Acciones

Diferencia entre revisiones de «Relación 1»

De Razonamiento automático (2013-14)

Línea 100: Línea 100:
 
   "conc [] ys = ys"
 
   "conc [] ys = ys"
 
   |"conc (x#xs) ys = x # conc xs ys"
 
   |"conc (x#xs) ys = x # conc xs ys"
 +
 +
-- irealetei
 +
fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where
 +
"conc xs [] = xs"
 +
|"conc xs ys = hd ys # conc xs (tl ys)"
  
 
value "conc [a,d] [b,d,a,c]" -- "= [a,d,b,d,a,c]"
 
value "conc [a,d] [b,d,a,c]" -- "= [a,d,b,d,a,c]"
Línea 117: Línea 122:
 
   |"coge n [] = []"
 
   |"coge n [] = []"
 
   |"coge (Suc n) (x#xs) = x # (coge n xs)"
 
   |"coge (Suc n) (x#xs) = x # (coge n xs)"
 +
 +
-- "irealetei"
 +
fun coge :: "nat ⇒ 'a list ⇒ 'a list" where
 +
"coge 0 xs = []"
 +
|"coge n xs = hd(xs) # (coge (n - 1) (tl xs))"
  
 
value "coge 2 [a,c,d,b,e]" -- "= [a,c]"
 
value "coge 2 [a,c,d,b,e]" -- "= [a,c]"
Línea 134: Línea 144:
 
   |"elimina n [] = []"
 
   |"elimina n [] = []"
 
   |"elimina (Suc n) (x#xs) = elimina n xs"
 
   |"elimina (Suc n) (x#xs) = elimina n xs"
 +
 +
-- "irealetei"
 +
fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where
 +
" elimina 0 xs = xs "
 +
|"elimina n xs = elimina (n - 1) (tl xs)"
  
 
value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]"
 
value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]"
Línea 153: Línea 168:
 
value "esVacia []"  -- "= True"
 
value "esVacia []"  -- "= True"
 
value "esVacia [1]" -- "= False"
 
value "esVacia [1]" -- "= False"
 +
 +
-- "irealetei"
 +
fun esVacia :: "'a list ⇒ bool" where
 +
"esVacia [] = True"
 +
|"esVacia xs = False"
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 170: Línea 190:
 
fun inversaAc :: "'a list ⇒ 'a list" where
 
fun inversaAc :: "'a list ⇒ 'a list" where
 
   "inversaAc xs = inversaAcAux xs []"
 
   "inversaAc xs = inversaAcAux xs []"
 +
 +
-- "irealetei"
 +
fun inversaAcAux :: "'a list ⇒ 'a list ⇒ 'a list" where
 +
  "inversaAcAux xs [] = xs"
 +
  | "inversaAcAux xs ys = inversaAcAux ((hd ys) # xs) (tl ys)"
 +
 +
fun inversaAc :: "'a list ⇒ 'a list" where
 +
  "inversaAc xs = inversaAcAux [] xs"
  
 
value "inversaAc [a,c,b,e]" -- "= [e,b,c,a]"
 
value "inversaAc [a,c,b,e]" -- "= [e,b,c,a]"
Línea 185: Línea 213:
 
   "sum [] = 0"
 
   "sum [] = 0"
 
   |"sum (x#xs) = x + sum xs"
 
   |"sum (x#xs) = x + sum xs"
 +
 +
-- "irealetei"
 +
fun sum :: "nat list ⇒ nat" where
 +
  "sum [] = 0"
 +
  |"sum xs = hd xs + sum (tl xs)"
  
 
value "sum [3,2,5]" -- "= 10"
 
value "sum [3,2,5]" -- "= 10"
Línea 201: Línea 234:
 
   "map f [] = []"
 
   "map f [] = []"
 
   |"map f (x#xs) = (f x) # map f xs"
 
   |"map f (x#xs) = (f x) # map f xs"
 +
 +
-- "irealetei"
 +
fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
 +
"map f [] = []"
 +
|"map f xs = f(hd xs) # map f (tl xs)"
  
 
value "map (λx. 2*x) [3::nat,2,5]" -- "= [6,4,10]"
 
value "map (λx. 2*x) [3::nat,2,5]" -- "= [6,4,10]"

Revisión del 00:22 9 nov 2013

header {* R1: Programación funcional en Isabelle *}

theory R1
imports Main 
begin

text {* ----------------------------------------------------------------
  Ejercicio 1. Definir, por recursión, la función
     longitud :: 'a list ⇒ nat
  tal que (longitud xs) es la longitud de la listas xs. Por ejemplo,
     longitud [4,2,5] = 3
  ------------------------------------------------------------------- *}

-- "maresccas4"

fun longitud :: "'a list ⇒ nat" where
  "longitud [] = 0"
  |"longitud (x # xs) = Suc (longitud xs)"

-- "irealetei"
fun longitud :: "'a list ⇒ nat" where
  "longitud [] =  (0::nat)"
 |"longitud  xs = 1+longitud (tl xs) "
   
value "longitud [4,2,5]" -- "= 3"

text {* --------------------------------------------------------------- 
  Ejercicio 2. Definir la función
     fun intercambia :: 'a × 'b ⇒ 'b × 'a
  tal que (intercambia p) es el par obtenido intercambiando las
  componentes del par p. Por ejemplo,
     intercambia (u,v) = (v,u)
  ------------------------------------------------------------------ *}

-- "maresccas4"

fun intercambia :: "'a × 'b ⇒ 'b × 'a" where
  "intercambia p = (snd p, fst p)"

-- "irealetei"
fun intercambia :: "'a × 'b ⇒ 'b × 'a" where
  "intercambia (x,y) = (y,x)"

value "intercambia (u,v)" -- "= (v,u)"

text {* --------------------------------------------------------------- 
  Ejercicio 3. Definir, por recursión, la función
     inversa :: 'a list ⇒ 'a list
  tal que (inversa xs) es la lista obtenida invirtiendo el orden de los
  elementos de xs. Por ejemplo,
     inversa [a,d,c] = [c,d,a]
  ------------------------------------------------------------------ *}

-- "maresccas4"

fun inversa :: "'a list ⇒ 'a list" where
  "inversa [] = []"
  |"inversa (x # xs) = inversa xs @ (x # [])"

-- "irealetei"
fun inversa :: "'a list ⇒ 'a list" where
  "inversa [] = [] "
  |"inversa xs =inversa(tl xs) @ (hd xs#[])"

value "inversa [a,d,c]" -- "= [c,d,a]"

text {* --------------------------------------------------------------- 
  Ejercicio 4. Definir la función
     repite :: nat ⇒ 'a ⇒ 'a list
  tal que (repite n x) es la lista formada por n copias del elemento
  x. Por ejemplo, 
     repite 3 a = [a,a,a]
  ------------------------------------------------------------------ *}

-- "maresccas4"

fun repite :: "nat ⇒ 'a ⇒ 'a list" where
  "repite 0 x = []"
  |"repite (Suc n) x = x # repite n x"

-- "irealetei"
fun repite :: "nat ⇒ 'a ⇒ 'a list" where
  "repite (0::nat) x = []"
  |"repite n x = x#(repite (n - 1) x) "

value "repite 3 a" -- "= [a,a,a]"

text {* --------------------------------------------------------------- 
  Ejercicio 5. Definir la función
     conc :: 'a list ⇒ 'a list ⇒ 'a list
  tal que (conc xs ys) es la concatención de las listas xs e ys. Por
  ejemplo, 
     conc [a,d] [b,d,a,c] = [a,d,b,d,a,c]
  ------------------------------------------------------------------ *}

-- "maresccas4"

fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where
  "conc [] ys = ys"
  |"conc (x#xs) ys = x # conc xs ys"

-- irealetei
fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where
 "conc xs [] = xs"
 |"conc xs ys = hd ys # conc xs (tl ys)"

value "conc [a,d] [b,d,a,c]" -- "= [a,d,b,d,a,c]"

text {* --------------------------------------------------------------- 
  Ejercicio 6. Definir la función
     coge :: nat ⇒ 'a list ⇒ 'a list
  tal que (coge n xs) es la lista de los n primeros elementos de xs. Por 
  ejemplo, 
     coge 2 [a,c,d,b,e] = [a,c]
  ------------------------------------------------------------------ *}

-- "maresccas4"

fun coge :: "nat ⇒ 'a list ⇒ 'a list" where
  "coge 0 xs = []"
  |"coge n [] = []"
  |"coge (Suc n) (x#xs) = x # (coge n xs)"

-- "irealetei"
fun coge :: "nat ⇒ 'a list ⇒ 'a list" where
 "coge 0 xs = []"
 |"coge n xs = hd(xs) # (coge (n - 1) (tl xs))"

value "coge 2 [a,c,d,b,e]" -- "= [a,c]"

text {* --------------------------------------------------------------- 
  Ejercicio 7. Definir la función
     elimina :: nat ⇒ 'a list ⇒ 'a list
  tal que (elimina n xs) es la lista obtenida eliminando los n primeros
  elementos de xs. Por ejemplo, 
     elimina 2 [a,c,d,b,e] = [d,b,e]
  ------------------------------------------------------------------ *}

-- "maresccas4"

fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where
  "elimina 0 xs = xs"
  |"elimina n [] = []"
  |"elimina (Suc n) (x#xs) = elimina n xs"

-- "irealetei"
fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where
 " elimina 0 xs = xs "
 |"elimina n xs = elimina (n - 1) (tl xs)"

value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]"

text {* --------------------------------------------------------------- 
  Ejercicio 8. Definir la función
     esVacia :: 'a list ⇒ bool
  tal que (esVacia xs) se verifica si xs es la lista vacía. Por ejemplo,
     esVacia []  = True
     esVacia [1] = False
  ------------------------------------------------------------------ *}

-- "maresccas4"

fun esVacia :: "'a list ⇒ bool" where
  "esVacia [] = True"
  |"esVacia (x#xs) = False"

value "esVacia []"  -- "= True"
value "esVacia [1]" -- "= False"

-- "irealetei"
fun esVacia :: "'a list ⇒ bool" where
"esVacia [] = True"
|"esVacia xs = False"

text {* --------------------------------------------------------------- 
  Ejercicio 9. Definir la función
     inversaAc :: 'a list ⇒ 'a list
  tal que (inversaAc xs) es a inversa de xs calculada usando
  acumuladores. Por ejemplo, 
     inversaAc [a,c,b,e] = [e,b,c,a]
  ------------------------------------------------------------------ *}

-- "maresccas4"

fun inversaAcAux :: "'a list ⇒ 'a list ⇒ 'a list" where
  "inversaAcAux [] ys = ys"
  |"inversaAcAux (x#xs) ys = inversaAcAux xs (x # ys)"

fun inversaAc :: "'a list ⇒ 'a list" where
  "inversaAc xs = inversaAcAux xs []"

-- "irealetei"
fun inversaAcAux :: "'a list ⇒ 'a list ⇒ 'a list" where
  "inversaAcAux xs [] = xs"
  | "inversaAcAux xs ys = inversaAcAux ((hd ys) # xs) (tl ys)"

fun inversaAc :: "'a list ⇒ 'a list" where
  "inversaAc xs = inversaAcAux [] xs"

value "inversaAc [a,c,b,e]" -- "= [e,b,c,a]"

text {* --------------------------------------------------------------- 
  Ejercicio 10. Definir la función
     sum :: nat list ⇒ nat
  tal que (sum xs) es la suma de los elementos de xs. Por ejemplo,
     sum [3,2,5] = 10
  ------------------------------------------------------------------ *}

-- "maresccas4"

fun sum :: "nat list ⇒ nat" where
  "sum [] = 0"
  |"sum (x#xs) = x + sum xs"

-- "irealetei"
fun sum :: "nat list ⇒ nat" where
  "sum [] = 0"
  |"sum xs = hd xs + sum (tl xs)"

value "sum [3,2,5]" -- "= 10"

text {* --------------------------------------------------------------- 
  Ejercicio 11. Definir la función
     map :: ('a ⇒ 'b) ⇒ 'a list ⇒ 'b list
  tal que (map f xs) es la lista obtenida aplicando la función f a los
  elementos de xs. Por ejemplo,
     map (λx. 2*x) [3,2,5] = [6,4,10]
  ------------------------------------------------------------------ *}

-- "maresccas4"

fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
  "map f [] = []"
  |"map f (x#xs) = (f x) # map f xs"

-- "irealetei"
fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
 "map f [] = []"
 |"map f xs = f(hd xs) # map f (tl xs)"

value "map (λx. 2*x) [3::nat,2,5]" -- "= [6,4,10]"

end