Diferencia entre revisiones de «Relación 4»
De Razonamiento automático (2013-14)
Línea 21: | Línea 21: | ||
"snoc [] a = [a]" | "snoc [] a = [a]" | ||
| "snoc (x#xs) a = x # (snoc xs a)" | | "snoc (x#xs) a = x # (snoc xs a)" | ||
+ | |||
+ | value "snoc [2,5] (3::int)" -- "[2,5,3]" | ||
text {* | text {* | ||
Línea 31: | Línea 33: | ||
lemma "snoc xs a = xs @ [a]" | lemma "snoc xs a = xs @ [a]" | ||
by (induct xs) auto | by (induct xs) auto | ||
+ | |||
text {* | text {* | ||
Línea 57: | Línea 60: | ||
*} | *} | ||
+ | -- "pabflomar" | ||
lemma "rev (x # xs) = snoc (rev xs) x" | lemma "rev (x # xs) = snoc (rev xs) x" | ||
− | + | by (simp add: snoc_append) | |
text {* | text {* | ||
Línea 67: | Línea 71: | ||
*} | *} | ||
+ | -- "pabflomar" | ||
lemma "rev (x # xs) = snoc (rev xs) x" | lemma "rev (x # xs) = snoc (rev xs) x" | ||
− | + | proof (induct xs) | |
+ | show "rev [x] = snoc (rev []) x" by simp | ||
+ | next | ||
+ | fix a xs | ||
+ | assume HI: "rev (x # xs) = snoc (rev xs) x" | ||
+ | have "rev (x # a # xs) =rev (a # xs) @ rev [x]" by simp | ||
+ | also have "... = snoc (rev (a # xs)) x" using HI by (simp add: snoc_append) | ||
+ | finally show "rev (x # a # xs) = snoc (rev (a # xs)) x" by simp | ||
+ | qed | ||
end | end | ||
</source> | </source> |
Revisión del 18:58 29 nov 2013
header {* R4: Cons inverso *}
theory R4
imports Main
begin
text {*
---------------------------------------------------------------------
Ejercicio 1. Definir recursivamente la función
snoc :: "'a list ⇒ 'a ⇒ 'a list"
tal que (snoc xs a) es la lista obtenida al añadir el elemento a al
final de la lista xs. Por ejemplo,
value "snoc [2,5] (3::int)" == [2,5,3]
Nota: No usar @.
---------------------------------------------------------------------
*}
-- "pabflomar"
fun snoc :: "'a list ⇒ 'a ⇒ 'a list" where
"snoc [] a = [a]"
| "snoc (x#xs) a = x # (snoc xs a)"
value "snoc [2,5] (3::int)" -- "[2,5,3]"
text {*
---------------------------------------------------------------------
Ejercicio 2. Demostrar automáticamente el siguiente teorema
snoc xs a = xs @ [a]
---------------------------------------------------------------------
*}
-- "pabflomar"
lemma "snoc xs a = xs @ [a]"
by (induct xs) auto
text {*
---------------------------------------------------------------------
Ejercicio 3. Demostrar detalladamente el siguiente teorema
snoc xs a = xs @ [a]
---------------------------------------------------------------------
*}
-- "pabflomar"
lemma snoc_append: "snoc xs a = xs @ [a]"
proof (induct xs)
show " snoc [] a = [] @ [a]" by simp
next
fix aa xs
assume HI: "snoc xs a = xs @ [a]"
have "snoc (aa # xs) a = aa # snoc xs a" by simp
also have "... = aa # xs @ [a]" using HI by simp
finally show "snoc (aa # xs) a = (aa # xs) @ [a]" by simp
qed
text {*
---------------------------------------------------------------------
Ejercicio 4. Demostrar automáticamente el siguiente lema
rev (x # xs) = snoc (rev xs) x"
---------------------------------------------------------------------
*}
-- "pabflomar"
lemma "rev (x # xs) = snoc (rev xs) x"
by (simp add: snoc_append)
text {*
---------------------------------------------------------------------
Ejercicio 5. Demostrar detalladamente el siguiente lema
rev (x # xs) = snoc (rev xs) x"
---------------------------------------------------------------------
*}
-- "pabflomar"
lemma "rev (x # xs) = snoc (rev xs) x"
proof (induct xs)
show "rev [x] = snoc (rev []) x" by simp
next
fix a xs
assume HI: "rev (x # xs) = snoc (rev xs) x"
have "rev (x # a # xs) =rev (a # xs) @ rev [x]" by simp
also have "... = snoc (rev (a # xs)) x" using HI by (simp add: snoc_append)
finally show "rev (x # a # xs) = snoc (rev (a # xs)) x" by simp
qed
end