Relación 9
De Razonamiento automático (2013-14)
Revisión del 00:34 19 ene 2014 de Irealetei (discusión | contribuciones)
header {* R9: Deducción natural proposicional (1) *}
theory R9
imports Main
begin
text {*
---------------------------------------------------------------------
El objetivo de esta relación es lemas usando sólo las reglas básicas
de deducción natural de la lógica proposicional.
Las reglas básicas de la deducción natural necesarias son las
siguientes:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬P ⟹ P
· notnotI: P ⟹ ¬¬P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· mt: ⟦F ⟶ G; ¬G⟧ ⟹ ¬F
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
---------------------------------------------------------------------
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación.
*}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
section {* Implicaciones *}
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej1_auto:
assumes "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
using assms
by auto
lemma ej1:
assumes 1:"p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof -
{assume 2:"q"
{assume 3:"p"
have 4:"q⟶r" using 1 3 by (rule mp)
have 5:"r" using 4 2 by (rule mp)}
then have "p⟶r" by (rule impI)}
then show "q⟶(p⟶r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej2_auto:
assumes " p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
using assms by auto
lemma ej2:
assumes 1:" p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof -
{assume 2:"(p ⟶ q)"
{assume 3:"p"
have 4:"q" using 2 3 by (rule mp)
have 5:"q⟶r" using 1 3 by (rule mp)
have 6:"r" using 5 4 by (rule mp)}
then have "p⟶r" by (rule impI)}
then show "(p ⟶ q)⟶(p⟶r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej3_auto:"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
by auto
lemma ej3:"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof -
{ assume 1:"(p⟶(q⟶r))"
{assume 3:"p⟶q"
{assume 4:"p"
have 5: "q⟶r" using 1 4 by (rule mp)
have 6:"q" using 3 4 by (rule mp)
have 7:"r" using 5 6 by (rule mp)}
then have "p⟶r" by (rule impI)}
then have "(p⟶q)⟶p⟶r" by (rule impI)}
then show "(p⟶(q⟶r))⟶((p⟶q)⟶p⟶r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej4_auto:
assumes "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
using assms by auto
section {* Conjunciones *}
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej5_auto:
assumes "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
using assms by auto
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej6_auto:
assumes "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
using assms by auto
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej7_auto:
assumes " p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
using assms by auto
section {* Disyunciones *}
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej8_auto:
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
using assms by auto
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej9_auto:
assumes "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
using assms by auto
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej10_auto:
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
using assms by auto
end