Diferencia entre revisiones de «Relación 9»
De Razonamiento automático (2013-14)
Línea 269: | Línea 269: | ||
qed | qed | ||
+ | -- "diecabmen1" | ||
+ | lemma Ejercicio_7: | ||
+ | assumes "p ∧ (q ⟶ r)" | ||
+ | shows "(p ⟶ q) ⟶ r" | ||
+ | proof | ||
+ | assume "p ⟶ q" | ||
+ | have "p" using assms .. | ||
+ | with `p ⟶ q` have "q" .. | ||
+ | have "q ⟶ r" using assms .. | ||
+ | then show "r" using `q` .. | ||
+ | qed | ||
section {* Disyunciones *} | section {* Disyunciones *} |
Revisión del 04:33 20 ene 2014
header {* R9: Deducción natural proposicional (1) *}
theory R9
imports Main
begin
text {*
---------------------------------------------------------------------
El objetivo de esta relación es lemas usando sólo las reglas básicas
de deducción natural de la lógica proposicional.
Las reglas básicas de la deducción natural necesarias son las
siguientes:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬P ⟹ P
· notnotI: P ⟹ ¬¬P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· mt: ⟦F ⟶ G; ¬G⟧ ⟹ ¬F
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
---------------------------------------------------------------------
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación.
*}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
section {* Implicaciones *}
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej1_auto:
assumes "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
using assms
by auto
lemma ej1:
assumes 1:"p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof -
{assume 2:"q"
{assume 3:"p"
have 4:"q⟶r" using 1 3 by (rule mp)
have "r" using 4 2 by (rule mp)}
then have "p⟶r" by (rule impI)}
then show "q⟶(p⟶r)" by (rule impI)
qed
-- "diecabmen1"
lemma Ejercicio_1:
assumes "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof -
{ assume "q"
{ assume "p"
with assms have "q ⟶ r" ..
then have "r" using `q` .. }
then have "p ⟶ r" .. }
then show "q ⟶ (p ⟶ r)" ..
qed
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej2_auto:
assumes " p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
using assms by auto
lemma ej2:
assumes 1:" p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof -
{assume 2:"(p ⟶ q)"
{assume 3:"p"
have 4:"q" using 2 3 by (rule mp)
have 5:"q⟶r" using 1 3 by (rule mp)
have "r" using 5 4 by (rule mp)}
then have "p⟶r" by (rule impI)}
then show "(p ⟶ q)⟶(p⟶r)" by (rule impI)
qed
-- "diecabmen1"
lemma Ejercicio_2:
assumes "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof
assume "p ⟶ q"
show "p ⟶ r"
proof
assume "p"
with `p ⟶ q` have "q" ..
have "q ⟶ r" using assms `p` ..
then show "r" using `q` ..
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej3_auto:"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
by auto
lemma ej3:"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof -
{ assume 1:"(p⟶(q⟶r))"
{assume 3:"p⟶q"
{assume 4:"p"
have 5: "q⟶r" using 1 4 by (rule mp)
have 6:"q" using 3 4 by (rule mp)
have "r" using 5 6 by (rule mp)}
then have "p⟶r" by (rule impI)}
then have "(p⟶q)⟶p⟶r" by (rule impI)}
then show "(p⟶(q⟶r))⟶((p⟶q)⟶p⟶r)" by (rule impI)
qed
-- "diecabmen1"
lemma Ejercicio_3:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof
assume "p ⟶ q ⟶ r"
show "(p ⟶ q) ⟶ p ⟶ r"
proof
assume "p ⟶ q"
show "p ⟶ r"
proof
assume "p"
with `p ⟶ q` have "q" ..
have "q ⟶ r" using `p ⟶ q ⟶ r` `p` ..
then show "r" using `q` ..
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej4_auto:
assumes "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
using assms by auto
section {* Conjunciones *}
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej5_auto:
assumes "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
using assms by auto
lemma ej5:
assumes 1:"(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof -
{assume 2:"p"
have 3: "p⟶q" using 1 by (rule conjunct1)
have 4: "p⟶r" using 1 by (rule conjunct2)
have 5: "q" using 3 2 by (rule mp)
have 6: "r" using 4 2 by (rule mp)
have "q ∧ r" using 5 6 by (rule conjI)}
then show "p ⟶ q ∧ r" by (rule impI)
qed
-- "diecabmen1"
lemma Ejercicio_5:
assumes "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof
assume "p"
have "(p ⟶ q)" using assms ..
then have "q" using `p` ..
have "(p ⟶ r)" using assms ..
then have "r" using `p` ..
with `q` show "q ∧ r" ..
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej6_auto:
assumes "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
using assms by auto
lemma ej6:
assumes 1:"p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof -
{assume 2:"p"
have 3:"q∧r" using 1 2 by (rule mp)
have "q" using 3 by (rule conjunct1)}
then have 4:"p⟶q" by (rule impI)
{assume 5:"p"
have 6:"q∧r" using 1 5 by (rule mp)
have "r" using 6 by (rule conjunct2)}
then have 5:"p⟶r" by (rule impI)
show "(p⟶q) ∧ (p ⟶r)" using 4 5 by (rule conjI)
qed
-- "diecabmen1"
lemma Ejercicio_6:
assumes "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof
{assume "p"
with assms have "q ∧ r" ..
then have "q" ..}
then show "p ⟶ q" ..
{assume "p"
with assms have "q ∧ r" ..
then have "r" ..}
then show "p ⟶ r" ..
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej7_auto:
assumes " p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
using assms by auto
lemma ej7:
assumes 1:" p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof -
have 2:"p" using 1 by (rule conjunct1)
have 3:"q⟶r" using 1 by (rule conjunct2)
{assume 4:"p⟶q"
have 5:"q" using 4 2 by (rule mp)
have "r" using 3 5 by (rule mp)}
then show "(p⟶q)⟶r" by (rule impI)
qed
-- "diecabmen1"
lemma Ejercicio_7:
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof
assume "p ⟶ q"
have "p" using assms ..
with `p ⟶ q` have "q" ..
have "q ⟶ r" using assms ..
then show "r" using `q` ..
qed
section {* Disyunciones *}
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej8_auto:
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
using assms by auto
lemma ej8:
assumes 1:"q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
proof -
{assume 2:"p ∨ q"
moreover
{assume "p"
then have "p ∨ r" by (rule disjI1)}
moreover
{assume 3:"q"
have "r" using 1 3 by (rule mp)
then have "p ∨ r" by (rule disjI2)}
ultimately have "p ∨ r" by (rule disjE)}
then show "p ∨ q ⟶ p ∨ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej9_auto:
assumes "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
using assms by auto
lemma ej9:
assumes 1:"(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
proof -
{assume "p ∨ q "
moreover
{assume 2:"p"
have 3:"(p ⟶ r)" using 1 by (rule conjunct1)
have "r" using 3 2 by (rule mp)}
moreover
{assume 4:"q"
have 5:"(q ⟶ r)" using 1 by (rule conjunct2)
have "r" using 5 4 by (rule mp)}
ultimately have "r" ..}
then show "p ∨ q ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
------------------------------------------------------------------ *}
-- "irealetei"
lemma ej10_auto:
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
using assms by auto
lemma ej10:
assumes 1:"p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
proof -
{assume 2:"p"
have 3:"p∨q" using 2 by (rule disjI1)
have "r" using 1 3 by (rule mp)}
then have 4:"p⟶r" by (rule impI)
{assume 5:"q"
have 6:"p∨q" using 5 by (rule disjI2)
have 7:"r" using 1 6 by (rule mp)}
then have 8:"q⟶r" by (rule impI)
show "(p⟶r)∧(q⟶r)" using 4 8 by (rule conjI)
qed
end