Acciones

Diferencia entre revisiones de «Documentación»

De Razonamiento automático (2013-14)

(Artículos recientes)
(Artículos recientes)
Línea 89: Línea 89:
 
== Artículos recientes ==
 
== Artículos recientes ==
 
Están en orden cronológico inverso a la fecha de su reseña en [http://www.glc.us.es/~jalonso/vestigium/tag/resena Vestigium]:
 
Están en orden cronológico inverso a la fecha de su reseña en [http://www.glc.us.es/~jalonso/vestigium/tag/resena Vestigium]:
# L. Noschinski [http://bit.ly/1iJ8uVz A graph library for Isabelle].
+
# [http://bit.ly/1iJ8uVz A graph library for Isabelle]. ~ L. Noschinski
# L.C. Paulson [http://bit.ly/I0CU80 Gödel’s incompleteness theorems].
+
# [http://bit.ly/I0CU80 Gödel’s incompleteness theorems]. ~ L.C. Paulson  
# L.C. Paulson [http://bit.ly/I0CPRN The hereditarily finite sets].
+
# [http://bit.ly/I0CPRN The hereditarily finite sets]. ~ L.C. Paulson
# H. Gottliebsen, R. Hardy, O. Lightfoot y U. Martin [http://bit.ly/HBiIJI Applications of real number theorem proving in PVS].
+
# [http://bit.ly/HBiIJI Applications of real number theorem proving in PVS]. ~ H. Gottliebsen, R. Hardy, O. Lightfoot y U. Martin  
# L.C. Paulson [http://bit.ly/1awnMLB A machine-assisted proof of Gödel’s incompleteness theorems for the theory of hereditarily finite sets].
+
# [http://bit.ly/1awnMLB A machine-assisted proof of Gödel’s incompleteness theorems for the theory of hereditarily finite sets]. ~ L.C. Paulson  
# J. Davis y S. Swords [http://bit.ly/19lWeYy Verified AIG algorithms in ACL2].
+
# [http://bit.ly/19lWeYy Verified AIG algorithms in ACL2]. ~ J. Davis y S. Swords  
# C. Wu, X. Zhang y C. Urban [http://bit.ly/GAhC00 A formal model and correctness proof for an access control policy framework].
+
# [http://bit.ly/GAhC00 A formal model and correctness proof for an access control policy framework]. ~ C. Wu, X. Zhang y C. Urban  
# J. Rushby [http://bit.ly/16SMvSS The ontological argument in PVS].
+
# [http://bit.ly/16SMvSS The ontological argument in PVS]. ~ J. Rushby  
# M. Bickford, D. Kozen y A. Silva [http://bit.ly/1dRt9n0  Formalizing Moessner’s theorem and generalizations in Nuprl].
+
# [http://bit.ly/1dRt9n0  Formalizing Moessner’s theorem and generalizations in Nuprl]. ~ M. Bickford, D. Kozen y A. Silva  
# M. Ayala y Y. Santos [http://bit.ly/1bSeDNB Formalization in PVS of balancing properties necessary for the security of the Dolev-Yao cascade protocol model].
+
# [http://bit.ly/1bSeDNB Formalization in PVS of balancing properties necessary for the security of the Dolev-Yao cascade protocol model]. ~ M. Ayala y Y. Santos  
# J. Pais y A Tasistro [http://bit.ly/1feFqWE Proof assistant based on didactic considerations].
+
# [http://bit.ly/1feFqWE Proof assistant based on didactic considerations]. ~ J. Pais y A Tasistro  
# M. Johansson [http://bit.ly/18tHNBi Theory exploration for interactive theorem proving].
+
# [http://bit.ly/18tHNBi Theory exploration for interactive theorem proving]. ~ M. Johansson  
# G. Braun y J. Narboux [http://bit.ly/1b0242s From Tarski to Hilbert].
+
# [http://bit.ly/1b0242s From Tarski to Hilbert]. ~ G. Braun y J. Narboux  
# A. Popescu, J. Hölzl y T. Nipkow [http://bit.ly/18HaXaR Formal verification of language-based concurrent noninterference].
+
# [http://bit.ly/18HaXaR Formal verification of language-based concurrent noninterference]. ~ A. Popescu, J. Hölzl y T. Nipkow  
# C. Muñoz, A. Narkawicz y J. Chamberlain [http://bit.ly/1aRTQsU A Traffic Alert and Collision Avoidance System(TCAS-II) Resolution Advisory Algorithm].
+
# [http://bit.ly/1aRTQsU A Traffic Alert and Collision Avoidance System(TCAS-II) Resolution Advisory Algorithm]. ~ C. Muñoz, A. Narkawicz y J. Chamberlain  
# M. Berg [http://bit.ly/1dNwhDI Formal verification of cryptographic security proofs].
+
# [http://bit.ly/1dNwhDI Formal verification of cryptographic security proofs]. ~ M. Berg  
# A. Grabowski [http://bit.ly/17muAUv Polygonal numbers in Mizar].
+
# [http://bit.ly/17muAUv Polygonal numbers in Mizar]. ~ A. Grabowski
# L.C. Paulson [http://bit.ly/1hk5z6L A mechanised proof of Gödel’s incompleteness theorems using Nominal Isabelle].
+
# [http://bit.ly/1hk5z6L A mechanised proof of Gödel’s incompleteness theorems using Nominal Isabelle]. ~ L.C. Paulson
# M.O. Myreen, S. Owens y R. Kumar [http://bit.ly/1cSL0wE Steps towards verified implementations of HOL Light].
+
# [http://bit.ly/1cSL0wE Steps towards verified implementations of HOL Light]. ~ M.O. Myreen, S. Owens y R. Kumar
# S. Keuchel y T. Schrijvers [http://bit.ly/16Kbgm0 Generic datatypes à la carte].
+
# [http://bit.ly/16Kbgm0 Generic datatypes à la carte]. ~ S. Keuchel y T. Schrijvers
# M.O. Myreen y G. Curello [http://bit.ly/1bqJGx4 Proof pearl: A verified bignum implementation in x86-64 machine code].
+
# [http://bit.ly/1bqJGx4 Proof pearl: A verified bignum implementation in x86-64 machine code]. ~ M.O. Myreen y G. Curello
# R. Ribeiro, C. Camarão y L. Figueiredo [http://bit.ly/142ow2Q Mechanized metatheory for a λ λ-calculus with trust types].
+
# [http://bit.ly/142ow2Q Mechanized metatheory for a λ λ-calculus with trust types]. ~ R. Ribeiro, C. Camarão y L. Figueiredo
# M.B. Caminati, M. Kerber, C. Lange y C. Rowat [http://bit.ly/15WZBDy Proving soundness of combinatorial Vickrey auctions and generating verified executable code].
+
# [http://bit.ly/15WZBDy Proving soundness of combinatorial Vickrey auctions and generating verified executable code]. ~ M.B. Caminati, M. Kerber, C. Lange y C. Rowat
# A.N. Chernikov y J. Xu [http://bit.ly/198g4n9 A computer-assisted proof of correctness of a marching cubes algorithm].
+
# [http://bit.ly/198g4n9 A computer-assisted proof of correctness of a marching cubes algorithm]. ~ A.N. Chernikov y J. Xu
# L. Lambán, J. Rubio, F.J. Martín y J.L. Ruiz [http://bit.ly/11QA5g7 Verifying the bridge between simplicial topology and algebra: the Eilenberg-Zilber algorithm].
+
# [http://bit.ly/11QA5g7 Verifying the bridge between simplicial topology and algebra: the Eilenberg-Zilber algorithm]. ~ L. Lambán, J. Rubio, F.J. Martín y J.L. Ruiz
# W. Li [http://bit.ly/1cJAXYk The Königsberg bridge problem and the friendship theorem].
+
# [http://bit.ly/1cJAXYk The Königsberg bridge problem and the friendship theorem]. ~ W. Li
# M. Chaabani, M. Mezghiche y M. Strecker [http://bit.ly/13DBK9R Formal verification of a proof procedure for the description logic ALC].
+
# [http://bit.ly/13DBK9R Formal verification of a proof procedure for the description logic ALC]. ~ M. Chaabani, M. Mezghiche y M. Strecker
# S. Wimmer y L. Noschinski [http://bit.ly/1ep2ex9 Pratt’s primality certificates].
+
# [http://bit.ly/1ep2ex9 Pratt’s primality certificates]. ~ S. Wimmer y L. Noschinski
# Y. Wang, K. Chaudhuri, A. Gacek y G. Nadathur [http://bit.ly/13C95Ci Reasoning about higher-order relational specifications].
+
# [http://bit.ly/13C95Ci Reasoning about higher-order relational specifications]. ~ Y. Wang, K. Chaudhuri, A. Gacek y G. Nadathur
# J. Kriener, A. King y S. Blazy [http://bit.ly/18QQLcL Proofs you can believe in – Proving equivalences between Prolog semantics in Coq].
+
# [http://bit.ly/18QQLcL Proofs you can believe in – Proving equivalences between Prolog semantics in Coq]. ~ J. Kriener, A. King y S. Blazy
# E. Martin-Dorel, L. Rideau, L. Théry, M. Mayero y I. Paşca [http://bit.ly/19uc82J Certified, efficient and sharp univariate Taylor models in Coq].
+
# [http://bit.ly/19uc82J Certified, efficient and sharp univariate Taylor models in Coq]. ~ E. Martin-Dorel, L. Rideau, L. Théry, M. Mayero y I. Paşca
# M. Norrish y B. Huffman [http://bit.ly/1c4Rzel Ordinals in HOL: Transfinite arithmetic up to (and beyond) ω₁].
+
# [http://bit.ly/1c4Rzel Ordinals in HOL: Transfinite arithmetic up to (and beyond) ω₁]. ~ M. Norrish y B. Huffman 
# A. Armstrong, G. Struth y T. Weber [http://bit.ly/14b4Akz Program verification based on Kleene algebra in Isabelle/HOL]
+
# [http://bit.ly/14b4Akz Program verification based on Kleene algebra in Isabelle/HOL]
# C. Ballarin [http://bit.ly/1aOgRKx Reading an algebra textbook (by translating it to a formal document in the Isabelle/Isar language)].
+
~ A. Armstrong, G. Struth y T. Weber # C. Ballarin [http://bit.ly/1aOgRKx Re[http://bit.ly/11HKixj Computational verification of network programs in Coq]. ~ ading an algebra textbook (by translating it to a formal document in the Isabelle/Isar language)].
# G. Stewart [http://bit.ly/11HKixj Computational verification of network programs in Coq].
+
# G. Stewart  
# M. Poza [http://www.glc.us.es/~jalonso/vestigium/resena-certifying-homological-algorithms-to-study-biomedical-images Certifying homological algorithms to study biomedical images].
+
# [http://www.glc.us.es/~jalonso/vestigium/resena-certifying-homological-algorithms-to-study-biomedical-images Certifying homological algorithms to study biomedical images]. ~ M. Poza
# H. Tews [http://bit.ly/16Nks9m Formalizing cut elimination of coalgebraic logics in Coq].
+
# [http://bit.ly/16Nks9m Formalizing cut elimination of coalgebraic logics in Coq]. ~ H. Tews
# W.M. Farmer [http://www.glc.us.es/~jalonso/vestigium/resena-the-formalization-of-syntax-based-mathematical-algorithms-using-quotation-and-evaluation/ The formalization of syntax-based mathematical algorithms using quotation and evaluation].
+
# [http://www.glc.us.es/~jalonso/vestigium/resena-the-formalization-of-syntax-based-mathematical-algorithms-using-quotation-and-evaluation/ The formalization of syntax-based mathematical algorithms using quotation and evaluation]. ~ W.M. Farmer
# L. Lambán, F.J. Martín, J. Rubio y J.L. Ruiz [http://www.glc.us.es/~jalonso/vestigium/resena-certified-symbolic-manipulation-bivariate-simplicial-polynomials/ Certified symbolic manipulation: Bivariate simplicial polynomials].
+
# [http://www.glc.us.es/~jalonso/vestigium/resena-certified-symbolic-manipulation-bivariate-simplicial-polynomials/ Certified symbolic manipulation: Bivariate simplicial polynomials]. ~ L. Lambán, F.J. Martín, J. Rubio y J.L. Ruiz
# C Dubois y A. Gotlieb [http://www.glc.us.es/~jalonso/vestigium/resena-solveurs-cpfd-verifies-formellement/ Solveurs CP(FD) vérifiés formellement].
+
# [http://www.glc.us.es/~jalonso/vestigium/resena-solveurs-cpfd-verifies-formellement/ Solveurs CP(FD) vérifiés formellement]. ~ C Dubois y A. Gotlieb
# R. Thiemann [http://www.glc.us.es/~jalonso/vestigium/resena-formalizing-bounded-increase/ Formalizing bounded increase].
+
# [http://www.glc.us.es/~jalonso/vestigium/resena-formalizing-bounded-increase/ Formalizing bounded increase]. ~ R. Thiemann
# C. Tankink, C. Kaliszyk, J. Urban y H. Geuvers [http://www.glc.us.es/~jalonso/vestigium/resena-formal-mathematics-on-display-a-wiki-for-flyspeck/ Formal mathematics on display: A wiki for Flyspeck].
+
# [http://www.glc.us.es/~jalonso/vestigium/resena-formal-mathematics-on-display-a-wiki-for-flyspeck/ Formal mathematics on display: A wiki for Flyspeck]. ~ C. Tankink, C. Kaliszyk, J. Urban y H. Geuvers
# J. Zsidó [http://www.glc.us.es/~jalonso/vestigium/resena-theorem-of-three-circles-in-coq Theorem of three circles in Coq].
+
# [http://www.glc.us.es/~jalonso/vestigium/resena-theorem-of-three-circles-in-coq Theorem of three circles in Coq]. ~ J. Zsidó
# J. Breitner, B. Huffman, N. Mitchell y C. Sternagel [http://bit.ly/19fiWAY Certified HLints with Isabelle/HOLCF-Prelude].
+
# [http://bit.ly/19fiWAY Certified HLints with Isabelle/HOLCF-Prelude]. ~ J. Breitner, B. Huffman, N. Mitchell y C. Sternagel  
# P. Lammich [http://bit.ly/ZfSQrQ Automatic data refinement].
+
# [http://bit.ly/ZfSQrQ Automatic data refinement]. ~ P. Lammich
# A. Mahboubi [http://bit.ly/18vyjm7 The rooster and the butterflies (a machine-checked proof of the Jordan-Hölder theorem for finite groups)].
+
# [http://bit.ly/18vyjm7 The rooster and the butterflies (a machine-checked proof of the Jordan-Hölder theorem for finite groups)]. ~ A. Mahboubi
# N. Wetzler, M.J.H. Heule y W.A. Hunt Jr. [http://bit.ly/114oyZV Mechanical verification of SAT refutations with extended resolution].
+
# [http://bit.ly/114oyZV Mechanical verification of SAT refutations with extended resolution]. ~ N. Wetzler, M.J.H. Heule y W.A. Hunt Jr.  
# J. Hölzl, F. Immler y B. Huffman [http://bit.ly/13H0REu Type classes and filters for mathematical analysis in Isabelle/HOL]
+
# [http://bit.ly/13H0REu Type classes and filters for mathematical analysis in Isabelle/HOL]
# M. J. H. Heule, W. A. Hunt, Jr. y N. Wetzler [http://bit.ly/10fv8wO Verifying refutations with extended resolution].  
+
~ J. Hölzl, F. Immler y B. Huffman # M. J. H. Heule, W. A. Hunt, Jr. y N. We[http://bit.ly/10fv8wO Verifying refutations with extended resolution]. ~ tzler 
# C. Lüth y M. Ring [http://bit.ly/10EcFWj A Web interface for Isabelle: The next generation].  
+
# [http://bit.ly/10EcFWj A Web interface for Isabelle: The next generation]. ~ C. Lüth y M. Ring 
# L. Liu, O. Hasan y S. Tahar [http://bit.ly/18P9CSv On the formalization of continuous-time Markov chains in HOL].
+
# [http://bit.ly/18P9CSv On the formalization of continuous-time Markov chains in HOL]. ~ L. Liu, O. Hasan y S. Tahar
# A. Asperti y W. Ricciotti [http://bit.ly/17H2mqy Formalizing Turing machines].
+
# [http://bit.ly/17H2mqy Formalizing Turing machines]. ~ A. Asperti y W. Ricciotti
# A. Lochbihler [http://bit.ly/YwuCeL Light-weight containers for Isabelle: efficient, extensible, nestable].
+
# [http://bit.ly/YwuCeL Light-weight containers for Isabelle: efficient, extensible, nestable]. ~ A. Lochbihler
# L. Noschinski [http://bit.ly/10XLrRA Graph theory].
+
# [http://bit.ly/10XLrRA Graph theory]. ~ L. Noschinski
# G. Gonthier et als. [http://bit.ly/19kPEP4 A machine-checked proof of the odd order theorem].
+
# [http://bit.ly/19kPEP4 A machine-checked proof of the odd order theorem]. ~ G. Gonthier et als.  
# C. Doczkal, J.O. Kaiser y G. Smolka [http://goo.gl/LdihL A constructive theory of regular languages in Coq].
+
# [http://goo.gl/LdihL A constructive theory of regular languages in Coq]. ~ C. Doczkal, J.O. Kaiser y G. Smolka
# C. Sternagel [http://goo.gl/gwcwL A formal proof of Kruskal’s tree theorem in Isabelle/HOL].
+
# [http://goo.gl/gwcwL A formal proof of Kruskal’s tree theorem in Isabelle/HOL]. ~ C. Sternagel  
# C. Sternagel y R. Thiemann [http://goo.gl/CUF3e Formalizing Knuth-Bendix orders and Knuth-Bendix completion].  
+
# [http://goo.gl/CUF3e Formalizing Knuth-Bendix orders and Knuth-Bendix completion]. ~ C. Sternagel y R. Thiemann 
# C. Lange, C. Rowat, W. Windsteiger y M. Kerber [http://goo.gl/9JAfX Developing an auction theory toolbox].
+
# [http://goo.gl/9JAfX Developing an auction theory toolbox]. ~ C. Lange, C. Rowat, W. Windsteiger y M. Kerber
# M. Spasić y F. Marić [http://goo.gl/6OfmQ Formalization of incremental simplex algorithm by stepwise refinement].  
+
# [http://goo.gl/6OfmQ Formalization of incremental simplex algorithm by stepwise refinement]. ~ M. Spasić y F. Marić 
# J.C. Blanchette, A. Popescu y D. Traytel [http://goo.gl/Guxky Coinductive pearl: Modular first-order logic completeness].
+
# [http://goo.gl/Guxky Coinductive pearl: Modular first-order logic completeness]. ~ J.C. Blanchette, A. Popescu y D. Traytel
# J. Esparza et als. [http://goo.gl/HUOl8 A fully verified executable LTL model checker].
+
# [http://goo.gl/HUOl8 A fully verified executable LTL model checker]. ~ J. Esparza et als.  
# M. Kerber, C. Lange y C. Rowat. [http://goo.gl/RV54S ForMaRE - formal mathematical reasoning in economics].
+
# [http://goo.gl/RV54S ForMaRE - formal mathematical reasoning in economics]. ~ M. Kerber, C. Lange y C. Rowat.  
# J. Urban. [http://goo.gl/Y7sIq AI over large formal knowledge bases: The first decade].
+
# [http://goo.gl/Y7sIq AI over large formal knowledge bases: The first decade]. ~ J. Urban.  
# S. Boldo, C. Lelay y G. Melquiond. [http://goo.gl/vvqNg Formalization of real analysis: A survey of proof assistants and libraries].
+
# [http://goo.gl/vvqNg Formalization of real analysis: A survey of proof assistants and libraries]. ~ S. Boldo, C. Lelay y G. Melquiond.  
# F. Haftmann, A. Krauss, O. Kunčar y T. Nipkow [http://goo.gl/bEFYa Data refinement in Isabelle/HOL].
+
# [http://goo.gl/bEFYa Data refinement in Isabelle/HOL]. ~ F. Haftmann, A. Krauss, O. Kunčar y T. Nipkow
# A.C. Rocha y M. Ayala. [http://goo.gl/xTyvE Formalizing the confluence of orthogonal rewriting systems].
+
# [http://goo.gl/xTyvE Formalizing the confluence of orthogonal rewriting systems]. ~ A.C. Rocha y M. Ayala.
# Z. Shi et als. [http://goo.gl/zCYHj Formalization of the complex number theory in HOL4].
+
# [http://goo.gl/zCYHj Formalization of the complex number theory in HOL4]. ~ Z. Shi et als.  
# F. Loulergue y V. Niculescu [http://goo.gl/kM0dI Programming and reasonning with PowerLists in Coq].  
+
# [http://goo.gl/kM0dI Programming and reasonning with PowerLists in Coq]. ~ F. Loulergue y V. Niculescu 
# J. Heras, F.J. Martín y V. Pascual. [http://goo.gl/KkU6s A hierarchy of mathematical structures in ACL2].
+
# [http://goo.gl/KkU6s A hierarchy of mathematical structures in ACL2]. ~ J. Heras, F.J. Martín y V. Pascual.  
# J. Xu, X. Zhang y C. Urban [http://www.inf.kcl.ac.uk/staff/urbanc/Publications/tm.pdf Mechanising Turing Machines and Computability Theory in Isabelle/HOL]
+
# [http://www.inf.kcl.ac.uk/staff/urbanc/Publications/tm.pdf Mechanising Turing Machines and Computability Theory in Isabelle/HOL]
 +
~ J. Xu, X. Zhang y C. Urban

Revisión del 08:25 28 nov 2013

En esta página se recogen en enlaces que sirven de documentación al curso de demostración asistida por ordenador (DAO).

Visiones generales de la DAO

  1. J.A. Alonso. Razonamiento formalizado: Del sueño a la realidad de las pruebas. Vestigium, 26 de diciembre de 2012.
  2. J. Avigad. Interactive theorem proving, automated reasoning, and mathematical computation. ICERM, 14 de diciembre de 2012.
  3. M. Davis. The early history of automated deduction.
  4. J.P. Delahaye Du rêve à la réalité des preuves. Interstices, 8 de julio de 2012.
  5. J. Germoni Coq et caractères: Preuve formelle du théorème de Feit et Thompson. Images des Mathématiques, CNRS, 23 de noviembre de 2012.
  6. H. Geuvers Proof assistants: History, ideas and future. Sadhana, Vol. 34-1, pp. 3-25, février 2009.
  7. G. Gonthier The four-color theorem. Notices of the AMS, Vol. 55, n° 11, pp. 1382-1393, 2008.
  8. T. Hales. Formal proof. Notices of AMS, Vol. 55, N. 11 (2008) pp. 1370-1380.
  9. J. Harrison. A short survey of automated reasoning. Lecture Notes in Computer Science, Vol. 4545, pp. 334-349, 2007.
  10. J. Harrison. Formal proof: Theory and practice. Notices of the AMS, Vol. 55, N. 11 (2008) p.1395-1406.
  11. G. Kolata. Computer math proof shows reasoning power. The New York Times, 10 de diciembre de 1996.
  12. D. MacKenzie Computers and the sociology of mathematical proof.
  13. G. Sutcliffe. What is automated theorem proving?.
  14. F. Wiedijk Formalizing the «top 100» of mathematical theorems.
  15. F. Wiedijk Formal proof - Getting started. Notices of the AMS, Vol. 55, n° 11, pp. 1408-1414, 2008.
  16. F. Wiedijk, The QED manifesto revisited. Studies in Logic, Grammar and Rhetoric, Vol. 10(23), pp. 121-133, 2007.

Referencias sobre Isabelle/HOL

  1. B. Grechuk Isabelle primer for mathematicians.
  2. T. Nipkow Programming and proving in Isabelle/HOL. 12 de febrero de 2013.
  3. T. Nipkow, M. Wenzel y L.C. Paulson A proof assistant for higher-order logic. Springer-Verlag. 12 de febrero de 2013.
  4. Isabelle/HOL — Higher-Order Logic. 12 de febrero de 2013.
  5. Tutorials and manuals for Isabelle2013.

Lecturas complementarias

Programación funcional

  1. J.A. Alonso Temas de "Programación funcional". Publicaciones del Grupo de Lógica Computacional. Universidad de Sevilla, 2012.
  2. J.A. Alonso y M.J. Hidalgo Piensa en Haskell (Ejercicios de programación funcional con Haskell). Publicaciones del Grupo de Lógica Computacional. Universidad de Sevilla, 2012.
  3. G. Hutton Programming in Haskell. Cambridge University Press, 2007.
  4. M. Lipovača ¡Aprende Haskell por el bien de todos!.

Lógica computacional

  1. J.A. Alonso Temas de "Lógica informática" (2012-13). Publicaciones del Grupo de Lógica Computacional. Universidad de Sevilla, 2012.
  2. R. Bornat Proof and disproof in formal logic: an introduction for programmers. Oxford University Press, 2005.
  3. K. Broda, S. Eisenbach, H. Khoshnevisan y S. Vickers Reasoned programming. Imperial College, 1994.
  4. K. Doets y J. van Eijck The Haskell Road to Logic, Maths and Programming.
  5. M. Huth y M. Ryan Logic in computer science: Modelling and reasoning about systems. Cambridge University Press, 2004. (Incluye el tutor en la Red).

Cursos relacionados

Cursos con Isabelle/HOL

  1. Jeremy Avigad. Logic and Formal Verification. (Carnegie Mellon, 2009).
  2. Clemens Ballarin. Automatic Deduction. (Univ de Innsbruck, 2008).
  3. Clemens Ballarin. Introduction to the Isabelle Proof Assistant. (Belgrado, 2008).
  4. Clemens Ballarin y Gerwin Klein Introduction to the Isabelle Proof Assistant. (en el IJCAR-2004).
  5. Clemens Ballarin y Tjark Weber. Automated Theorem Proving in Isabelle/HOL. (Univ. de Innsbruck, 2006-07).
  6. A.D. Brucker, D. Basin, J.G. Smaus y B. Wolff. Computer-supported Modeling and Reasoning. (ETH Zurich, 2011).
  7. Mads Dam. Advanced formal methods. (KTH Royal Institute of Technology, 2007).
  8. Jacques Fleuriot y Paul Jackson. Automated reasoning. (Univ. de Edimburgo, 2012-13).
  9. Thomas Genet Software formal analysis and design. (Univ. de Rennes)
  10. Gerwin Klein. Theorem Proving - Principles, Techniques, Applications. (NICTA, 2004).
  11. Gerwin Klein. Advanced Topics in Software Verification. (NICTA, 2012).
  12. Joao Marcos. Lógica computacional: Demonstração assistida e semi-automática de teoremas.(UFRN, 2000).
  13. Tobias Nipkow. Semantics of programming languages. (Univ. de Munich, 2012-13).
  14. Tobias Nipkow Theorem Proving with Isabelle/HOL An Intensive Course.
  15. Larry Paulson. Interactive Formal Verification. (Univ. de Cambridge, 2009-10).
  16. Arnd Poetzsch-Heffter. Specification and Verification with Higher-Order Logic.
  17. Jeremy G. Siek. Practical Theorem Proving with Isabelle/Isar. (Univ. de Colorado, 2007).
  18. Jeremy G. Siek. Theorem proving in Isabelle. (Univ. de Colorado, 2011).
  19. Jan-Georg Smaus. Computer-supported modeling and reasoning. (Univ. de Feiburgo, 2009).
  20. Christian Sternagel Experiments in Verification – Introduction to Isabelle/HOL. (Univ. de Innsbruck, 2011-12).
  21. Tjark Weber. Interactive Formal Verification. (Univ. de Cambridge, 2010-11).

Otros cursos

  1. José A. Alonso Lógica informática (Univ. de Sevilla, 2012-13).
  2. Yves Bertot, Pierre Casteran, Benjamin Gregoire, Pierre Letouzey y Assia Mahboubi Modelling and verifying algorithms in Coq: an introduction. (INRIA Paris-Rocquencourt, 14-18 noviembre 2011).
  3. Pierre Castéran Logic (Master In Verification) (Univ. de Burdeos, 2011-12).
  4. Nuno Gaspar Verification with the Coq Proof Assistant (INRIA Sophia Antipolis, 2012-13).
  5. Michael Genesereth Computational Logic (Univ. de Stanford, 2011-12).
  6. Ian Hodkinson Logic (Imperial College, Londres, 2010-11).
  7. Peter Lucas Knowledge Representation and Reasoning (Radboud University # egen, 2011-12).
  8. Larry Paulson Logic and Proof (Univ. de Cambridge, 2011-12).
  9. Michael Winter [Logic in Computer Science] (Brock University, Ontario, Canada, 2010-11).

Bibliotecas de ejemplos de verificación

  1. Archive of Formal Proofs.
  2. Formalizing 100 Theorems.
  3. Gallery of verified programs.
  4. Induction Challenge Problems.
  5. Larry Wos' Notebooks.
  6. The TPTP Problem Library for Automated Theorem Proving.
  7. The 1st Verified Software Competition.
  8. The 2nd Verified Software Competition.
  9. VerifyThis (A collection of verification benchmarks.

Artículos recientes

Están en orden cronológico inverso a la fecha de su reseña en Vestigium:

  1. A graph library for Isabelle. ~ L. Noschinski
  2. Gödel’s incompleteness theorems. ~ L.C. Paulson
  3. The hereditarily finite sets. ~ L.C. Paulson
  4. Applications of real number theorem proving in PVS. ~ H. Gottliebsen, R. Hardy, O. Lightfoot y U. Martin
  5. A machine-assisted proof of Gödel’s incompleteness theorems for the theory of hereditarily finite sets. ~ L.C. Paulson
  6. Verified AIG algorithms in ACL2. ~ J. Davis y S. Swords
  7. A formal model and correctness proof for an access control policy framework. ~ C. Wu, X. Zhang y C. Urban
  8. The ontological argument in PVS. ~ J. Rushby
  9. Formalizing Moessner’s theorem and generalizations in Nuprl. ~ M. Bickford, D. Kozen y A. Silva
  10. Formalization in PVS of balancing properties necessary for the security of the Dolev-Yao cascade protocol model. ~ M. Ayala y Y. Santos
  11. Proof assistant based on didactic considerations. ~ J. Pais y A Tasistro
  12. Theory exploration for interactive theorem proving. ~ M. Johansson
  13. From Tarski to Hilbert. ~ G. Braun y J. Narboux
  14. Formal verification of language-based concurrent noninterference. ~ A. Popescu, J. Hölzl y T. Nipkow
  15. A Traffic Alert and Collision Avoidance System(TCAS-II) Resolution Advisory Algorithm. ~ C. Muñoz, A. Narkawicz y J. Chamberlain
  16. Formal verification of cryptographic security proofs. ~ M. Berg
  17. Polygonal numbers in Mizar. ~ A. Grabowski
  18. A mechanised proof of Gödel’s incompleteness theorems using Nominal Isabelle. ~ L.C. Paulson
  19. Steps towards verified implementations of HOL Light. ~ M.O. Myreen, S. Owens y R. Kumar
  20. Generic datatypes à la carte. ~ S. Keuchel y T. Schrijvers
  21. Proof pearl: A verified bignum implementation in x86-64 machine code. ~ M.O. Myreen y G. Curello
  22. Mechanized metatheory for a λ λ-calculus with trust types. ~ R. Ribeiro, C. Camarão y L. Figueiredo
  23. Proving soundness of combinatorial Vickrey auctions and generating verified executable code. ~ M.B. Caminati, M. Kerber, C. Lange y C. Rowat
  24. A computer-assisted proof of correctness of a marching cubes algorithm. ~ A.N. Chernikov y J. Xu
  25. Verifying the bridge between simplicial topology and algebra: the Eilenberg-Zilber algorithm. ~ L. Lambán, J. Rubio, F.J. Martín y J.L. Ruiz
  26. The Königsberg bridge problem and the friendship theorem. ~ W. Li
  27. Formal verification of a proof procedure for the description logic ALC. ~ M. Chaabani, M. Mezghiche y M. Strecker
  28. Pratt’s primality certificates. ~ S. Wimmer y L. Noschinski
  29. Reasoning about higher-order relational specifications. ~ Y. Wang, K. Chaudhuri, A. Gacek y G. Nadathur
  30. Proofs you can believe in – Proving equivalences between Prolog semantics in Coq. ~ J. Kriener, A. King y S. Blazy
  31. Certified, efficient and sharp univariate Taylor models in Coq. ~ E. Martin-Dorel, L. Rideau, L. Théry, M. Mayero y I. Paşca
  32. Ordinals in HOL: Transfinite arithmetic up to (and beyond) ω₁. ~ M. Norrish y B. Huffman
  33. Program verification based on Kleene algebra in Isabelle/HOL
~ A. Armstrong, G. Struth y T. Weber # C. Ballarin Re[http://bit.ly/11HKixj Computational verification of network programs in Coq. ~ ading an algebra textbook (by translating it to a formal document in the Isabelle/Isar language)].
  1. G. Stewart
  2. Certifying homological algorithms to study biomedical images. ~ M. Poza
  3. Formalizing cut elimination of coalgebraic logics in Coq. ~ H. Tews
  4. The formalization of syntax-based mathematical algorithms using quotation and evaluation. ~ W.M. Farmer
  5. Certified symbolic manipulation: Bivariate simplicial polynomials. ~ L. Lambán, F.J. Martín, J. Rubio y J.L. Ruiz
  6. Solveurs CP(FD) vérifiés formellement. ~ C Dubois y A. Gotlieb
  7. Formalizing bounded increase. ~ R. Thiemann
  8. Formal mathematics on display: A wiki for Flyspeck. ~ C. Tankink, C. Kaliszyk, J. Urban y H. Geuvers
  9. Theorem of three circles in Coq. ~ J. Zsidó
  10. Certified HLints with Isabelle/HOLCF-Prelude. ~ J. Breitner, B. Huffman, N. Mitchell y C. Sternagel
  11. Automatic data refinement. ~ P. Lammich
  12. The rooster and the butterflies (a machine-checked proof of the Jordan-Hölder theorem for finite groups). ~ A. Mahboubi
  13. Mechanical verification of SAT refutations with extended resolution. ~ N. Wetzler, M.J.H. Heule y W.A. Hunt Jr.
  14. Type classes and filters for mathematical analysis in Isabelle/HOL
~ J. Hölzl, F. Immler y B. Huffman # M. J. H. Heule, W. A. Hunt, Jr. y N. WeVerifying refutations with extended resolution. ~ tzler  
  1. A Web interface for Isabelle: The next generation. ~ C. Lüth y M. Ring
  2. On the formalization of continuous-time Markov chains in HOL. ~ L. Liu, O. Hasan y S. Tahar
  3. Formalizing Turing machines. ~ A. Asperti y W. Ricciotti
  4. Light-weight containers for Isabelle: efficient, extensible, nestable. ~ A. Lochbihler
  5. Graph theory. ~ L. Noschinski
  6. A machine-checked proof of the odd order theorem. ~ G. Gonthier et als.
  7. A constructive theory of regular languages in Coq. ~ C. Doczkal, J.O. Kaiser y G. Smolka
  8. A formal proof of Kruskal’s tree theorem in Isabelle/HOL. ~ C. Sternagel
  9. Formalizing Knuth-Bendix orders and Knuth-Bendix completion. ~ C. Sternagel y R. Thiemann
  10. Developing an auction theory toolbox. ~ C. Lange, C. Rowat, W. Windsteiger y M. Kerber
  11. Formalization of incremental simplex algorithm by stepwise refinement. ~ M. Spasić y F. Marić
  12. Coinductive pearl: Modular first-order logic completeness. ~ J.C. Blanchette, A. Popescu y D. Traytel
  13. A fully verified executable LTL model checker. ~ J. Esparza et als.
  14. ForMaRE - formal mathematical reasoning in economics. ~ M. Kerber, C. Lange y C. Rowat.
  15. AI over large formal knowledge bases: The first decade. ~ J. Urban.
  16. Formalization of real analysis: A survey of proof assistants and libraries. ~ S. Boldo, C. Lelay y G. Melquiond.
  17. Data refinement in Isabelle/HOL. ~ F. Haftmann, A. Krauss, O. Kunčar y T. Nipkow
  18. Formalizing the confluence of orthogonal rewriting systems. ~ A.C. Rocha y M. Ayala.
  19. Formalization of the complex number theory in HOL4. ~ Z. Shi et als.
  20. Programming and reasonning with PowerLists in Coq. ~ F. Loulergue y V. Niculescu
  21. A hierarchy of mathematical structures in ACL2. ~ J. Heras, F.J. Martín y V. Pascual.
  22. Mechanising Turing Machines and Computability Theory in Isabelle/HOL
~ J. Xu, X. Zhang y C. Urban