Documentación
De Razonamiento automático (2013-14)
Revisión del 19:19 8 feb 2022 de Jalonso (discusión | contribuciones) (Se ha deshecho la revisión 698 de Jalonso (disc.))
En esta página se recogen en enlaces que sirven de documentación al curso de demostración asistida por ordenador (DAO).
Sumario
Visiones generales de la DAO
- J.A. Alonso. Razonamiento formalizado: Del sueño a la realidad de las pruebas. Vestigium, 26 de diciembre de 2012.
- J. Avigad. Interactive theorem proving, automated reasoning, and mathematical computation. ICERM, 14 de diciembre de 2012.
- M. Davis. The early history of automated deduction.
- J.P. Delahaye Du rêve à la réalité des preuves. Interstices, 8 de julio de 2012.
- J. Germoni Coq et caractères: Preuve formelle du théorème de Feit et Thompson. Images des Mathématiques, CNRS, 23 de noviembre de 2012.
- H. Geuvers Proof assistants: History, ideas and future. Sadhana, Vol. 34-1, pp. 3-25, février 2009.
- G. Gonthier The four-color theorem. Notices of the AMS, Vol. 55, n° 11, pp. 1382-1393, 2008.
- T. Hales. Formal proof. Notices of AMS, Vol. 55, N. 11 (2008) pp. 1370-1380.
- J. Harrison. A short survey of automated reasoning. Lecture Notes in Computer Science, Vol. 4545, pp. 334-349, 2007.
- J. Harrison. Formal proof: Theory and practice. Notices of the AMS, Vol. 55, N. 11 (2008) p.1395-1406.
- G. Kolata. Computer math proof shows reasoning power. The New York Times, 10 de diciembre de 1996.
- D. MacKenzie Computers and the sociology of mathematical proof.
- G. Sutcliffe. What is automated theorem proving?.
- F. Wiedijk Formalizing the «top 100» of mathematical theorems.
- F. Wiedijk Formal proof - Getting started. Notices of the AMS, Vol. 55, n° 11, pp. 1408-1414, 2008.
- F. Wiedijk, The QED manifesto revisited. Studies in Logic, Grammar and Rhetoric, Vol. 10(23), pp. 121-133, 2007.
Referencias sobre Isabelle/HOL
- B. Grechuk Isabelle primer for mathematicians.
- T. Nipkow Programming and proving in Isabelle/HOL.
- T. Nipkow, M. Wenzel y L.C. Paulson A proof assistant for higher-order logic. Springer-Verlag.
- Isabelle/HOL — Higher-Order Logic.
- M. Wenzel The Isabelle/Isar Reference Manual.
- M. Wenzel The Isabelle/Isar quick reference.
- J. Siek Quick Reference for Isabelle/Isar Propositional Logic.
- J. Siek Quick Reference for Isabelle/Isar More Proof Techniques.
- J. Siek Quick Reference for Isabelle/Isar First-Order Logic.
- Tutorials and manuals for Isabelle2013.
Lecturas complementarias
Programación funcional
- J.A. Alonso Temas de "Programación funcional". Publicaciones del Grupo de Lógica Computacional. Universidad de Sevilla, 2012.
- J.A. Alonso y M.J. Hidalgo Piensa en Haskell (Ejercicios de programación funcional con Haskell). Publicaciones del Grupo de Lógica Computacional. Universidad de Sevilla, 2012.
- G. Hutton Programming in Haskell. Cambridge University Press, 2007.
- M. Lipovača ¡Aprende Haskell por el bien de todos!.
Lógica computacional
- J.A. Alonso Temas de "Lógica informática" (2012-13). Publicaciones del Grupo de Lógica Computacional. Universidad de Sevilla, 2012.
- R. Bornat Proof and disproof in formal logic: an introduction for programmers. Oxford University Press, 2005.
- K. Broda, S. Eisenbach, H. Khoshnevisan y S. Vickers Reasoned programming. Imperial College, 1994.
- K. Doets y J. van Eijck The Haskell Road to Logic, Maths and Programming.
- M. Huth y M. Ryan Logic in computer science: Modelling and reasoning about systems. Cambridge University Press, 2004. (Incluye el tutor en la Red).
Cursos relacionados
Cursos con Isabelle/HOL
- Jeremy Avigad. Logic and Formal Verification. (Carnegie Mellon, 2009).
- Clemens Ballarin. Automatic Deduction. (Univ de Innsbruck, 2008).
- Clemens Ballarin. Introduction to the Isabelle Proof Assistant. (Belgrado, 2008).
- Clemens Ballarin y Gerwin Klein Introduction to the Isabelle Proof Assistant. (en el IJCAR-2004).
- Clemens Ballarin y Tjark Weber. Automated Theorem Proving in Isabelle/HOL. (Univ. de Innsbruck, 2006-07).
- A.D. Brucker, D. Basin, J.G. Smaus y B. Wolff. Computer-supported Modeling and Reasoning. (ETH Zurich, 2011).
- Mads Dam. Advanced formal methods. (KTH Royal Institute of Technology, 2007).
- Jacques Fleuriot y Paul Jackson. Automated reasoning. (Univ. de Edimburgo, 2012-13).
- Thomas Genet Software formal analysis and design. (Univ. de Rennes)
- Gerwin Klein. Theorem Proving - Principles, Techniques, Applications. (NICTA, 2004).
- Gerwin Klein. Advanced Topics in Software Verification. (NICTA, 2012).
- Joao Marcos. Lógica computacional: Demonstração assistida e semi-automática de teoremas.(UFRN, 2000).
- Tobias Nipkow. Semantics of programming languages. (Univ. de Munich, 2012-13).
- Tobias Nipkow Theorem Proving with Isabelle/HOL An Intensive Course.
- Larry Paulson. Interactive Formal Verification. (Univ. de Cambridge, 2009-10).
- Arnd Poetzsch-Heffter. Specification and Verification with Higher-Order Logic.
- Viorel Preoteasa, Ralph-Johan Back y Charmi Panchal. Introduction to mechanized reasoning with Isabelle/HOL. (Åbo Akademi University, 2012).
- Jeremy G. Siek. Practical Theorem Proving with Isabelle/Isar. (Univ. de Colorado, 2007).
- Jeremy G. Siek. Theorem proving in Isabelle. (Univ. de Colorado, 2011).
- Jan-Georg Smaus. Computer-supported modeling and reasoning. (Univ. de Feiburgo, 2009).
- Christian Sternagel Experiments in Verification – Introduction to Isabelle/HOL. (Univ. de Innsbruck, 2011-12).
- Tjark Weber. Interactive Formal Verification. (Univ. de Cambridge, 2010-11).
Otros cursos
- José A. Alonso Lógica informática (Univ. de Sevilla, 2012-13).
- Yves Bertot, Pierre Casteran, Benjamin Gregoire, Pierre Letouzey y Assia Mahboubi Modelling and verifying algorithms in Coq: an introduction. (INRIA Paris-Rocquencourt, 14-18 noviembre 2011).
- Pierre Castéran Logic (Master In Verification) (Univ. de Burdeos, 2011-12).
- Adam Chlipala Interactive computer theorem proving. (MIT, 2012-13).
- Adam Chlipala y Armando Solar Lezama Foundations of program analysis. (MIT, 2013-14).
- Robby Findler Certified programming with dependent types. (Northwestern, 2013-14).
- Nuno Gaspar Verification with the Coq Proof Assistant (INRIA Sophia Antipolis, 2012-13).
- Carlos Luna y Gustavo Betarte. Construcción formal de programas en teoría de tipos. (Univ. de la República, Uruguay, 2013-14).
- Michael Genesereth Computational Logic (Univ. de Stanford, 2011-12).
- Ian Hodkinson Logic (Imperial College, Londres, 2010-11).
- Peter Lucas Knowledge Representation and Reasoning (Radboud University # egen, 2011-12).
- Larry Paulson Logic and Proof (Univ. de Cambridge, 2011-12).
- Michael Winter [Logic in Computer Science] (Brock University, Ontario, Canada, 2010-11).
Bibliotecas de ejemplos de verificación
- Archive of Formal Proofs.
- Formalizing 100 Theorems.
- Gallery of verified programs.
- Induction Challenge Problems.
- Larry Wos' Notebooks.
- The TPTP Problem Library for Automated Theorem Proving.
- The 1st Verified Software Competition.
- The 2nd Verified Software Competition.
- VerifyThis (A collection of verification benchmarks.
Artículos recientes
Están en orden cronológico inverso a la fecha de su reseña en Vestigium:
- Proof Pearl: A probabilistic proof for the Girth-Chromatic number theorem. L. Noschinski
- A graph library for Isabelle. ~ L. Noschinski
- Gödel’s incompleteness theorems. ~ L.C. Paulson
- The hereditarily finite sets. ~ L.C. Paulson
- Applications of real number theorem proving in PVS. ~ H. Gottliebsen, R. Hardy, O. Lightfoot y U. Martin
- A machine-assisted proof of Gödel’s incompleteness theorems for the theory of hereditarily finite sets. ~ L.C. Paulson
- Verified AIG algorithms in ACL2. ~ J. Davis y S. Swords
- A formal model and correctness proof for an access control policy framework. ~ C. Wu, X. Zhang y C. Urban
- The ontological argument in PVS. ~ J. Rushby
- Formalizing Moessner’s theorem and generalizations in Nuprl. ~ M. Bickford, D. Kozen y A. Silva
- Formalization in PVS of balancing properties necessary for the security of the Dolev-Yao cascade protocol model. ~ M. Ayala y Y. Santos
- Proof assistant based on didactic considerations. ~ J. Pais y A Tasistro
- Theory exploration for interactive theorem proving. ~ M. Johansson
- From Tarski to Hilbert. ~ G. Braun y J. Narboux
- Formal verification of language-based concurrent noninterference. ~ A. Popescu, J. Hölzl y T. Nipkow
- A Traffic Alert and Collision Avoidance System(TCAS-II) Resolution Advisory Algorithm. ~ C. Muñoz, A. Narkawicz y J. Chamberlain
- Formal verification of cryptographic security proofs. ~ M. Berg
- Polygonal numbers in Mizar. ~ A. Grabowski
- A mechanised proof of Gödel’s incompleteness theorems using Nominal Isabelle. ~ L.C. Paulson
- Steps towards verified implementations of HOL Light. ~ M.O. Myreen, S. Owens y R. Kumar
- Generic datatypes à la carte. ~ S. Keuchel y T. Schrijvers
- Proof pearl: A verified bignum implementation in x86-64 machine code. ~ M.O. Myreen y G. Curello
- Mechanized metatheory for a λ λ-calculus with trust types. ~ R. Ribeiro, C. Camarão y L. Figueiredo
- Proving soundness of combinatorial Vickrey auctions and generating verified executable code. ~ M.B. Caminati, M. Kerber, C. Lange y C. Rowat
- A computer-assisted proof of correctness of a marching cubes algorithm. ~ A.N. Chernikov y J. Xu
- Verifying the bridge between simplicial topology and algebra: the Eilenberg-Zilber algorithm. ~ L. Lambán, J. Rubio, F.J. Martín y J.L. Ruiz
- The Königsberg bridge problem and the friendship theorem. ~ W. Li
- Formal verification of a proof procedure for the description logic ALC. ~ M. Chaabani, M. Mezghiche y M. Strecker
- Pratt’s primality certificates. ~ S. Wimmer y L. Noschinski
- Reasoning about higher-order relational specifications. ~ Y. Wang, K. Chaudhuri, A. Gacek y G. Nadathur
- Proofs you can believe in – Proving equivalences between Prolog semantics in Coq. ~ J. Kriener, A. King y S. Blazy
- Certified, efficient and sharp univariate Taylor models in Coq. ~ E. Martin-Dorel, L. Rideau, L. Théry, M. Mayero y I. Paşca
- Ordinals in HOL: Transfinite arithmetic up to (and beyond) ω₁. ~ M. Norrish y B. Huffman
- Program verification based on Kleene algebra in Isabelle/HOL ~ A. Armstrong, G. Struth y T. Weber
- Reading an algebra textbook (by translating it to a formal document in the Isabelle/Isar language). ~ C. Ballarin
- Computational verification of network programs in Coq. ~ G. Stewart
- Certifying homological algorithms to study biomedical images. ~ M. Poza
- Formalizing cut elimination of coalgebraic logics in Coq. ~ H. Tews
- The formalization of syntax-based mathematical algorithms using quotation and evaluation. ~ W.M. Farmer
- Certified symbolic manipulation: Bivariate simplicial polynomials. ~ L. Lambán, F.J. Martín, J. Rubio y J.L. Ruiz
- Solveurs CP(FD) vérifiés formellement. ~ C Dubois y A. Gotlieb
- Formalizing bounded increase. ~ R. Thiemann
- Formal mathematics on display: A wiki for Flyspeck. ~ C. Tankink, C. Kaliszyk, J. Urban y H. Geuvers
- Theorem of three circles in Coq. ~ J. Zsidó
- Certified HLints with Isabelle/HOLCF-Prelude. ~ J. Breitner, B. Huffman, N. Mitchell y C. Sternagel
- Automatic data refinement. ~ P. Lammich
- The rooster and the butterflies (a machine-checked proof of the Jordan-Hölder theorem for finite groups). ~ A. Mahboubi
- Mechanical verification of SAT refutations with extended resolution. ~ N. Wetzler, M.J.H. Heule y W.A. Hunt Jr.
- Type classes and filters for mathematical analysis in Isabelle/HOL ~ J. Hölzl, F. Immler y B. Huffman
- Verifying refutations with extended resolution. ~ M. J. H. Heule, W. A. Hunt, Jr. y N. Wetzler
- A Web interface for Isabelle: The next generation. ~ C. Lüth y M. Ring
- On the formalization of continuous-time Markov chains in HOL. ~ L. Liu, O. Hasan y S. Tahar
- Formalizing Turing machines. ~ A. Asperti y W. Ricciotti
- Light-weight containers for Isabelle: efficient, extensible, nestable. ~ A. Lochbihler
- Graph theory. ~ L. Noschinski
- A machine-checked proof of the odd order theorem. ~ G. Gonthier et als.
- A constructive theory of regular languages in Coq. ~ C. Doczkal, J.O. Kaiser y G. Smolka
- A formal proof of Kruskal’s tree theorem in Isabelle/HOL. ~ C. Sternagel
- Formalizing Knuth-Bendix orders and Knuth-Bendix completion. ~ C. Sternagel y R. Thiemann
- Developing an auction theory toolbox. ~ C. Lange, C. Rowat, W. Windsteiger y M. Kerber
- Formalization of incremental simplex algorithm by stepwise refinement. ~ M. Spasić y F. Marić
- Coinductive pearl: Modular first-order logic completeness. ~ J.C. Blanchette, A. Popescu y D. Traytel
- A fully verified executable LTL model checker. ~ J. Esparza et als.
- ForMaRE - formal mathematical reasoning in economics. ~ M. Kerber, C. Lange y C. Rowat.
- AI over large formal knowledge bases: The first decade. ~ J. Urban.
- Formalization of real analysis: A survey of proof assistants and libraries. ~ S. Boldo, C. Lelay y G. Melquiond.
- Data refinement in Isabelle/HOL. ~ F. Haftmann, A. Krauss, O. Kunčar y T. Nipkow
- Formalizing the confluence of orthogonal rewriting systems. ~ A.C. Rocha y M. Ayala.
- Formalization of the complex number theory in HOL4. ~ Z. Shi et als.
- Programming and reasonning with PowerLists in Coq. ~ F. Loulergue y V. Niculescu
- A hierarchy of mathematical structures in ACL2. ~ J. Heras, F.J. Martín y V. Pascual.
- Mechanising Turing Machines and Computability Theory in Isabelle/HOL ~ J. Xu, X. Zhang y C. Urban