Diferencia entre revisiones de «Relación 5»
De Razonamiento automático (2014-15)
Línea 50: | Línea 50: | ||
"algunos2 p xs = foldr (λx. op ∨ (p x)) xs True" | "algunos2 p xs = foldr (λx. op ∨ (p x)) xs True" | ||
+ | -- "javrodviv1" | ||
+ | fun algunos :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where | ||
+ | "algunos p [] = False" | ||
+ | |"algunos p (x#xs) = (p x ∨ todos p xs)" | ||
+ | (* Nota. Nos da igual que sea True o False, pero para una proposición | ||
+ | de más a delante necesitamos que sea False*) | ||
+ | |||
text {* | text {* | ||
--------------------------------------------------------------------- | --------------------------------------------------------------------- |
Revisión del 15:17 16 nov 2014
header {* R5: Cuantificadores sobre listas *}
theory R5
imports Main
begin
text {*
---------------------------------------------------------------------
Ejercicio 1. Definir la función
todos :: ('a ⇒ bool) ⇒ 'a list ⇒ bool
tal que (todos p xs) se verifica si todos los elementos de la lista
xs cumplen la propiedad p. Por ejemplo, se verifica
todos (λx. 1<length x) [[2,1,4],[1,3]]
¬todos (λx. 1<length x) [[2,1,4],[3]]
Nota: La función todos es equivalente a la predefinida list_all.
---------------------------------------------------------------------
*}
--"jeshorcob,javrodviv1"
fun todos :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where
"todos p [] = True"
|"todos p (x#xs) = (p x ∧ todos p xs)"
--"jeshorcob"
fun todos2 :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where
"todos2 p xs = foldr (λx. op ∧ (p x)) xs True"
text {*
---------------------------------------------------------------------
Ejercicio 2. Definir la función
algunos :: ('a ⇒ bool) ⇒ 'a list ⇒ bool
tal que (algunos p xs) se verifica si algunos elementos de la lista
xs cumplen la propiedad p. Por ejemplo, se verifica
algunos (λx. 1<length x) [[2,1,4],[3]]
¬algunos (λx. 1<length x) [[],[3]]"
Nota: La función algunos es equivalente a la predefinida list_ex.
---------------------------------------------------------------------
*}
--"jeshorcob,javrodviv1"
fun algunos :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where
"algunos p [] = True"
|"algunos p (x#xs) = (p x ∨ todos p xs)"
--"jeshorcob"
fun algunos2 :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where
"algunos2 p xs = foldr (λx. op ∨ (p x)) xs True"
-- "javrodviv1"
fun algunos :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where
"algunos p [] = False"
|"algunos p (x#xs) = (p x ∨ todos p xs)"
(* Nota. Nos da igual que sea True o False, pero para una proposición
de más a delante necesitamos que sea False*)
text {*
---------------------------------------------------------------------
Ejercicio 3.1. Demostrar o refutar automáticamente
todos (λx. P x ∧ Q x) xs = (todos P xs ∧ todos Q xs)
---------------------------------------------------------------------
*}
--"jeshorcob,javrodviv1"
lemma "todos (λx. P x ∧ Q x) xs = (todos P xs ∧ todos Q xs)"
by (induct xs) auto
text {*
---------------------------------------------------------------------
Ejercicio 3.2. Demostrar o refutar detalladamente
todos (λx. P x ∧ Q x) xs = (todos P xs ∧ todos Q xs)
---------------------------------------------------------------------
*}
--"jeshorcob"
lemma "todos (λx. P x ∧ Q x) xs = (todos P xs ∧ todos Q xs)"
proof (induct xs)
show "todos (λx. P x ∧ Q x) [] = (todos P [] ∧ todos Q [])" by simp
next
fix x xs
assume HI: "todos (λx. P x ∧ Q x) xs = (todos P xs ∧ todos Q xs)"
have "todos (λx. P x ∧ Q x) (x#xs) =
((P x ∧ Q x) ∧ todos (λx. P x ∧ Q x) xs) " by simp
also have "... = (P x∧Q x∧todos P xs∧todos Q xs)" using HI by simp
also have "... = ((P x∧todos P xs)∧(Q x ∧ todos Q xs))" by arith
also have "... = (todos P (x#xs) ∧ (Q x ∧ todos Q xs))" by simp
also have "... = (todos P (x#xs) ∧ todos Q (x#xs))" by simp
finally show "todos (λx. P x ∧ Q x) (x#xs) =
(todos P (x#xs) ∧ todos Q (x#xs))" by simp
qed
-- "javrodviv1"
lemma todo_append:
"todos (λx. P x ∧ Q x) xs = (todos P xs ∧ todos Q xs)"
proof (induct xs)
show "todos (λx. P x ∧ Q x) [] = (todos P [] ∧ todos Q [])" by simp
next
fix a xs
assume HI:"todos (λx. P x ∧ Q x) xs = (todos P xs ∧ todos Q xs)"
have "todos (λx. P x ∧ Q x) (a # xs) = (((P a) ∧ (Q a)) ∧ todos (λx. P x ∧ Q x) xs)" by simp
also have " ... = ((P a) ∧ (Q a) ∧ todos P xs ∧ todos Q xs)" using HI by simp
finally show "todos (λx. P x ∧ Q x) (a # xs) = (todos P (a # xs) ∧ todos Q (a # xs))" by auto
qed
text {*
---------------------------------------------------------------------
Ejercicio 4.1. Demostrar o refutar automáticamente
todos P (x @ y) = (todos P x ∧ todos P y)
---------------------------------------------------------------------
*}
--"jeshorcob,javrodviv1"
lemma "todos P (x @ y) = (todos P x ∧ todos P y)"
by (induct x) auto
text {*
---------------------------------------------------------------------
Ejercicio 4.2. Demostrar o refutar detalladamente
todos P (x @ y) = (todos P x ∧ todos P y)
---------------------------------------------------------------------
*}
--"jeshorcob"
lemma todos_append:
"todos P (x @ y) = (todos P x ∧ todos P y)"
proof (induct x)
show "todos P ([] @ y) = (todos P [] ∧ todos P y)" by simp
next
fix a x
assume HI: "todos P (x @ y) = (todos P x ∧ todos P y)"
have "todos P ((a#x)@y) = (P a ∧ todos P (x@y))" by simp
also have "... = (P a ∧ todos P x ∧ todos P y)" using HI by simp
also have "... = (todos P (a#x) ∧ todos P y)" by simp
finally show "todos P ((a#x)@y) =
(todos P (a#x) ∧ todos P y)" by simp
qed
-- "javrodviv1"
(* es igual que la de jeshorcob pero nos podemos ahorrar
una linea de comando*)
lemma todos_append:
"todos P (x @ y) = (todos P x ∧ todos P y)"
proof (induct x)
show "todos P ([] @ y) = (todos P [] ∧ todos P y)" by simp
next
fix a x
assume HI:"todos P (x @ y) = (todos P x ∧ todos P y)"
have "todos P ((a # x) @ y) = ((P a) ∧ todos P (x @ y))" by simp
also have " ... = ((P a) ∧ todos P x ∧ todos P y)" using HI by simp
finally show "todos P ((a # x) @ y) = (todos P (a # x) ∧ todos P y)"
by simp
qed
text {*
---------------------------------------------------------------------
Ejercicio 5.1. Demostrar o refutar automáticamente
todos P (rev xs) = todos P xs
---------------------------------------------------------------------
*}
--"jeshorcob"
lemma "todos P (rev xs) = todos P xs"
apply (induct xs)
apply (auto simp add: todos_append)
done
-- "javrodviv1"
lemma "todos P (rev xs) = todos P xs"
by (induct xs) (auto simp add: todos_append)
text {*
---------------------------------------------------------------------
Ejercicio 5.2. Demostrar o refutar detalladamente
todos P (rev xs) = todos P xs
---------------------------------------------------------------------
*}
--"jeshorcob"
lemma "todos P (rev xs) = todos P xs"
proof (induct xs)
show "todos P (rev []) = todos P []" by simp
next
fix x xs
assume HI: "todos P (rev xs) = todos P xs"
have "todos P (rev (x#xs)) = todos P ((rev xs) @ [x])" by simp
also have "... = (todos P (rev xs) ∧ todos P [x])"
by (simp add: todos_append)
also have "... = (todos P xs ∧ todos P [x])" using HI by simp
also have "... = (todos P xs ∧ P x)" by simp
also have "... = (P x ∧ todos P xs)" by arith
also have "... = todos P (x#xs)" by simp
finally show "todos P (rev (x#xs)) = todos P (x#xs)" by simp
qed
-- "javrodviv1"
lemma "todos P (rev xs) = todos P xs"
proof (induct xs)
show " todos P (rev []) = todos P []" by simp
next
fix a xs
assume HI: "todos P (rev xs) = todos P xs "
have "todos P (rev (a # xs)) = todos P ((rev xs) @ [a])" by simp
also have " ... = (todos P (rev xs) ∧ todos P [a])"
by (simp add: todos_append)
also have "... = (todos P xs ∧ todos P [a])" using HI by simp
finally show " todos P (rev (a # xs)) = todos P (a # xs)" by auto
qed
text {*
---------------------------------------------------------------------
Ejercicio 6. Demostrar o refutar:
algunos (λx. P x ∧ Q x) xs = (algunos P xs ∧ algunos Q xs)
---------------------------------------------------------------------
*}
--"jeshorcob"
lemma "algunos (λx. P x ∧ Q x) xs = (algunos P xs ∧ algunos Q xs)"
quickcheck
oops
text {* Encuentra el contraejemplo
P = {a⇩1}
Q = {a⇩2}
xs = [a⇩1, a⇩2]
*}
-- "javrodviv1"
(* A mi no me encuentra contraejemplo así que decidí probarlo pero me
atasque, dejo mi demostración hasta donde estoy atascado*)
lemma "algunos (λx. P x ∧ Q x) xs = (algunos P xs ∧ algunos Q xs)"
proof (induct xs)
show "algunos (λx. P x ∧ Q x) [] = (algunos P [] ∧ algunos Q [])" by simp
next
fix a xs
assume HI:"algunos (λx. P x ∧ Q x) xs = (algunos P xs ∧ algunos Q xs)"
have "algunos (λx. P x ∧ Q x) (a # xs) = ((P a) ∧ (Q a) ∨ algunos (λx. P x ∧ Q x) xs)"
by simp
also have "... = (((P a) ∧ (Q a)) ∨ (algunos P xs ∧ algunos Q xs))" using HI by simp
oops
text {*
---------------------------------------------------------------------
Ejercicio 7.1. Demostrar o refutar automáticamente
algunos P (map f xs) = algunos (P ∘ f) xs
---------------------------------------------------------------------
*}
-- "javrodviv1"
lemma "algunos P (map f xs) = algunos (P o f) xs"
by (induct xs) auto
text {*
---------------------------------------------------------------------
Ejercicio 7.2. Demostrar o refutar datalladamente
algunos P (map f xs) = algunos (P ∘ f) xs
---------------------------------------------------------------------
*}
-- "javrodviv1"
lemma "algunos P (map f xs) = algunos (P o f) xs"
proof (induct xs)
show " algunos P (map f []) = algunos (P ∘ f) []" by simp
next
fix a xs
assume HI: "algunos P (map f xs) = algunos (P ∘ f) xs"
have "algunos P (map f (a # xs)) = ((P (f a)) ∨ algunos P (map f xs))" by simp
also have " ... = (((P ∘ f) a) ∨ algunos (P ∘ f) xs)" using HI by simp
finally show " algunos P (map f (a # xs)) = algunos (P ∘ f) (a # xs)" by simp
qed
text {*
---------------------------------------------------------------------
Ejercicio 8.1. Demostrar o refutar automáticamente
algunos P (xs @ ys) = (algunos P xs ∨ algunos P ys)
---------------------------------------------------------------------
*}
lemma "algunos P (xs @ ys) = (algunos P xs ∨ algunos P ys)"
oops
text {*
---------------------------------------------------------------------
Ejercicio 8.2. Demostrar o refutar detalladamente
algunos P (xs @ ys) = (algunos P xs ∨ algunos P ys)
---------------------------------------------------------------------
*}
lemma algunos_append:
"algunos P (xs @ ys) = (algunos P xs ∨ algunos P ys)"
oops
text {*
---------------------------------------------------------------------
Ejercicio 9.1. Demostrar o refutar automáticamente
algunos P (rev xs) = algunos P xs
---------------------------------------------------------------------
*}
lemma "algunos P (rev xs) = algunos P xs"
oops
text {*
---------------------------------------------------------------------
Ejercicio 9.2. Demostrar o refutar detalladamente
algunos P (rev xs) = algunos P xs
---------------------------------------------------------------------
*}
lemma "algunos P (rev xs) = algunos P xs"
oops
text {*
---------------------------------------------------------------------
Ejercicio 10. Encontrar un término no trivial Z tal que sea cierta la
siguiente ecuación:
algunos (λx. P x ∨ Q x) xs = Z
y demostrar la equivalencia de forma automática y detallada.
---------------------------------------------------------------------
*}
text {*
---------------------------------------------------------------------
Ejercicio 11.1. Demostrar o refutar automáticamente
algunos P xs = (¬ todos (λx. (¬ P x)) xs)
---------------------------------------------------------------------
*}
lemma "algunos P xs = (¬ todos (λx. (¬ P x)) xs)"
oops
text {*
---------------------------------------------------------------------
Ejercicio 11.2. Demostrar o refutar datalladamente
algunos P xs = (¬ todos (λx. (¬ P x)) xs)
---------------------------------------------------------------------
*}
lemma "algunos P xs = (¬ todos (λx. (¬ P x)) xs)"
oops
text {*
---------------------------------------------------------------------
Ejercicio 12. Definir la funcion primitiva recursiva
estaEn :: 'a ⇒ 'a list ⇒ bool
tal que (estaEn x xs) se verifica si el elemento x está en la lista
xs. Por ejemplo,
estaEn (2::nat) [3,2,4] = True
estaEn (1::nat) [3,2,4] = False
---------------------------------------------------------------------
*}
fun estaEn :: "'a ⇒ 'a list ⇒ bool" where
"estaEn x xs = undefined"
text {*
---------------------------------------------------------------------
Ejercicio 13. Expresar la relación existente entre estaEn y algunos.
Demostrar dicha relación de forma automática y detallada.
---------------------------------------------------------------------
*}
text {*
---------------------------------------------------------------------
Ejercicio 14. Definir la función primitiva recursiva
sinDuplicados :: 'a list ⇒ bool
tal que (sinDuplicados xs) se verifica si la lista xs no contiene
duplicados. Por ejemplo,
sinDuplicados [1::nat,4,2] = True
sinDuplicados [1::nat,4,2,4] = False
---------------------------------------------------------------------
*}
fun sinDuplicados :: "'a list ⇒ bool" where
"sinDuplicados xs = undefined"
text {*
---------------------------------------------------------------------
Ejercicio 15. Definir la función primitiva recursiva
borraDuplicados :: 'a list ⇒ bool
tal que (borraDuplicados xs) es la lista obtenida eliminando los
elementos duplicados de la lista xs. Por ejemplo,
borraDuplicados [1::nat,2,4,2,3] = [1,4,2,3]
Nota: La función borraDuplicados es equivalente a la predefinida
remdups.
---------------------------------------------------------------------
*}
fun borraDuplicados :: "'a list ⇒ 'a list" where
"borraDuplicados xs = undefined"
text {*
---------------------------------------------------------------------
Ejercicio 16.1. Demostrar o refutar automáticamente
length (borraDuplicados xs) ≤ length xs
---------------------------------------------------------------------
*}
lemma length_borraDuplicados:
"length (borraDuplicados xs) ≤ length xs"
oops
text {*
---------------------------------------------------------------------
Ejercicio 16.2. Demostrar o refutar detalladamente
length (borraDuplicados xs) ≤ length xs
---------------------------------------------------------------------
*}
lemma length_borraDuplicados:
"length (borraDuplicados xs) ≤ length xs"
oops
text {*
---------------------------------------------------------------------
Ejercicio 17.1. Demostrar o refutar automáticamente
estaEn a (borraDuplicados xs) = estaEn a xs
---------------------------------------------------------------------
*}
lemma "estaEn a (borraDuplicados xs) = estaEn a xs"
oops
text {*
---------------------------------------------------------------------
Ejercicio 17.2. Demostrar o refutar detalladamente
estaEn a (borraDuplicados xs) = estaEn a xs
---------------------------------------------------------------------
*}
lemma estaEn_borraDuplicados:
"estaEn a (borraDuplicados xs) = estaEn a xs"
oops
text {*
---------------------------------------------------------------------
Ejercicio 18.1. Demostrar o refutar automáticamente
sinDuplicados (borraDuplicados xs)
---------------------------------------------------------------------
*}
lemma "sinDuplicados (borraDuplicados xs)"
oops
text {*
---------------------------------------------------------------------
Ejercicio 18.2. Demostrar o refutar detalladamente
sinDuplicados (borraDuplicados xs)
---------------------------------------------------------------------
*}
lemma sinDuplicados_borraDuplicados:
"sinDuplicados (borraDuplicados xs)"
oops
text {*
---------------------------------------------------------------------
Ejercicio 19. Demostrar o refutar:
borraDuplicados (rev xs) = rev (borraDuplicados xs)
---------------------------------------------------------------------
*}
lemma "borraDuplicados (rev xs) = rev (borraDuplicados xs)"
oops
end