Acciones

Diferencia entre revisiones de «R10»

De Razonamiento automático (2013-14)

(Página creada con '<source lang="isar"> header {* R10: Deducción natural proposicional *} theory R10 imports Main begin text {* --------------------------------------------------------------...')
 
m (Texto reemplazado: «isar» por «isabelle»)
 
(No se muestra una edición intermedia de otro usuario)
Línea 1: Línea 1:
<source lang="isar">
+
<source lang="isabelle">
 
header {* R10: Deducción natural proposicional *}
 
header {* R10: Deducción natural proposicional *}
  

Revisión actual del 17:46 16 jul 2018

header {* R10: Deducción natural proposicional *}

theory R10
imports Main 
begin

text {*
  --------------------------------------------------------------------- 
  El objetivo de esta relación es lemas usando sólo las reglas básicas
  de deducción natural de la lógica proposicional. 

  Los ejercicios son los de la asignatura de "Lógica informática" que se
  encuentran en http://goo.gl/yrPLn

  Las reglas básicas de la deducción natural son las siguientes:
  · conjI:      ⟦P; Q⟧ ⟹ P ∧ Q
  · conjunct1:  P ∧ Q ⟹ P
  · conjunct2:  P ∧ Q ⟹ Q  
  · notnotD:    ¬¬ P ⟹ P
  · notnotI:    P ⟹ ¬¬ P
  · mp:         ⟦P ⟶ Q; P⟧ ⟹ Q 
  · mt:         ⟦F ⟶ G; ¬G⟧ ⟹ ¬F 
  · impI:       (P ⟹ Q) ⟹ P ⟶ Q
  · disjI1:     P ⟹ P ∨ Q
  · disjI2:     Q ⟹ P ∨ Q
  · disjE:      ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R 
  · FalseE:     False ⟹ P
  · notE:       ⟦¬P; P⟧ ⟹ R
  · notI:       (P ⟹ False) ⟹ ¬P
  · iffI:       ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
  · iffD1:      ⟦Q = P; Q⟧ ⟹ P 
  · iffD2:      ⟦P = Q; Q⟧ ⟹ P
  · ccontr:     (¬P ⟹ False) ⟹ P
  · excluded_middle: ¬P ∨ P
  --------------------------------------------------------------------- 
*}

text {*
  Se usarán las reglas notnotI y mt que demostramos a continuación.
  *}

lemma notnotI: "P ⟹ ¬¬ P"
by auto

lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto

text {* --------------------------------------------------------------- 
  Ejercicio 1. Demostrar
     p ∨ q, ¬q ⊢ p
  ------------------------------------------------------------------ *}

text {* --------------------------------------------------------------- 
  Ejercicio 2. Demostrar
     p ∧ q ⊢ ¬(¬p ∨ ¬q)
  ------------------------------------------------------------------ *}

text {* --------------------------------------------------------------- 
  Ejercicio 3. Demostrar
     ¬(p ∨ q) ⊢ ¬p ∧ ¬q
  ------------------------------------------------------------------ *}

text {* --------------------------------------------------------------- 
  Ejercicio 4. Demostrar
     ¬p ∧ ¬q ⊢ ¬(p ∨ q)
  ------------------------------------------------------------------ *}

text {* --------------------------------------------------------------- 
  Ejercicio 5. Demostrar
     ¬p ∨ ¬q ⊢ ¬(p ∧ q)
  ------------------------------------------------------------------ *}

text {* --------------------------------------------------------------- 
  Ejercicio 6. Demostrar
     ⊢ ((p ⟶ q) ⟶ p) ⟶ p
  ------------------------------------------------------------------ *}

text {* --------------------------------------------------------------- 
  Ejercicio 7. Demostrar
     ¬q ⟶ ¬p ⊢ p ⟶ q
  ------------------------------------------------------------------ *}

text {* --------------------------------------------------------------- 
  Ejercicio 8. Demostrar
     ¬(¬p ∧ ¬q) ⊢ p ∨ q
  ------------------------------------------------------------------ *}

text {* --------------------------------------------------------------- 
  Ejercicio 9. Demostrar
     ¬(¬p ∨ ¬q) ⊢ p ∧ q
  ------------------------------------------------------------------ *}

text {* --------------------------------------------------------------- 
  Ejercicio 10. Demostrar
     ¬(p ∧ q) ⊢ ¬p ∨ ¬q
  ------------------------------------------------------------------ *}

text {* --------------------------------------------------------------- 
  Ejercicio 11. Demostrar
     ⊢ (p ⟶ q) ∨ (q ⟶ p)
  ------------------------------------------------------------------ *}

end