Relación 5
De Razonamiento automático (2013-14)
Revisión del 01:42 8 dic 2013 de Diecabmen1 (discusión | contribuciones)
header {* R5: Cuantificadores sobre listas *}
theory R5
imports Main
begin
text {*
---------------------------------------------------------------------
Ejercicio 1. Definir la función
todos :: ('a ⇒ bool) ⇒ 'a list ⇒ bool
tal que (todos p xs) se verifica si todos los elementos de la lista
xs cumplen la propiedad p. Por ejemplo, se verifica
todos (λx. 1<length x) [[2,1,4],[1,3]]
¬todos (λx. 1<length x) [[2,1,4],[3]]
Nota: La función todos es equivalente a la predefinida list_all.
---------------------------------------------------------------------
*}
-- "irealetei diecabmen1 pabflomar"
fun todos :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where
"todos p [] = True"
|"todos p (x#xs) =(p x ∧ todos p xs)"
value "todos (λx. x>(1::nat)) [2,6,4]" -- "= True"
value "todos (λx. x>(2::nat)) [2,6,4]" -- "= False"
-- "diecabmen1"
value "algunos (λx. 1<length x) [[2,1,4],[3]]"
value "algunos (λx. 1<length x) [[],[3]]"
text {*
---------------------------------------------------------------------
Ejercicio 2. Definir la función
algunos :: ('a ⇒ bool) ⇒ 'a list ⇒ bool
tal que (algunos p xs) se verifica si algunos elementos de la lista
xs cumplen la propiedad p. Por ejemplo, se verifica
algunos (λx. 1<length x) [[2,1,4],[3]]
¬algunos (λx. 1<length x) [[],[3]]"
Nota: La función algunos es equivalente a la predefinida list_ex.
---------------------------------------------------------------------
*}
-- "irealetei diecabmen1 pabflomar"
fun algunos :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where
"algunos p [] = False"
| "algunos p (x#xs) = (p x ∨ algunos p (xs))"
value "algunos (λx. 1<length x) [[2,1,4],[3]]" -- "TRUE"
value "algunos (λx. 1<length x) [[],[3]]" -- "FALSE"
text {*
---------------------------------------------------------------------
Ejercicio 3.1. Demostrar o refutar automáticamente
todos (λx. P x ∧ Q x) xs = (todos P xs ∧ todos Q xs)
---------------------------------------------------------------------
*}
-- "irealetei diecabmen1 pabflomar"
lemma "todos (λx. P x ∧ Q x) xs = (todos P xs ∧ todos Q xs)"
by (induct xs) auto
text {*
---------------------------------------------------------------------
Ejercicio 3.2. Demostrar o refutar detalladamente
todos (λx. P x ∧ Q x) xs = (todos P xs ∧ todos Q xs)
---------------------------------------------------------------------
*}
-- "irealetei pabflomar"
lemma "todos (λx. P x ∧ Q x) xs = (todos P xs ∧ todos Q xs)"
proof (induct xs)
show "todos (λx. P x ∧ Q x)[] = (todos P [] ∧ todos Q [])" by simp
next
fix a xs
assume HI: "todos (λx. P x ∧ Q x) xs = (todos P xs ∧ todos Q xs)"
have "todos (λx. P x ∧ Q x) (a#xs) = ((P a ∧ Q a) ∧ todos (λx. P x ∧ Q x) xs )" by simp
also have "... = (P a ∧ Q a ∧ todos P xs ∧ todos Q xs)" using HI by simp
finally show "todos (λx. P x ∧ Q x) (a#xs) = (todos P (a # xs) ∧ todos Q (a # xs))" by auto
qed
-- "diecabmen1"
lemma "todos (λx. P x ∧ Q x) xs = (todos P xs ∧ todos Q xs)" (is "?P xs")
proof (induct xs)
show "?P []" by simp
next
fix a xs
assume HI: "?P xs"
have "todos (λx. P x ∧ Q x) (a # xs) = (( P a ∧ Q a) ∧ todos (λx. P x ∧ Q x) xs)" by simp
also have "… = (( P a ∧ Q a) ∧ todos P xs ∧ todos Q xs)" using HI by simp
finally show "?P (a#xs)" by auto
qed
text {*
---------------------------------------------------------------------
Ejercicio 4.1. Demostrar o refutar automáticamente
todos P (x @ y) = (todos P x ∧ todos P y)
---------------------------------------------------------------------
*}
-- "irealetei diecabmen1 pabflomar"
lemma "todos P (x @ y) = (todos P x ∧ todos P y)"
by (induct x ) auto
text {*
---------------------------------------------------------------------
Ejercicio 4.2. Demostrar o refutar detalladamente
todos P (x @ y) = (todos P x ∧ todos P y)
---------------------------------------------------------------------
*}
-- "irealetei pabflomar"
lemma todos_append:
"todos P (x @ y) = (todos P x ∧ todos P y)"
proof (induct x)
show "todos P ([] @ y) = (todos P [] ∧ todos P y)" by simp
next
fix a x
assume HI:"todos P (x @ y) = (todos P x ∧ todos P y)"
have " todos P ((a # x) @ y) = (P a ∧ todos P (x @ y))" by simp
also have "...= (P a ∧ todos P x ∧ todos P y)" using HI by simp
finally show "todos P ((a # x) @ y) = (todos P (a # x) ∧ todos P y)" by simp
qed
-- "diecabmen1"
lemma todos_append: "todos P (x @ y) = (todos P x ∧ todos P y)" (is "?P x y")
proof (induct x)
show "?P [] y" by simp
next
fix a x
assume HI: "?P x y"
have "todos P (a#x @ y) = (P a ∧ todos P (x@y))" by simp
also have "… = (P a ∧ todos P x ∧ todos P y)" using HI by simp
finally show "?P (a#x) y" by auto
qed
text {*
---------------------------------------------------------------------
Ejercicio 5.1. Demostrar o refutar automáticamente
todos P (rev xs) = todos P xs
---------------------------------------------------------------------
*}
--"maresccas4"
lemma "todos P (rev xs) = todos P xs"
apply (induct xs)
apply (simp_all add:todos_append)
by auto
-- "diecabmen1 irealetei"
lemma "todos P (rev xs) = todos P xs"
by (induct xs) (auto simp add: todos_append)
text {*
---------------------------------------------------------------------
Ejercicio 5.2. Demostrar o refutar detalladamente
todos P (rev xs) = todos P xs
---------------------------------------------------------------------
*}
--"irealetei"
lemma "todos P (rev xs) = todos P xs"
proof (induct xs)
show "todos P (rev []) = todos P []" by simp
next
fix xs a
assume HI:"todos P (rev xs) = todos P xs"
have "todos P (rev (a # xs)) = todos P (rev xs @ [a])" by simp
also have "... = ( P a ∧ todos P (rev xs))" by (simp add:todos_append) auto
also have "... = ( P a ∧ todos P xs)" using HI by simp
finally show "todos P (rev (a # xs))= todos P (a#xs)" by simp
qed
(* pabflomar: Irene, la primera línea es prescindible
irealetei: Ya pero lo veo más claro así ^_^O *)
-- "pabflomar"
lemma "todos P (rev xs) = todos P xs"
proof (induct xs)
show "todos P (rev []) = todos P []" by simp
next
fix a xs
assume HI: "todos P (rev xs) = todos P xs"
have "todos P (rev (a # xs)) = (P a ∧ todos P (rev xs))" by (simp add:todos_append) auto
also have "... = (P a ∧ todos P xs)" using HI by simp
finally show "todos P (rev (a # xs)) = todos P (a # xs)" by simp
qed
-- "diecabmen1"
lemma "todos P (rev xs) = todos P xs" (is "?P xs")
proof (induct xs)
show "?P []" by simp
next
fix a xs
assume HI: "?P xs"
have "todos P (rev (a#xs)) = todos P (rev xs @ [a])" by simp
also have "… = (todos P (rev xs) ∧ todos P [a])" by (simp add: todos_append)
also have "… = (todos P xs ∧ todos P [a])" using HI by simp
finally show "?P (a#xs)" by auto
qed
text {*
---------------------------------------------------------------------
Ejercicio 6. Demostrar o refutar:
algunos (λx. P x ∧ Q x) xs = (algunos P xs ∧ algunos Q xs)
---------------------------------------------------------------------
*}
--"irealetei"
(*lemma "algunos (λx. P x ∧ Q x) xs = (algunos P xs ∧ algunos Q xs)"
proof (induct xs)
show "algunos (λx. P x ∧ Q x) [] = (algunos P [] ∧ algunos Q [])" by simp
next
fix a xs
assume HI:"algunos (λx. P x ∧ Q x) xs = (algunos P xs ∧ algunos Q xs)"
have " algunos (λx. P x ∧ Q x) (a # xs) =((P a ∧ Q a) ∨ algunos (λx. P x ∧ Q x) xs)" by simp
also have "... = ((P a ∧ Q a) ∨ (algunos P xs ∧ algunos Q xs))" using HI by simp
--"Me da que esto es falso"
qed*)
(* irealetei: Me ha gustado la solución de maresccas4 diecabmen1 y me uno *)
-- "maresccas4 diecabmen1 irealetei"
lemma "algunos (λx. P x ∧ Q x) xs = (algunos P xs ∧ algunos Q xs)"
quickcheck
oops
(* Contraejemplo:
P = {a⇣1}
Q = {a⇣2}
xs = {a⇣1, a⇣2}
*)
text {*
---------------------------------------------------------------------
Ejercicio 7.1. Demostrar o refutar automáticamente
algunos P (map f xs) = algunos (P ∘ f) xs
---------------------------------------------------------------------
*}
-- "irealetei"
lemma "algunos P (map f xs) = algunos (P o f) xs"
by (induct xs) auto
text {*
---------------------------------------------------------------------
Ejercicio 7.2. Demostrar o refutar datalladamente
algunos P (map f xs) = algunos (P ∘ f) xs
---------------------------------------------------------------------
*}
-- "irealetei diecabmen1"
lemma "algunos P (map f xs) = algunos (P o f) xs"
proof (induct xs)
show "algunos P (map f []) = algunos (P ∘ f) []" by simp
next
fix a xs
assume HI:"algunos P (map f xs) = algunos (P ∘ f) xs"
have "algunos P (map f (a # xs)) = algunos P (f a # (map f xs))" by simp
also have "... = (P (f a) ∨ algunos P (map f xs))" by simp
also have "... = (P (f a) ∨ algunos (P ∘ f) xs)" using HI by simp
also have "... = ((P ∘ f) a ∨ algunos (P ∘ f) xs)" by simp
finally show " algunos P (map f (a # xs)) = algunos (P ∘ f) (a # xs)" by simp
qed
text {*
---------------------------------------------------------------------
Ejercicio 8.1. Demostrar o refutar automáticamente
algunos P (xs @ ys) = (algunos P xs ∨ algunos P ys)
---------------------------------------------------------------------
*}
-- "irealetei diecabmen1"
lemma "algunos P (xs @ ys) = (algunos P xs ∨ algunos P ys)"
by (induct xs) auto
text {*
---------------------------------------------------------------------
Ejercicio 8.2. Demostrar o refutar detalladamente
algunos P (xs @ ys) = (algunos P xs ∨ algunos P ys)
---------------------------------------------------------------------
*}
-- "irealetei"
lemma algunos_append:
"algunos P (xs @ ys) = (algunos P xs ∨ algunos P ys)"
proof (induct xs)
show "algunos P ([] @ ys) = (algunos P [] ∨ algunos P ys)" by simp
next
fix a xs
assume HI:"algunos P (xs @ ys) = (algunos P xs ∨ algunos P ys)"
have " algunos P ((a # xs) @ ys) = (P a ∨ algunos P (xs @ys))" by simp
also have "... = (P a ∨ algunos P xs ∨ algunos P ys)" using HI by simp
finally show "algunos P ((a # xs) @ ys) = (algunos P (a # xs) ∨ algunos P ys)" by simp
qed
-- "diecabmen1"
lemma algunos_append:
"algunos P (xs @ ys) = (algunos P xs ∨ algunos P ys)" (is "?P xs ys")
proof (induct xs)
show "?P [] ys" by simp
next
fix a xs
assume HI: "?P xs ys"
have "algunos P ((a#xs) @ ys) = algunos P (a # xs @ ys) " by simp
also have "… = (P a ∨ algunos P (xs @ ys))" by simp
also have "… = (P a ∨ algunos P xs ∨ algunos P ys)" using HI by simp
finally show "?P (a#xs) ys" by simp
qed
text {*
---------------------------------------------------------------------
Ejercicio 9.1. Demostrar o refutar automáticamente
algunos P (rev xs) = algunos P xs
---------------------------------------------------------------------
*}
-- "irealetei diecabmen1"
lemma "algunos P (rev xs) = algunos P xs"
by (induct xs) (auto simp add:algunos_append)
-- "maresccas4"
lemma "algunos P (rev xs) = algunos P xs"
apply (induct xs)
apply (simp_all add:algunos_append)
by auto
text {*
---------------------------------------------------------------------
Ejercicio 9.2. Demostrar o refutar detalladamente
algunos P (rev xs) = algunos P xs
---------------------------------------------------------------------
*}
--"irealetei"
lemma "algunos P (rev xs) = algunos P xs"
proof (induct xs)
show "algunos P (rev []) = algunos P []" by simp
next
fix a xs
assume HI:"algunos P (rev xs) = algunos P xs"
have " algunos P (rev (a # xs))= algunos P (rev xs @ [a])" by simp
also have "... = (P a ∨ algunos P (rev xs))" by (simp add:algunos_append) auto
also have "... = (P a ∨ algunos P xs)" using HI by simp
finally show "algunos P (rev (a # xs)) = algunos P (a # xs)" by simp
qed
-- "diecabmen1"
lemma "algunos P (rev xs) = algunos P xs" (is "?P xs")
proof (induct xs)
show "?P []" by simp
next
fix a xs
assume HI: "?P xs"
have "algunos P (rev (a#xs)) = algunos P (rev xs @ [a])" by simp
also have "… = (algunos P (rev xs) ∨ algunos P [a])" by (simp add: algunos_append)
also have "… = (algunos P xs ∨ algunos P [a])" using HI by simp
finally show "?P (a#xs)" by auto
qed
text {*
---------------------------------------------------------------------
Ejercicio 10. Encontrar un término no trivial Z tal que sea cierta la
siguiente ecuación:
algunos (λx. P x ∨ Q x) xs = Z
y demostrar la equivalencia de forma automática y detallada.
---------------------------------------------------------------------
*}
--"irealetei"
lemma "algunos (λx. P x ∨ Q x) xs =(algunos P xs ∨ algunos Q xs)"
by (induct xs) auto
lemma "algunos (λx. P x ∨ Q x) xs =(algunos P xs ∨ algunos Q xs)"
proof (induct xs)
show " algunos (λx. P x ∨ Q x) [] = (algunos P [] ∨ algunos Q [])" by simp
next
fix a xs
assume HI:"algunos (λx. P x ∨ Q x) xs = (algunos P xs ∨ algunos Q xs)"
have " algunos (λx. P x ∨ Q x) (a # xs) = ((P a ∨ Q a) ∨ algunos (λx. P x ∨ Q x) xs)" by simp
also have "... = ((P a ∨ Q a) ∨ (algunos P xs ∨ algunos Q xs))" using HI by simp
also have "... = (P a ∨ algunos P xs ∨ Q a ∨ algunos Q xs)" by auto
finally show " algunos (λx. P x ∨ Q x) (a # xs) = (algunos P (a # xs) ∨ algunos Q (a # xs))" by simp
qed
text {*
---------------------------------------------------------------------
Ejercicio 11.1. Demostrar o refutar automáticamente
algunos P xs = (¬ todos (λx. (¬ P x)) xs)
---------------------------------------------------------------------
*}
-- "irealetei diecabmen1"
lemma "algunos P xs = (¬ todos (λx. (¬ P x)) xs)"
by (induct xs) auto
text {*
---------------------------------------------------------------------
Ejercicio 11.2. Demostrar o refutar datalladamente
algunos P xs = (¬ todos (λx. (¬ P x)) xs)
---------------------------------------------------------------------
*}
--"irealetei"
lemma "algunos P xs = (¬ todos (λx. (¬ P x)) xs)"
proof (induct xs)
show "algunos P [] = (¬ todos (λx. ¬ P x) [])" by simp
next
fix a xs
assume HI:"algunos P xs = (¬ todos (λx. ¬ P x) xs)"
have "algunos P (a # xs) = (P a ∨ algunos P xs)" by simp
also have "... = (P a ∨ (¬ todos (λx. ¬ P x) xs))" using HI by simp
also have "... = (¬(¬P a ∧ ¬¬ todos (λx. ¬ P x) xs))" by simp
also have "... = (¬(¬P a ∧ todos (λx. ¬ P x) xs))" by simp
finally show "algunos P (a # xs) = (¬ todos (λx. ¬ P x) (a # xs))" by simp
qed
lemma "algunos P xs = (¬ todos (λx. (¬ P x)) xs)" (is "?P xs")
proof (induct xs)
show "?P []" by simp
next
fix a xs
assume HI: "?P xs"
have "algunos P (a#xs) = (P a ∨ algunos P xs)" by simp
also have "… = (P a ∨ (¬ todos (λx. (¬ P x)) xs))" using HI by simp
finally show "?P (a#xs)" by simp
qed
text {*
---------------------------------------------------------------------
Ejercicio 12. Definir la funcion primitiva recursiva
estaEn :: 'a ⇒ 'a list ⇒ bool
tal que (estaEn x xs) se verifica si el elemento x está en la lista
xs. Por ejemplo,
estaEn (2::nat) [3,2,4] = True
estaEn (1::nat) [3,2,4] = False
---------------------------------------------------------------------
*}
--"irealetei"
fun estaEn :: "'a ⇒ 'a list ⇒ bool" where
"estaEn x [] = False"
|"estaEn x (a # xs) = (a=x ∨ estaEn x xs)"
value "estaEn (2::nat) [3,2,4]" -- "True"
value "estaEn (1::nat) [3,2,4]" -- "False"
text {*
---------------------------------------------------------------------
Ejercicio 13. Expresar la relación existente entre estaEn y algunos.
Demostrar dicha relación de forma automática y detallada.
---------------------------------------------------------------------
*}
-- "irealetei"
fun igual :: "'a ⇒ 'a ⇒ bool" where
"igual x y = (x=y)"
lemma "(algunos (igual x) xs) = (estaEn x xs)"
by (induct xs) auto
lemma "(algunos (igual x) xs) = (estaEn x xs)"
proof (induct xs)
show " algunos (igual x) [] = estaEn x []" by simp
next
fix a xs
assume HI:"algunos (igual x) xs = estaEn x xs"
have "algunos (igual x) (a # xs) = (igual x a ∨ algunos (igual x) xs)" by simp
also have "... = (igual x a ∨ estaEn x xs)" using HI by simp
finally show "algunos (igual x) (a # xs) = (estaEn x (a#xs))" by simp auto
qed
text {*
---------------------------------------------------------------------
Ejercicio 14. Definir la función primitiva recursiva
sinDuplicados :: 'a list ⇒ bool
tal que (sinDuplicados xs) se verifica si la lista xs no contiene
duplicados. Por ejemplo,
sinDuplicados [1::nat,4,2] = True
sinDuplicados [1::nat,4,2,4] = False
---------------------------------------------------------------------
*}
fun sinDuplicados :: "'a list ⇒ bool" where
"sinDuplicados xs = undefined"
text {*
---------------------------------------------------------------------
Ejercicio 15. Definir la función primitiva recursiva
borraDuplicados :: 'a list ⇒ bool
tal que (borraDuplicados xs) es la lista obtenida eliminando los
elementos duplicados de la lista xs. Por ejemplo,
borraDuplicados [1::nat,2,4,2,3] = [1,4,2,3]
Nota: La función borraDuplicados es equivalente a la predefinida
remdups.
---------------------------------------------------------------------
*}
fun borraDuplicados :: "'a list ⇒ 'a list" where
"borraDuplicados xs = undefined"
text {*
---------------------------------------------------------------------
Ejercicio 16.1. Demostrar o refutar automáticamente
length (borraDuplicados xs) ≤ length xs
---------------------------------------------------------------------
*}
lemma length_borraDuplicados:
"length (borraDuplicados xs) ≤ length xs"
oops
text {*
---------------------------------------------------------------------
Ejercicio 16.2. Demostrar o refutar detalladamente
length (borraDuplicados xs) ≤ length xs
---------------------------------------------------------------------
*}
lemma length_borraDuplicados:
"length (borraDuplicados xs) ≤ length xs"
oops
text {*
---------------------------------------------------------------------
Ejercicio 17.1. Demostrar o refutar automáticamente
estaEn a (borraDuplicados xs) = estaEn a xs
---------------------------------------------------------------------
*}
lemma "estaEn a (borraDuplicados xs) = estaEn a xs"
oops
text {*
---------------------------------------------------------------------
Ejercicio 17.2. Demostrar o refutar detalladamente
estaEn a (borraDuplicados xs) = estaEn a xs
---------------------------------------------------------------------
*}
lemma estaEn_borraDuplicados:
"estaEn a (borraDuplicados xs) = estaEn a xs"
oops
text {*
---------------------------------------------------------------------
Ejercicio 18.1. Demostrar o refutar automáticamente
sinDuplicados (borraDuplicados xs)
---------------------------------------------------------------------
*}
lemma "sinDuplicados (borraDuplicados xs)"
oops
text {*
---------------------------------------------------------------------
Ejercicio 18.2. Demostrar o refutar detalladamente
sinDuplicados (borraDuplicados xs)
---------------------------------------------------------------------
*}
lemma sinDuplicados_borraDuplicados:
"sinDuplicados (borraDuplicados xs)"
oops
text {*
---------------------------------------------------------------------
Ejercicio 19. Demostrar o refutar:
borraDuplicados (rev xs) = rev (borraDuplicados xs)
---------------------------------------------------------------------
*}
lemma "borraDuplicados (rev xs) = rev (borraDuplicados xs)"
oops
end