Ejercicio 5. Definir la función
conc :: 'a list ⇒ 'a list ⇒ 'a list
tal que (conc xs ys) es la concatención de las listas xs e ys. Por
ejemplo,
conc [a,d] [b,d,a,c] = [a,d,b,d,a,c]
------------------------------------------------------------------ *}
-- "jeshorcob","javrodviv1","danrodcha", "carvelcab"
fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where
"conc [] ys = ys"
|"conc (x#xs) ys = x#(conc xs ys)"
value "conc [a,d] [b,d,a,c]" -- "= [a,d,b,d,a,c]"
text {* ---------------------------------------------------------------
Ejercicio 6. Definir la función
coge :: nat ⇒ 'a list ⇒ 'a list
tal que (coge n xs) es la lista de los n primeros elementos de xs. Por
ejemplo,
coge 2 [a,c,d,b,e] = [a,c]
------------------------------------------------------------------ *}
-- "jeshorcob","javrodviv1","danrodcha", "carvelcab"
fun coge :: "nat ⇒ 'a list ⇒ 'a list" where
"coge _ [] = []"
|"coge 0 xs = []"
|"coge (Suc m) (x#xs) = x#(coge m xs)"
value "coge 2 [a,c,d,b,e]" -- "= [a,c]"
text {* ---------------------------------------------------------------
Ejercicio 7. Definir la función
elimina :: nat ⇒ 'a list ⇒ 'a list
tal que (elimina n xs) es la lista obtenida eliminando los n primeros
elementos de xs. Por ejemplo,
elimina 2 [a,c,d,b,e] = [d,b,e]
------------------------------------------------------------------ *}
-- "jeshorcob","javrodviv1","danrodcha", "carvelcab"
fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina _ [] = []"
|"elimina 0 xs = xs"
|"elimina (Suc m) (x#xs) = elimina m xs"
value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]"
text {* ---------------------------------------------------------------
Ejercicio 8. Definir la función
esVacia :: 'a list ⇒ bool
tal que (esVacia xs) se verifica si xs es la lista vacía. Por ejemplo,
esVacia [] = True
esVacia [1] = False
------------------------------------------------------------------ *}
-- "jeshorcob","javrodviv1", "carvelcab"
fun esVacia :: "'a list ⇒ bool" where
"esVacia [] = True"
|"esVacia _ = False"
value "esVacia []" -- "= True"
value "esVacia [1]" -- "= False"
text {* ---------------------------------------------------------------
Ejercicio 9. Definir la función
inversaAc :: 'a list ⇒ 'a list
tal que (inversaAc xs) es a inversa de xs calculada usando
acumuladores. Por ejemplo,
inversaAc [a,c,b,e] = [e,b,c,a]
------------------------------------------------------------------ *}
-- "jeshorcob","danrodcha"
fun inversaAcAux :: "'a list ⇒ 'a list ⇒ 'a list" where
"inversaAcAux [] ys = ys"
|"inversaAcAux (x#xs) ys = inversaAcAux xs (x#ys)"
-- "jeshorcob","danrodcha"
fun inversaAc :: "'a list ⇒ 'a list" where
"inversaAc xs = inversaAcAux xs []"
value "inversaAc [a,c,b,e]" -- "= [e,b,c,a]"
text {* ---------------------------------------------------------------
Ejercicio 10. Definir la función
sum :: nat list ⇒ nat
tal que (sum xs) es la suma de los elementos de xs. Por ejemplo,
sum [3,2,5] = 10
------------------------------------------------------------------ *}
-- "jeshorcob","javrodviv1","danrodcha", "carvelcab"
fun sum :: "nat list ⇒ nat" where
"sum [] = 0"
|"sum (x#xs) = x + sum xs"
-- "jeshorcob"
fun sum2 :: "nat list ⇒ nat" where
"sum2 xs = foldr (op +) xs 0"
value "sum [3,2,5]" -- "= 10"
text {* ---------------------------------------------------------------
Ejercicio 11. Definir la función
map :: ('a ⇒ 'b) ⇒ 'a list ⇒ 'b list
tal que (map f xs) es la lista obtenida aplicando la función f a los
elementos de xs. Por ejemplo,
map (λx. 2*x) [3,2,5] = [6,4,10]
------------------------------------------------------------------ *}
-- "jeshorcob","javrodviv1","danrodcha", "carvelcab"
fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
"map f [] = []"
|"map f (x#xs) = (f x)#(map f xs)"
value "map (λx. 2*x) [3::nat,2,5]" -- "= [6,4,10]"
end