Diferencia entre revisiones de «Relación 3»
De Razonamiento automático (2014-15)
m (Texto reemplazado: «"isar"» por «"isabelle"») |
|||
(No se muestran 2 ediciones intermedias de 2 usuarios) | |||
Línea 1: | Línea 1: | ||
− | <source lang=" | + | <source lang="isabelle"> |
header {* R3: Razonamiento sobre programas en Isabelle/HOL *} | header {* R3: Razonamiento sobre programas en Isabelle/HOL *} | ||
Línea 14: | Línea 14: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "davoremar juacorvic jeshorcob domcadgom" | + | -- "davoremar juacorvic jeshorcob domcadgom danrodcha carvelcab" |
fun sumaImpares :: "nat ⇒ nat" where | fun sumaImpares :: "nat ⇒ nat" where | ||
"sumaImpares 0 = 0" | "sumaImpares 0 = 0" | ||
Línea 47: | Línea 47: | ||
done | done | ||
− | -- "davoremar juacorvic jeshorcob" | + | -- "davoremar juacorvic jeshorcob danrodcha carvelcab" |
lemma "sumaImpares n = n*n" | lemma "sumaImpares n = n*n" | ||
Línea 61: | Línea 61: | ||
qed | qed | ||
− | -- "davoremar juacorvic marnajgom jeshorcob domcadgom" | + | -- "davoremar juacorvic marnajgom jeshorcob domcadgom danrodcha carvelcab" |
lemma "sumaImpares n = n*n" | lemma "sumaImpares n = n*n" | ||
Línea 84: | Línea 84: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "davoremar juacorvic marnajgom jeshorcob domcadgom" | + | -- "davoremar juacorvic marnajgom jeshorcob domcadgom danrodcha carvelcab" |
fun sumaPotenciasDeDosMasUno :: "nat ⇒ nat" where | fun sumaPotenciasDeDosMasUno :: "nat ⇒ nat" where | ||
Línea 97: | Línea 97: | ||
------------------------------------------------------------------- *} | ------------------------------------------------------------------- *} | ||
− | -- "davoremar juacorvic jeshorcob" | + | -- "davoremar juacorvic jeshorcob danrodcha carvelcab" |
lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)" | lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)" | ||
by (induct n) auto | by (induct n) auto | ||
Línea 111: | Línea 111: | ||
qed | qed | ||
− | -- "davoremar juacorvic marnajgom jeshorcob domcadgom" | + | -- "davoremar juacorvic marnajgom jeshorcob domcadgom danrodcha carvelcab" |
lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)" | lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)" | ||
proof (induct n) | proof (induct n) | ||
Línea 134: | Línea 134: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "davoremar juacorvic marnajgom jeshorcob domcadgom" | + | -- "davoremar juacorvic marnajgom jeshorcob domcadgom danrodcha carvelcab" |
fun copia :: "nat ⇒ 'a ⇒ 'a list" where | fun copia :: "nat ⇒ 'a ⇒ 'a list" where | ||
"copia 0 x = []" | "copia 0 x = []" | ||
Línea 151: | Línea 151: | ||
----------------------------------------------------------------- *} | ----------------------------------------------------------------- *} | ||
− | -- "davoremar juacorvic marnajgom jeshorcob domcadgom" | + | -- "davoremar juacorvic marnajgom jeshorcob domcadgom danrodcha carvelcab" |
fun todos :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where | fun todos :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where | ||
"todos p [] = True" | "todos p [] = True" | ||
Línea 171: | Línea 171: | ||
------------------------------------------------------------------- *} | ------------------------------------------------------------------- *} | ||
− | -- "davoremar juacorvic jeshorcob" | + | -- "davoremar juacorvic jeshorcob danrodcha carvelcab" |
lemma "todos (λy. y=x) (copia n x)" | lemma "todos (λy. y=x) (copia n x)" | ||
by (induct n) auto | by (induct n) auto | ||
Línea 208: | Línea 208: | ||
also have "...= todos (λy. y=x)[x]" using HI by simp | also have "...= todos (λy. y=x)[x]" using HI by simp | ||
finally show "todos (λy. y=x) (copia (Suc n) x)" using HI by simp | finally show "todos (λy. y=x) (copia (Suc n) x)" using HI by simp | ||
+ | qed | ||
+ | |||
+ | -- "danrodcha carvelcab" | ||
+ | lemma "todos (λy. y=x) (copia n x)" | ||
+ | proof (induct n) | ||
+ | show "todos (λy. y=x) (copia 0 x)" by simp | ||
+ | next | ||
+ | fix n | ||
+ | assume HI: "todos (λy. y=x) (copia n x)" | ||
+ | have "todos (λy. y=x) (copia (Suc n) x) = todos (λy. y=x) (x#(copia n x))" by (simp only: copia.simps) | ||
+ | also have "... = (((λy. y=x) x) ∧ (todos (λy. y=x) (x#(copia n x))))" by simp | ||
+ | also have "... = (todos (λy. y=x) (copia n x))" using HI by simp | ||
+ | also have "... = True" using HI by simp | ||
+ | finally show "todos (λy. y=x) (copia (Suc n) x) " by simp | ||
qed | qed | ||
Línea 217: | Línea 231: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "davoremar juacorvic marnajgom jeshorcob domcadgom" | + | -- "davoremar juacorvic marnajgom jeshorcob domcadgom carvelcab" |
fun factR :: "nat ⇒ nat" where | fun factR :: "nat ⇒ nat" where | ||
"factR 0 = 1" | "factR 0 = 1" | ||
Línea 258: | Línea 272: | ||
la dejas sin tocar, o como solemos decir: "sea un x cualquiera..." *) | la dejas sin tocar, o como solemos decir: "sea un x cualquiera..." *) | ||
− | -- "davoremar jeshorcob domcadgom" | + | -- "davoremar jeshorcob domcadgom carvelcab" |
lemma fact: "factI' n x = x * factR n" | lemma fact: "factI' n x = x * factR n" | ||
proof (induct n arbitrary: x) | proof (induct n arbitrary: x) | ||
Línea 344: | Línea 358: | ||
qed | qed | ||
− | -- "davoremar juacorvic jeshorcob" | + | -- "davoremar juacorvic jeshorcob carvelcab" |
corollary "factI n = factR n" | corollary "factI n = factR n" | ||
proof - | proof - | ||
Línea 374: | Línea 388: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | -- "davoremar marnajgom jeshorcob domcadgom" | + | -- "davoremar marnajgom jeshorcob domcadgom carvelcab" |
fun amplia :: "'a list ⇒ 'a ⇒ 'a list" where | fun amplia :: "'a list ⇒ 'a ⇒ 'a list" where | ||
"amplia [] y = [y]" | "amplia [] y = [y]" | ||
Línea 386: | Línea 400: | ||
------------------------------------------------------------------- *} | ------------------------------------------------------------------- *} | ||
− | -- "davoremar" | + | -- "davoremar carvelcab" |
lemma "amplia xs y = xs @ [y]" | lemma "amplia xs y = xs @ [y]" | ||
by (induct xs) auto | by (induct xs) auto | ||
Línea 400: | Línea 414: | ||
qed | qed | ||
− | -- "davoremar marnajgom jeshorcob domcadgom" | + | -- "davoremar marnajgom jeshorcob domcadgom carvelcab" |
lemma "amplia xs y = xs @ [y]" | lemma "amplia xs y = xs @ [y]" | ||
proof (induct xs) | proof (induct xs) |
Revisión actual del 10:30 9 sep 2018
header {* R3: Razonamiento sobre programas en Isabelle/HOL *}
theory R3
imports Main
begin
text {* ---------------------------------------------------------------
Ejercicio 1. Definir la función
sumaImpares :: nat ⇒ nat
tal que (sumaImpares n) es la suma de los n primeros números
impares. Por ejemplo,
sumaImpares 5 = 25
------------------------------------------------------------------ *}
-- "davoremar juacorvic jeshorcob domcadgom danrodcha carvelcab"
fun sumaImpares :: "nat ⇒ nat" where
"sumaImpares 0 = 0"
| "sumaImpares (Suc n) = (2*n+1) + sumaImpares n"
-- "marnajgom"
fun sumaImpares2 :: "nat ⇒ nat" where
"sumaImpares2 0 = 0"
| "sumaImpares2 (Suc n) = (Suc n) + n + sumaImpares2 n"
-- "jeshorcob"
fun sumaImpares3 :: "nat ⇒ nat" where
"sumaImpares3 n = foldr (λ x y. y + (2 * x) + 1) (upt 0 n) 0"
(* Esta definición en principio es más eficiente pero a la hora de
demostrar se complica todo. Estaría bien si en clase pudieramos
explicar si se puede demostrar el lema usando esta definición de
manera sencilla o explicar un poco cómo iría la prueba *)
value "sumaImpares 5" -- "= 25"
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar que
sumaImpares n = n*n
------------------------------------------------------------------- *}
(* Pedrosrei: lo dejo de menos a más estructurado *)
lemma "sumaImpares n = n*n"
apply (induct n)
apply auto
done
-- "davoremar juacorvic jeshorcob danrodcha carvelcab"
lemma "sumaImpares n = n*n"
by (induct n) auto
lemma "sumaImpares n = n*n"
proof (induct n)
show "sumaImpares 0 = 0 * 0" by simp
next
fix n
assume HI: "sumaImpares n = n * n"
thus "sumaImpares (Suc n) = Suc n * Suc n" by simp
qed
-- "davoremar juacorvic marnajgom jeshorcob domcadgom danrodcha carvelcab"
lemma "sumaImpares n = n*n"
proof (induct n)
show "sumaImpares 0 = 0 * 0" by simp
next
fix n
assume HI: "sumaImpares n = n*n"
have "sumaImpares (Suc n) = sumaImpares n + (2*n + 1)" by simp
also have "... = n*n + 2*n + 1" using HI by simp
also have "... = (n + 1) * (n + 1)" by simp
finally show "sumaImpares (Suc n) = Suc n * Suc n" by simp
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Definir la función
sumaPotenciasDeDosMasUno :: nat ⇒ nat
tal que
(sumaPotenciasDeDosMasUno n) = 1 + 2^0 + 2^1 + 2^2 + ... + 2^n.
Por ejemplo,
sumaPotenciasDeDosMasUno 3 = 16
------------------------------------------------------------------ *}
-- "davoremar juacorvic marnajgom jeshorcob domcadgom danrodcha carvelcab"
fun sumaPotenciasDeDosMasUno :: "nat ⇒ nat" where
"sumaPotenciasDeDosMasUno 0 = 2"
| "sumaPotenciasDeDosMasUno (Suc n) = 2^(Suc n) + sumaPotenciasDeDosMasUno n"
value "sumaPotenciasDeDosMasUno 3" -- "= 16"
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar que
sumaPotenciasDeDosMasUno n = 2^(n+1)
------------------------------------------------------------------- *}
-- "davoremar juacorvic jeshorcob danrodcha carvelcab"
lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)"
by (induct n) auto
-- "jeshorcob"
lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)"
proof (induct n)
show "sumaPotenciasDeDosMasUno 0 = 2^(0+1)" by simp
next
fix n
assume HI: "sumaPotenciasDeDosMasUno n = 2^(n+1)"
thus "sumaPotenciasDeDosMasUno (Suc n) = 2^(Suc n + 1)" by simp
qed
-- "davoremar juacorvic marnajgom jeshorcob domcadgom danrodcha carvelcab"
lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)"
proof (induct n)
show "sumaPotenciasDeDosMasUno 0 = 2^(0+1)" by simp
next
fix n
assume HI: "sumaPotenciasDeDosMasUno n = 2^(n+1)"
have "sumaPotenciasDeDosMasUno (Suc n) =
sumaPotenciasDeDosMasUno n + 2^(Suc n)" by simp
also have "... = 2^(n+1) + 2^(Suc n)" using HI by simp
also have "... = 2^(Suc n + 1)" by simp
finally show "sumaPotenciasDeDosMasUno (Suc n) = 2^(Suc n + 1)"
by simp
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Definir la función
copia :: nat ⇒ 'a ⇒ 'a list
tal que (copia n x) es la lista formado por n copias del elemento
x. Por ejemplo,
copia 3 x = [x,x,x]
------------------------------------------------------------------ *}
-- "davoremar juacorvic marnajgom jeshorcob domcadgom danrodcha carvelcab"
fun copia :: "nat ⇒ 'a ⇒ 'a list" where
"copia 0 x = []"
| "copia (Suc n) x = x # copia n x"
value "copia 3 x" -- "= [x,x,x]"
text {* ---------------------------------------------------------------
Ejercicio 6. Definir la función
todos :: ('a ⇒ bool) ⇒ 'a list ⇒ bool
tal que (todos p xs) se verifica si todos los elementos de xs cumplen
la propiedad p. Por ejemplo,
todos (λx. x>(1::nat)) [2,6,4] = True
todos (λx. x>(2::nat)) [2,6,4] = False
Nota: La conjunción se representa por ∧
----------------------------------------------------------------- *}
-- "davoremar juacorvic marnajgom jeshorcob domcadgom danrodcha carvelcab"
fun todos :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where
"todos p [] = True"
| "todos p (x#xs) = ((p x) ∧ (todos p xs))"
(* jeshorcob: me gustaría saber por qué es necesario poner el paréntesis
en la definición(2) *)
(* Pedrosrei: porque aunque están predefinidas las prioridades entre la
suma y el producto en los cuerpos y anillos más comunes, la conjunción
y la igualdad no tienen definida esa prioridad*)
value "todos (λx. x>(1::nat)) [2,6,4]" -- "= True"
value "todos (λx. x>(2::nat)) [2,6,4]" -- "= False"
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar que todos los elementos de (copia n x) son
iguales a x.
------------------------------------------------------------------- *}
-- "davoremar juacorvic jeshorcob danrodcha carvelcab"
lemma "todos (λy. y=x) (copia n x)"
by (induct n) auto
-- "davoremar marnajgom jeshorcob domcadgom"
lemma "todos (λy. y=x) (copia n x)"
proof (induct n)
show "todos (λy. y=x) (copia 0 x)" by simp
next
fix n
assume HI: "todos (λy. y=x) (copia n x)"
have "todos (λy. y=x) (copia (Suc n) x) =
todos (λy. y=x) (x#(copia n x))" by simp
also have "... = todos (λy. y=x) (copia n x)" by simp
finally show "todos (λy. y=x) (copia (Suc n) x)" using HI by simp
qed
-- "juacorvic jeshorcob"
lemma "todos (λy. y=x) (copia n x)"
proof (induct n)
show "todos (λy. y=x) (copia 0 x)" by simp
fix n
assume HI: "todos (λy. y=x) (copia n x)"
thus "todos (λy. y=x) (copia (Suc n) x)" by simp
qed
-- "juacorvic"
lemma "todos (λy. y=x) (copia n x)"
proof (induct n)
show "todos (λy. y=x) (copia 0 x)" by simp
next
fix n
assume HI: "todos (λy. y=x) (copia n x)"
have "todos (λy. y=x) (copia (Suc n) x) =
todos (λy. y=x) (x # (copia n x))" by simp
also have "...= todos (λy. y=x)[x]" using HI by simp
finally show "todos (λy. y=x) (copia (Suc n) x)" using HI by simp
qed
-- "danrodcha carvelcab"
lemma "todos (λy. y=x) (copia n x)"
proof (induct n)
show "todos (λy. y=x) (copia 0 x)" by simp
next
fix n
assume HI: "todos (λy. y=x) (copia n x)"
have "todos (λy. y=x) (copia (Suc n) x) = todos (λy. y=x) (x#(copia n x))" by (simp only: copia.simps)
also have "... = (((λy. y=x) x) ∧ (todos (λy. y=x) (x#(copia n x))))" by simp
also have "... = (todos (λy. y=x) (copia n x))" using HI by simp
also have "... = True" using HI by simp
finally show "todos (λy. y=x) (copia (Suc n) x) " by simp
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Definir la función
factR :: nat ⇒ nat
tal que (factR n) es el factorial de n. Por ejemplo,
factR 4 = 24
------------------------------------------------------------------ *}
-- "davoremar juacorvic marnajgom jeshorcob domcadgom carvelcab"
fun factR :: "nat ⇒ nat" where
"factR 0 = 1"
| "factR (Suc n) = (Suc n) * factR n"
value "factR 4" -- "= 24"
text {* ---------------------------------------------------------------
Ejercicio 9. Se considera la siguiente definición iterativa de la
función factorial
factI :: "nat ⇒ nat" where
factI n = factI' n 1
factI' :: nat ⇒ nat ⇒ nat" where
factI' 0 x = x
factI' (Suc n) x = factI' n (Suc n)*x
Demostrar que, para todo n y todo x, se tiene
factI' n x = x * factR n
------------------------------------------------------------------- *}
fun factI' :: "nat ⇒ nat ⇒ nat" where
"factI' 0 x = x"
| "factI' (Suc n) x = factI' n (Suc n)*x"
fun factI :: "nat ⇒ nat" where
"factI n = factI' n 1"
value "factI 4" -- "= 24"
-- "davoremar jeshorcob domcadgom"
lemma fact1: "factI' n x = x* factR n"
by (induct n arbitrary: x) auto
(* juacorvic: ¿Por que tenemos que indicar arbitrary:x? *)
(* Pedrosrei: no tienes que hacerlo como resulta de mi ejemplo o las
correcciones que he indicado en el tuyo. En este caso concreto
totalmente automatizado es porque posees dos variables y tienes que
decirle qué hacer con cada una. En una haces la inducción pero la otra
la dejas sin tocar, o como solemos decir: "sea un x cualquiera..." *)
-- "davoremar jeshorcob domcadgom carvelcab"
lemma fact: "factI' n x = x * factR n"
proof (induct n arbitrary: x)
show "⋀x. factI' 0 x = x * factR 0" by simp
next
fix n x
assume HI: "⋀x. factI' n x = x * factR n"
have "factI' (Suc n) x = factI' n (Suc n)*x" by simp
also have "... = x * factI' n (Suc n)" by simp
also have "... = x * ((Suc n) * factR n)" using HI by simp
also have "... = x * factR (Suc n)" by simp
finally show "factI' (Suc n) x = x * factR (Suc n)" by simp
qed
(* marnajgom: no entiendo el paso
"also have "... = x * factI' n (Suc n)" by simp"
¿Por qué no sacas fuera (Suc n)*x, sólo sacas x? *)
(* Pedrosrei: También podemos prescindir de arbitrary x *)
lemma fact2: "factI' n x = x * factR n"
proof (induct n)
show "factI' 0 x = x * factR 0" by simp
next
fix n
assume HI: "factI' n x = x * factR n"
show "factI' (Suc n) x = x * factR (Suc n)"
proof -
have "factI' (Suc n) x = (factI' n (Suc n))*x" by simp
also have " ... = ((Suc n) * factR n) * x" using HI fact by simp
-- "Si usamos auto: finally show ?thesis by auto "
also have " ... = x * factR (Suc n)" by simp
finally show ?thesis .
qed
qed
(* Pedrosrei: no resuelve finally debido a la conjunción grande que
emplea isabelle para indicarte un "para todo de cualquier conjunto"
(en realidad es la conjunción de conjuntos, creo recordar). Si quieres
poner un para todo recurre a ! ó \forall. Si sólo has puesto lo que te
ha indicado la máquina, quería indicarte un valor cualquiera, vamos,
lo que fijas con "arbitrary".
Sólo tienes que eliminar los ⋀ de la prueba y añadirle un paso
intermedio con la regla adecuada (usa find_theorem y el nombre que
crees que tendrá) entre el also have último y el finally para que vea
la igualdad de derecha a izquierda y listo. También puedes emplear "by
arith" para estas cosas tan sencillas y no tener que irte a la regla
exacta de la aritmética (que no siempre es fácil).
*)
-- "juacorvic"
(* Se intenta demostración en sentido inverso:
x * factR n = factI' n x
No resuelve finally *)
lemma "x * factR n = factI' n x "
proof (induct n)
show "⋀x. x * factR 0 = factI' 0 x" by simp
next
fix n
assume HI: "⋀x. x * factR n = factI' n x "
have "x * factR (Suc n) = x * (factR n * (Suc n))" by simp
also have "... = x * ((Suc n) * factR n)" by simp
also have "... = x * (factI' n (Suc n))" using HI by simp
also have "... = factI' (Suc n) x" by simp
finally show "x * factR (Suc n) = factI' (Suc n) x" by simp
qed
oops
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar que
factI n = factR n
------------------------------------------------------------------- *}
-- "davoremar juacorvic jeshorcob domcadgom"
corollary "factI n = factR n"
by (simp add: fact)
-- "juacorvic"
corollary "factI n = factR n"
proof -
show "factI n = factR n" by (simp add:fact)
qed
-- "davoremar juacorvic jeshorcob carvelcab"
corollary "factI n = factR n"
proof -
have "factI n = factI' n 1" by simp
also have "... = 1 * factR n" by (simp add: fact)
finally show "factI n = factR n" by simp
qed
-- "marnajgom"
corollary "factI n = factR n"
proof (induct n)
show "factI 0 = factR 0" by simp
next
fix n
assume HI:"factI n = factR n"
have "factI (Suc n) = factI' (Suc n) 1" by simp
also have "... = factI' n (Suc n)*1" by simp
also have "... = (Suc n)*1 * factR n" using fact by simp
also have "... = (Suc n) * factR n" by simp
finally show "factI (Suc n) = factR (Suc n)" by simp
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Definir, recursivamente y sin usar (@), la función
amplia :: 'a list ⇒ 'a ⇒ 'a list
tal que (amplia xs y) es la lista obtenida añadiendo el elemento y al
final de la lista xs. Por ejemplo,
amplia [d,a] t = [d,a,t]
------------------------------------------------------------------ *}
-- "davoremar marnajgom jeshorcob domcadgom carvelcab"
fun amplia :: "'a list ⇒ 'a ⇒ 'a list" where
"amplia [] y = [y]"
| "amplia (x#xs) y = x # (amplia xs y)"
value "amplia [d,a] t" -- "= [d,a,t]"
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar que
amplia xs y = xs @ [y]
------------------------------------------------------------------- *}
-- "davoremar carvelcab"
lemma "amplia xs y = xs @ [y]"
by (induct xs) auto
-- "juacorvic" (* Añado esquema intermedio *)
lemma "amplia xs y = xs @ [y]"
proof (induct xs)
show "amplia [] y = [] @ [y]" by simp
next
fix a xs
assume HI: "amplia xs y = xs @ [y]"
thus "amplia (a # xs) y = (a # xs) @ [y]" by simp
qed
-- "davoremar marnajgom jeshorcob domcadgom carvelcab"
lemma "amplia xs y = xs @ [y]"
proof (induct xs)
show "amplia [] y = [] @ [y]" by simp
next
fix x xs
assume HI: "amplia xs y = xs @ [y]"
have "amplia (x#xs) y = x # amplia xs y" by simp
also have "... = x # (xs @ [y])" using HI by simp
also have "... = (x#xs) @ [y]" by simp (* Pedrosrei: prescindible *)
finally show "amplia (x#xs) y = (x#xs) @ [y]" by simp
qed
(* Pedrosrei: las variables son mudas. Da igual 'a' que 'x', del mismo
modo que da igual en papel el nombre de la incógnita. Puedes usar
'incognitabonita' y sigue siendo lo mismo *)
-- "juacorvic"
(* Demostración idéntica a 'davoremar' pero el sistema me sugirió usar
'a' en vez de 'x' *)
lemma "amplia xs y = xs @ [y]"
proof (induct xs)
show "amplia [] y = [] @ [y]" by simp
next
fix a xs
assume HI: "amplia xs y = xs @ [y]"
have "amplia (a # xs) y = a # (amplia xs y) " by simp
also have "... = a # (xs @ [y])" using HI by simp
also have "... = (a # xs) @ [y]" by simp
finally show "amplia (a # xs) y = (a # xs) @ [y]" by simp
qed
end