Diferencia entre revisiones de «Relación 7»
De Razonamiento automático (2013-14)
Línea 368: | Línea 368: | ||
qed | qed | ||
− | --"irealetei | + | --"irealetei" |
lemma inOrdenNoPuedeSerVacio: "inOrden a ≠ []" | lemma inOrdenNoPuedeSerVacio: "inOrden a ≠ []" | ||
by (induct a) auto | by (induct a) auto | ||
Línea 475: | Línea 475: | ||
qed | qed | ||
− | -- "irealetei" | + | -- "irealetei: estoy rayada con esto porque no hace falta usar las hipótesis de inducción... sigo mirando" |
theorem "hd (preOrden a) = last (postOrden a)" | theorem "hd (preOrden a) = last (postOrden a)" | ||
proof (induct a) | proof (induct a) |
Revisión del 22:04 4 ene 2014
header {* R7: Recorridos de árboles *}
theory R7_2
imports Main
begin
text {*
---------------------------------------------------------------------
Ejercicio 1. Definir el tipo de datos arbol para representar los
árboles binarios que tiene información en los nodos y en las hojas.
Por ejemplo, el árbol
e
/ \
/ \
c g
/ \ / \
a d f h
se representa por "N e (N c (H a) (H d)) (N g (H f) (H h))".
---------------------------------------------------------------------
*}
datatype 'a arbol = H "'a" | N "'a" "'a arbol" "'a arbol"
value "N e (N c (H a) (H d)) (N g (H f) (H h))"
text {*
---------------------------------------------------------------------
Ejercicio 2. Definir la función
preOrden :: "'a arbol ⇒ 'a list"
tal que (preOrden a) es el recorrido pre orden del árbol a. Por
ejemplo,
preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [e,c,a,d,g,f,h]
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4"
fun preOrden :: "'a arbol ⇒ 'a list" where
"preOrden (H x) = [x]"
| "preOrden (N x i d) = [x] @ (preOrden i) @ (preOrden d)"
value "preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))"
-- "= [e,c,a,d,g,f,h]"
-- "irealetei"
fun preOrden2 :: "'a arbol ⇒ 'a list" where
"preOrden2 (H a) = [a]"
|"preOrden2 (N dato a1 a2) = dato#(preOrden2 a1 @ preOrden2 a2)"
value "preOrden2 (N e (N c (H a) (H d)) (N g (H f) (H h)))"
-- "= [e,c,a,d,g,f,h]"
text {*
---------------------------------------------------------------------
Ejercicio 3. Definir la función
postOrden :: "'a arbol ⇒ 'a list"
tal que (postOrden a) es el recorrido post orden del árbol a. Por
ejemplo,
postOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [a,d,c,f,h,g,e]
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4 irealetei"
fun postOrden :: "'a arbol ⇒ 'a list" where
"postOrden (H x) = [x]"
| "postOrden (N x i d) = (postOrden i) @ (postOrden d) @ [x]"
value "postOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))"
-- "[a,d,c,f,h,g,e]"
text {*
---------------------------------------------------------------------
Ejercicio 4. Definir la función
inOrden :: "'a arbol ⇒ 'a list"
tal que (inOrden a) es el recorrido in orden del árbol a. Por
ejemplo,
inOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
= [a,c,d,e,f,g,h]
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4 irealetei"
fun inOrden :: "'a arbol ⇒ 'a list" where
"inOrden (H x) = [x]"
| "inOrden (N x i d) = (inOrden i) @ [x] @ (inOrden d)"
value "inOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))"
-- "[a,c,d,e,f,g,h]"
text {*
---------------------------------------------------------------------
Ejercicio 5. Definir la función
espejo :: "'a arbol ⇒ 'a arbol"
tal que (espejo a) es la imagen especular del árbol a. Por ejemplo,
espejo (N e (N c (H a) (H d)) (N g (H f) (H h)))
= N e (N g (H h) (H f)) (N c (H d) (H a))
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4"
fun espejo :: "'a arbol ⇒ 'a arbol" where
"espejo (H x) = (H x)"
| "espejo (N x i d) = (N x (espejo d) (espejo i))"
value "espejo (N e (N c (H a) (H d)) (N g (H f) (H h)))"
-- "N e (N g (H h) (H f)) (N c (H d) (H a))"
-- "irealetei: Es igual que la anterior pero los paréntesis no hacen falta"
fun espejo2 :: "'a arbol ⇒ 'a arbol" where
"espejo2 (H dato) = (H dato)"
| "espejo2 (N dato a1 a2) = N dato (espejo2 a2) (espejo2 a1)"
value "espejo2 (N e (N c (H a) (H d)) (N g (H f) (H h)))"
-- "N e (N g (H h) (H f)) (N c (H d) (H a))"
text {*
---------------------------------------------------------------------
Ejercicio 6. Demostrar que
preOrden (espejo a) = rev (postOrden a)
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4 irealetei"
lemma "preOrden (espejo a) = rev (postOrden a)"
by (induct a) auto
-- "diecabmen1 maresccas4"
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix a1 a2 a3
assume HI1: "?P a2"
assume HI2: "?P a3"
show "?P (N a1 a2 a3)"
proof -
have "preOrden (espejo (N a1 a2 a3)) = preOrden (N a1 (espejo a3) (espejo a2))" by simp
also have "… = [a1] @ preOrden (espejo a3) @ preOrden (espejo a2)" by simp
also have "… = rev [a1] @ rev (postOrden a3) @ rev (postOrden a2)" using HI1 HI2 by simp
also have "… = rev ((postOrden a2) @ (postOrden a3) @ [a1])" by simp
finally show ?thesis by simp
qed
qed
-- "irealetei"
lemma "preOrden (espejo a) = rev (postOrden a)"
proof (induct a)
fix a::"'a"
show "preOrden (espejo (H a)) = rev (postOrden (H a))" by simp
next
fix data::"'a"
fix a1::"'a arbol"
assume HI1:" preOrden (espejo a1) = rev (postOrden a1)"
fix a2::"'a arbol"
assume HI2:" preOrden (espejo a2) = rev (postOrden a2)"
show "preOrden (espejo (N data a1 a2)) = rev (postOrden (N data a1 a2))"
proof -
have "preOrden (espejo (N data a1 a2))=preOrden (N data (espejo a2) (espejo a1))" by simp
also have "... = data # (preOrden(espejo a2) @ preOrden(espejo a1))" by simp
also have "... = data # (rev (postOrden a2) @ rev (postOrden a1))" using HI1 HI2 by simp
also have "... = data # (rev (postOrden a1 @ postOrden a2))" by simp
also have "... = rev (postOrden a1 @ postOrden a2 @ [data])" by simp
also have "... = rev (postOrden (N data a1 a2))" by simp
finally show ?thesis by simp
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 7. Demostrar que
postOrden (espejo a) = rev (preOrden a)
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4 irealetei"
lemma "postOrden (espejo a) = rev (preOrden a)"
by (induct a) auto
-- "diecabmen1 maresccas4"
lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix a1 a2 a3
assume HI1: "?P a2"
assume HI2: "?P a3"
show "?P (N a1 a2 a3)"
proof -
have "postOrden (espejo (N a1 a2 a3)) = postOrden (N a1 (espejo a3) (espejo a2))" by simp
also have "… = postOrden (espejo a3) @ postOrden (espejo a2) @ [a1]" by simp
also have "… = rev (preOrden a3) @ rev (preOrden a2) @ rev [a1]" using HI1 HI2 by simp
also have "… = rev ([a1] @ preOrden a2 @ preOrden a3)" by simp
finally show ?thesis by simp
qed
qed
--"irealetei"
lemma "postOrden (espejo a) = rev (preOrden a)"
proof (induct a)
fix a::"'a"
show "postOrden (espejo (H a)) = rev (preOrden (H a))" by simp
next
fix data::"'a"
fix a1::"'a arbol"
assume HI1:" postOrden (espejo a1) = rev (preOrden a1)"
fix a2::"'a arbol"
assume HI2:" postOrden (espejo a2) = rev (preOrden a2)"
show "postOrden (espejo (N data a1 a2)) = rev (preOrden (N data a1 a2))"
proof -
have "postOrden (espejo (N data a1 a2))=postOrden (N data (espejo a2) (espejo a1))" by simp
also have "... = postOrden(espejo a2) @ postOrden(espejo a1) @ [data]" by simp
also have "... = rev (preOrden a2) @ rev (preOrden a1) @ [data]" using HI1 HI2 by simp
also have "... = rev (preOrden a1 @ preOrden a2)@[data]" by simp
also have "... = rev (preOrden a1 @ preOrden a2)@ rev ([data])" by simp
also have "... = rev ([data] @ preOrden a1 @ preOrden a2)" by simp
also have "... = rev (preOrden (N data a1 a2))" by simp
finally show ?thesis by simp
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 8. Demostrar que
inOrden (espejo a) = rev (inOrden a)
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4 irealetei"
theorem "inOrden (espejo a) = rev (inOrden a)"
by (induct a) auto
-- "diecabmen1 maresccas4"
theorem "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix a1 a2 a3
assume HI1: "?P a2"
assume HI2: "?P a3"
show "?P (N a1 a2 a3)"
proof -
have "inOrden (espejo (N a1 a2 a3)) = inOrden (N a1 (espejo a3) (espejo a2))" by simp
also have "… = inOrden (espejo a3) @ [a1] @ inOrden (espejo a2)" by simp
also have "… = rev (inOrden a3) @ rev [a1] @ rev (inOrden a2)" using HI1 HI2 by simp
also have "… = rev (inOrden a2 @ [a1] @ inOrden a3)" by simp
finally show ?thesis by simp
qed
qed
-- "irealetei"
lemma "inOrden (espejo a) = rev (inOrden a)"
proof (induct a)
fix a::"'a"
show "inOrden (espejo (H a)) = rev (inOrden (H a))" by simp
next
fix data::"'a"
fix a1::"'a arbol"
assume HI1:" inOrden (espejo a1) = rev (inOrden a1)"
fix a2::"'a arbol"
assume HI2:" inOrden (espejo a2) = rev (inOrden a2)"
show "inOrden (espejo (N data a1 a2)) = rev (inOrden (N data a1 a2))"
proof -
have "inOrden (espejo (N data a1 a2))=inOrden (N data (espejo a2) (espejo a1))" by simp
also have "... = inOrden(espejo a2) @ [data] @ inOrden(espejo a1)" by simp
also have "... = rev (inOrden a2)@ [data] @ rev (inOrden a1)" using HI1 HI2 by simp
also have "... = rev (inOrden a2)@ rev([data]) @ rev (inOrden a1)" by simp
also have "... = rev ([data] @ (inOrden a2)) @ rev(inOrden a1)" by simp
also have "... = rev ( inOrden a1 @ [data] @ inOrden a2)" by simp
also have "... = rev (inOrden (N data a1 a2))" by simp
finally show ?thesis by simp
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 9. Definir la función
raiz :: "'a arbol ⇒ 'a"
tal que (raiz a) es la raiz del árbol a. Por ejemplo,
raiz (N e (N c (H a) (H d)) (N g (H f) (H h))) = e
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4 irealetei"
fun raiz :: "'a arbol ⇒ 'a" where
"raiz (H x) = x"
| "raiz (N x i d) = x"
value "raiz (N e (N c (H a) (H d)) (N g (H f) (H h)))" -- "= e"
text {*
---------------------------------------------------------------------
Ejercicio 10. Definir la función
extremo_izquierda :: "'a arbol ⇒ 'a"
tal que (extremo_izquierda a) es el nodo más a la izquierda del árbol
a. Por ejemplo,
extremo_izquierda (N e (N c (H a) (H d)) (N g (H f) (H h))) = a
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4 irealetei"
fun extremo_izquierda :: "'a arbol ⇒ 'a" where
"extremo_izquierda (H x) = x"
| "extremo_izquierda (N x i d) = extremo_izquierda i"
value "extremo_izquierda (N e (N c (H a) (H d)) (N g (H f) (H h)))" -- "= a"
text {*
---------------------------------------------------------------------
Ejercicio 11. Definir la función
extremo_derecha :: "'a arbol ⇒ 'a"
tal que (extremo_derecha a) es el nodo más a la derecha del árbol
a. Por ejemplo,
extremo_derecha (N e (N c (H a) (H d)) (N g (H f) (H h))) = h
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4 irealetei"
fun extremo_derecha :: "'a arbol ⇒ 'a" where
"extremo_derecha (H x) = x"
| "extremo_derecha (N x i d) = extremo_derecha d"
value "extremo_derecha (N e (N c (H a) (H d)) (N g (H f) (H h)))" -- "= h"
text {*
---------------------------------------------------------------------
Ejercicio 12. Demostrar o refutar
last (inOrden a) = extremo_derecha a
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4"
lemma inOrdenNN: "inOrden a ≠ []"
by (induct a) auto
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix a1 a2 a3
assume HI1: "?P a2"
assume HI2: "?P a3"
show "?P (N a1 a2 a3)"
proof -
have "last (inOrden (N a1 a2 a3)) = last (a1 # inOrden a3)" by simp
also have "… = last (inOrden a3)" by (simp add: inOrdenNN)
also have "… = extremo_derecha a3" using HI2 by simp
finally show ?thesis by simp
qed
qed
--"irealetei"
lemma inOrdenNoPuedeSerVacio: "inOrden a ≠ []"
by (induct a) auto
theorem "last (inOrden a) = extremo_derecha a"
by (induct a) (auto simp add:inOrdenNoPuedeSerVacio)
theorem "last (inOrden a) = extremo_derecha a"
proof (induct a)
fix data::"'a"
show "last (inOrden (H data)) = extremo_derecha (H data)" by simp
next
fix data::"'a"
fix a2::"'a arbol"
fix a1
assume HI:" last (inOrden a2) = extremo_derecha a2"
show "last (inOrden (N data a1 a2)) = extremo_derecha (N data a1 a2)"
proof -
have "last (inOrden (N data a1 a2))= last ((inOrden a1)@[data] @ (inOrden a2))" by simp
also have "...= last (inOrden a2)" by (simp add:inOrdenNoPuedeSerVacio)
also have "...=extremo_derecha a2" using HI by simp
also have "...=extremo_derecha (N data a1 a2)" by simp
finally show ?thesis by simp
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 13. Demostrar o refutar
hd (inOrden a) = extremo_izquierda a
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4 irealetei"
theorem "hd (inOrden a) = extremo_izquierda a"
by (induct a) (auto simp add: inOrdenNN)
-- "diecabmen1 maresccas4"
theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix a1 a2 a3
assume HI1: "?P a2"
assume HI2: "?P a3"
show "?P (N a1 a2 a3)"
proof -
have "hd (inOrden (N a1 a2 a3)) = hd (inOrden a2 @ a1 # inOrden a3)" by simp
also have "… = hd (inOrden a2)" by (simp add: inOrdenNN)
also have "… = extremo_izquierda a2" using HI1 by simp
finally show ?thesis by simp
qed
qed
-- "irealetei"
theorem "hd (inOrden a) = extremo_izquierda a"
proof (induct a)
fix data::"'a"
show "hd (inOrden (H data)) = extremo_izquierda (H data)" by simp
next
fix data::"'a"
fix a1::"'a arbol"
fix a2
assume HI:" hd (inOrden a1) = extremo_izquierda a1"
show "hd (inOrden (N data a1 a2)) = extremo_izquierda (N data a1 a2)"
proof -
have "hd (inOrden (N data a1 a2))= hd ((inOrden a1)@[data] @ (inOrden a2))" by simp
also have "...= hd (inOrden a1)" by (simp add:inOrdenNoPuedeSerVacio)
also have "...=extremo_izquierda a1" using HI by simp
also have "...=extremo_izquierda (N data a1 a2)" by simp
finally show ?thesis by simp
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 14. Demostrar o refutar
hd (preOrden a) = last (postOrden a)
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4 irealetei"
theorem "hd (preOrden a) = last (postOrden a)"
by (induct a) auto
-- "diecabmen1 maresccas4"
theorem "hd (preOrden a) = last (postOrden a)"(is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix a1 a2 a3
assume HI1: "?P a2"
assume HI2: "?P a3"
show "?P (N a1 a2 a3)"
proof -
have " hd (preOrden (N a1 a2 a3)) = hd (a1 # preOrden a2)" by simp
also have "… = a1" by simp
finally show ?thesis by simp
qed
qed
-- "irealetei: estoy rayada con esto porque no hace falta usar las hipótesis de inducción... sigo mirando"
theorem "hd (preOrden a) = last (postOrden a)"
proof (induct a)
fix a::"'a"
show "hd (preOrden (H a)) = last (postOrden (H a))" by simp
next
fix data::"'a"
fix a1::"'a arbol"
fix a2::"'a arbol"
show " hd (preOrden (N data a1 a2)) = last (postOrden (N data a1 a2))"
proof -
have "hd (preOrden (N data a1 a2)) = hd (data #(preOrden a1 @ preOrden a2))" by simp
also have "... = data" by simp
also have "... = last (postOrden a1 @ postOrden a2 @ [data])" by simp
also have "... = last (postOrden (N data a1 a1))" by simp
finally show ?thesis by simp
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 15. Demostrar o refutar
hd (preOrden a) = raiz a
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4 irealetei"
theorem "hd (preOrden a) = raiz a"
by (induct a) auto
-- "diecabmen1 maresccas4"
theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix a1 a2 a3
assume HI1: "?P a2"
assume HI2: "?P a3"
show "?P (N a1 a2 a3)"
proof -
have " hd (preOrden (N a1 a2 a3)) = hd (a1 # preOrden a2)" by simp
also have "… = a1" by simp
finally show ?thesis by simp
qed
qed
--"irealetei"
theorem "hd (preOrden a) = raiz a"
proof (induct a)
fix a::"'a"
show "hd (preOrden (H a)) = raiz (H a)" by simp
next
fix data::"'a"
fix a1::"'a arbol"
fix a2::"'a arbol"
show " hd (preOrden (N data a1 a2)) = raiz (N data a1 a2)"
proof -
have "hd (preOrden (N data a1 a2)) = hd (data #(preOrden a1 @ preOrden a2))" by simp
also have "... = data" by simp
also have "... = raiz (N data a1 a2)" by simp
finally show ?thesis by simp
qed
qed
text {*
---------------------------------------------------------------------
Ejercicio 16. Demostrar o refutar
hd (inOrden a) = raiz a
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4 irealetei"
theorem "hd (inOrden a) = raiz a"
quickcheck
oops
(* Quickcheck found a counterexample:
a = N a⇩1 (H a⇩2) (H a⇩1)
Evaluated terms:
hd (inOrden a) = a⇩2
raiz a = a⇩1 *)
text {*
---------------------------------------------------------------------
Ejercicio 17. Demostrar o refutar
last (postOrden a) = raiz a
---------------------------------------------------------------------
*}
-- "diecabmen1 maresccas4 irealetei"
theorem "last (postOrden a) = raiz a"
by (induct a) auto
-- "diecabmen1 maresccas4"
theorem "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
fix x
show "?P (H x)" by simp
next
fix a1 a2 a3
assume HI1: "?P a2"
assume HI2: "?P a3"
show "?P (N a1 a2 a3)"
proof -
thm postOrden.simps
thm hd.simps
thm raiz.simps
have " last (postOrden (N a1 a2 a3)) = last (postOrden a2 @ postOrden a3 @ [a1])" by simp
also have "… = last ([a1])" by simp
finally show ?thesis by simp
qed
qed
theorem "last (postOrden a) = raiz a"
proof (induct a)
fix a::"'a"
show "last (postOrden (H a)) = raiz (H a)" by simp
next
fix data::"'a"
fix a1::"'a arbol"
fix a2::"'a arbol"
show "last (postOrden (N data a1 a2)) = raiz (N data a1 a2)"
proof -
have "last (postOrden (N data a1 a2)) = last (preOrden a1 @ preOrden a2 @ [data])" by simp
also have "... = data" by simp
also have "... = raiz (N data a1 a2)" by simp
finally show ?thesis by simp
qed
qed
end