Acciones

Diferencia entre revisiones de «Relación 4»

De Razonamiento automático (2013-14)

(Página creada con '<source lang="isar"> header {* R4: Cons inverso *} theory R4 imports Main begin text {* --------------------------------------------------------------------- Ejercicio 1...')
 
Línea 17: Línea 17:
 
   ---------------------------------------------------------------------  
 
   ---------------------------------------------------------------------  
 
*}
 
*}
 
+
-- "pabflomar"
 
fun snoc :: "'a list ⇒ 'a ⇒ 'a list" where
 
fun snoc :: "'a list ⇒ 'a ⇒ 'a list" where
   "snoc xs a = undefined"
+
   "snoc [] a = [a]"
 +
| "snoc (x#xs) a = x # (snoc xs a)"  
  
 
text {*
 
text {*
Línea 27: Línea 28:
 
   ---------------------------------------------------------------------  
 
   ---------------------------------------------------------------------  
 
*}
 
*}
 
+
-- "pabflomar"
 
lemma "snoc xs a = xs @ [a]"
 
lemma "snoc xs a = xs @ [a]"
oops
+
by (induct xs) auto
  
 
text {*
 
text {*
Línea 37: Línea 38:
 
   ---------------------------------------------------------------------  
 
   ---------------------------------------------------------------------  
 
*}
 
*}
 
+
-- "pabflomar"
 
lemma snoc_append: "snoc xs a = xs @ [a]"
 
lemma snoc_append: "snoc xs a = xs @ [a]"
oops
+
proof (induct xs)
 +
  show " snoc [] a = [] @ [a]" by simp
 +
next
 +
  fix aa xs
 +
  assume HI: "snoc xs a = xs @ [a]"
 +
  have "snoc (aa # xs) a = aa # snoc xs a" by simp
 +
  also have "... = aa # xs @ [a]" using HI by simp
 +
  finally show "snoc (aa # xs) a = (aa # xs) @ [a]" by simp
 +
qed
  
 
text {*
 
text {*

Revisión del 23:46 28 nov 2013

header {* R4: Cons inverso *}

theory R4
imports Main 
begin

text {*
  --------------------------------------------------------------------- 
  Ejercicio 1. Definir recursivamente la función 
     snoc :: "'a list ⇒ 'a ⇒ 'a list"
  tal que (snoc xs a) es la lista obtenida al añadir el elemento a al
  final de la lista xs. Por ejemplo, 
     value "snoc [2,5] (3::int)" == [2,5,3]

  Nota: No usar @.
  --------------------------------------------------------------------- 
*}
-- "pabflomar"
fun snoc :: "'a list ⇒ 'a ⇒ 'a list" where
  "snoc [] a = [a]"
| "snoc (x#xs) a = x # (snoc xs a)" 

text {*
  --------------------------------------------------------------------- 
  Ejercicio 2. Demostrar automáticamente el siguiente teorema 
     snoc xs a = xs @ [a]
  --------------------------------------------------------------------- 
*}
-- "pabflomar"
lemma "snoc xs a = xs @ [a]"
by (induct xs) auto

text {*
  --------------------------------------------------------------------- 
  Ejercicio 3. Demostrar detalladamente el siguiente teorema 
     snoc xs a = xs @ [a]
  --------------------------------------------------------------------- 
*}
-- "pabflomar"
lemma snoc_append: "snoc xs a = xs @ [a]"
proof (induct xs)
  show " snoc [] a = [] @ [a]" by simp
next
  fix aa xs
  assume HI: "snoc xs a = xs @ [a]"
  have "snoc (aa # xs) a = aa # snoc xs a" by simp
  also have "... = aa # xs @ [a]" using HI by simp
  finally show "snoc (aa # xs) a = (aa # xs) @ [a]" by simp
qed

text {*
  --------------------------------------------------------------------- 
  Ejercicio 4. Demostrar automáticamente el siguiente lema
     rev (x # xs) = snoc (rev xs) x"
  --------------------------------------------------------------------- 
*}

lemma "rev (x # xs) = snoc (rev xs) x"
oops

text {*
  --------------------------------------------------------------------- 
  Ejercicio 5. Demostrar detalladamente el siguiente lema
     rev (x # xs) = snoc (rev xs) x"
  --------------------------------------------------------------------- 
*}

lemma "rev (x # xs) = snoc (rev xs) x"
oops

end