Diferencia entre revisiones de «Relación 3»
De Razonamiento automático (2013-14)
(Página creada con '<source lang="isar"> header {* R3: Razonamiento sobre programas en Isabelle/HOL *} theory R3 imports Main begin text {* ------------------------------------------------------...') |
|||
Línea 8: | Línea 8: | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 1. Definir la función | Ejercicio 1. Definir la función | ||
− | sumaImpares :: nat | + | sumaImpares :: nat \<Rightarrow> nat |
tal que (sumaImpares n) es la suma de los n primeros números | tal que (sumaImpares n) es la suma de los n primeros números | ||
impares. Por ejemplo, | impares. Por ejemplo, | ||
Línea 14: | Línea 14: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | fun sumaImpares :: "nat | + | -- "maresccas4" |
− | "sumaImpares n = | + | |
+ | fun sumaImpares :: "nat \<Rightarrow> nat" where | ||
+ | "sumaImpares 0 = 0" | ||
+ | | "sumaImpares (Suc n) = (2 * n + 1) + sumaImpares n" | ||
value "sumaImpares 5" -- "= 25" | value "sumaImpares 5" -- "= 25" | ||
Línea 23: | Línea 26: | ||
sumaImpares n = n*n | sumaImpares n = n*n | ||
------------------------------------------------------------------- *} | ------------------------------------------------------------------- *} | ||
+ | |||
+ | -- "maresccas4" | ||
lemma "sumaImpares n = n*n" | lemma "sumaImpares n = n*n" | ||
− | + | proof (induct n) | |
+ | show "sumaImpares 0 = 0*0" by simp | ||
+ | next | ||
+ | fix n | ||
+ | assume HI: "sumaImpares n = n*n" | ||
+ | have "sumaImpares (Suc n) = (2 * n + 1) + sumaImpares n" by (simp only: sumaImpares.simps(2)) | ||
+ | also have "... = 2 * n + 1 + n * n" using HI by simp | ||
+ | finally show "sumaImpares (Suc n) = (Suc n) * (Suc n)" by simp | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 3. Definir la función | Ejercicio 3. Definir la función | ||
− | sumaPotenciasDeDosMasUno :: nat | + | sumaPotenciasDeDosMasUno :: nat \<Rightarrow> nat |
tal que | tal que | ||
(sumaPotenciasDeDosMasUno n) = 1 + 2^0 + 2^1 + 2^2 + ... + 2^n. | (sumaPotenciasDeDosMasUno n) = 1 + 2^0 + 2^1 + 2^2 + ... + 2^n. | ||
Línea 36: | Línea 49: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | fun sumaPotenciasDeDosMasUno :: "nat | + | -- "maresccas4" |
− | "sumaPotenciasDeDosMasUno n = | + | |
+ | fun sumaPotenciasDeDosMasUno :: "nat \<Rightarrow> nat" where | ||
+ | "sumaPotenciasDeDosMasUno 0 = 2" | ||
+ | | "sumaPotenciasDeDosMasUno (Suc n) = 2^(Suc n) + sumaPotenciasDeDosMasUno n" | ||
value "sumaPotenciasDeDosMasUno 3" -- "= 16" | value "sumaPotenciasDeDosMasUno 3" -- "= 16" | ||
Línea 45: | Línea 61: | ||
sumaPotenciasDeDosMasUno n = 2^(n+1) | sumaPotenciasDeDosMasUno n = 2^(n+1) | ||
------------------------------------------------------------------- *} | ------------------------------------------------------------------- *} | ||
+ | |||
+ | -- "maresccas4" | ||
lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)" | lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)" | ||
− | + | proof (induct n) | |
+ | show "sumaPotenciasDeDosMasUno 0 = 2^(0+1)" by simp | ||
+ | next | ||
+ | fix n | ||
+ | assume HI: "sumaPotenciasDeDosMasUno n = 2^(n+1)" | ||
+ | have "sumaPotenciasDeDosMasUno (Suc n) = 2^(Suc n) + sumaPotenciasDeDosMasUno n" by (simp only: sumaPotenciasDeDosMasUno.simps(2)) | ||
+ | also have "... = 2^(Suc n) + 2^(n+1)" using HI by simp | ||
+ | also have "... = 2^(n+1) + 2^(n+1)" by simp | ||
+ | also have "... = 2 * (2^n + 2^n)" by simp | ||
+ | also have "... = 2 * (2 * 2^n)" by simp | ||
+ | also have "... = 2 * 2^(Suc n)" by simp | ||
+ | finally show "sumaPotenciasDeDosMasUno (Suc n) = 2^((Suc n)+1)" by simp | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 5. Definir la función | Ejercicio 5. Definir la función | ||
− | copia :: nat | + | copia :: nat \<Rightarrow> 'a \<Rightarrow> 'a list |
tal que (copia n x) es la lista formado por n copias del elemento | tal que (copia n x) es la lista formado por n copias del elemento | ||
x. Por ejemplo, | x. Por ejemplo, | ||
Línea 57: | Línea 87: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | fun copia :: "nat | + | -- "maresccas4" |
− | "copia n x = | + | |
+ | fun copia :: "nat \<Rightarrow> 'a \<Rightarrow> 'a list" where | ||
+ | "copia 0 x = []" | ||
+ | | "copia (Suc n) x = x # copia n x" | ||
value "copia 3 x" -- "= [x,x,x]" | value "copia 3 x" -- "= [x,x,x]" | ||
Línea 64: | Línea 97: | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 6. Definir la función | Ejercicio 6. Definir la función | ||
− | todos :: ('a | + | todos :: ('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool |
tal que (todos p xs) se verifica si todos los elementos de xs cumplen | tal que (todos p xs) se verifica si todos los elementos de xs cumplen | ||
la propiedad p. Por ejemplo, | la propiedad p. Por ejemplo, | ||
− | todos ( | + | todos (\<lambda>x. x>(1::nat)) [2,6,4] = True |
− | todos ( | + | todos (\<lambda>x. x>(2::nat)) [2,6,4] = False |
− | Nota: La conjunción se representa por | + | Nota: La conjunción se representa por \<and> |
----------------------------------------------------------------- *} | ----------------------------------------------------------------- *} | ||
− | fun todos :: "('a | + | -- "maresccas4" |
− | "todos p xs = | + | |
+ | fun todos :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where | ||
+ | "todos p [] = True" | ||
+ | | "todos p (x#xs) = (p x \<and> todos p xs)" | ||
− | value "todos ( | + | value "todos (\<lambda>x. x>(1::nat)) [2,6,4]" -- "= True" |
− | value "todos ( | + | value "todos (\<lambda>x. x>(2::nat)) [2,6,4]" -- "= False" |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 83: | Línea 119: | ||
------------------------------------------------------------------- *} | ------------------------------------------------------------------- *} | ||
− | lemma "todos ( | + | -- "maresccas4" |
− | + | ||
+ | lemma "todos (\<lambda>y. y=x) (copia n x)" | ||
+ | proof (induct n) | ||
+ | show "todos (\<lambda>y. y=x) (copia 0 x)" by simp | ||
+ | next | ||
+ | fix n | ||
+ | assume HI: "todos (\<lambda>y. y=x) (copia n x)" | ||
+ | have "todos (\<lambda>y. y=x) (copia (Suc n) x) = todos (\<lambda>y. y=x) (x # copia n x)" by (simp only: copia.simps(2)) | ||
+ | also have "... = todos (\<lambda>y. y=x) (copia n x)" by simp | ||
+ | finally show "todos (\<lambda>y. y=x) (copia (Suc n) x)" using HI by simp | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 8. Definir la función | Ejercicio 8. Definir la función | ||
− | factR :: nat | + | factR :: nat \<Rightarrow> nat |
tal que (factR n) es el factorial de n. Por ejemplo, | tal que (factR n) es el factorial de n. Por ejemplo, | ||
factR 4 = 24 | factR 4 = 24 | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | fun factR :: "nat | + | -- "maresccas4" |
− | "factR n = | + | |
+ | fun factR :: "nat \<Rightarrow> nat" where | ||
+ | "factR 0 = 1" | ||
+ | | "factR (Suc n) = Suc n * factR n" | ||
value "factR 4" -- "= 24" | value "factR 4" -- "= 24" | ||
Línea 101: | Línea 150: | ||
Ejercicio 9. Se considera la siguiente definición iterativa de la | Ejercicio 9. Se considera la siguiente definición iterativa de la | ||
función factorial | función factorial | ||
− | factI :: "nat | + | factI :: "nat \<Rightarrow> nat" where |
factI n = factI' n 1 | factI n = factI' n 1 | ||
− | factI' :: nat | + | factI' :: nat \<Rightarrow> nat \<Rightarrow> nat" where |
factI' 0 x = x | factI' 0 x = x | ||
factI' (Suc n) x = factI' n (Suc n)*x | factI' (Suc n) x = factI' n (Suc n)*x | ||
Línea 111: | Línea 160: | ||
------------------------------------------------------------------- *} | ------------------------------------------------------------------- *} | ||
− | fun factI' :: "nat | + | fun factI' :: "nat \<Rightarrow> nat \<Rightarrow> nat" where |
"factI' 0 x = x" | "factI' 0 x = x" | ||
| "factI' (Suc n) x = factI' n (Suc n)*x" | | "factI' (Suc n) x = factI' n (Suc n)*x" | ||
− | fun factI :: "nat | + | fun factI :: "nat \<Rightarrow> nat" where |
"factI n = factI' n 1" | "factI n = factI' n 1" | ||
value "factI 4" -- "= 24" | value "factI 4" -- "= 24" | ||
+ | |||
+ | -- "maresccas4" | ||
lemma fact: "factI' n x = x * factR n" | lemma fact: "factI' n x = x * factR n" | ||
− | + | proof (induct n arbitrary: x) | |
+ | show "\<And>x. factI' 0 x = x * factR 0" by simp | ||
+ | next | ||
+ | fix n | ||
+ | assume HI: "\<And>x. factI' n x = x * factR n" | ||
+ | show "\<And>x. factI' (Suc n) x = x * factR (Suc n)" | ||
+ | proof - | ||
+ | fix x | ||
+ | have "factI' (Suc n) x = factI' n (Suc n)*x" by (simp only: factI'.simps(2)) | ||
+ | also have "... = x * factI' n (Suc n)" by simp | ||
+ | also have "... = x * ((Suc n) * factR n)" using HI by simp | ||
+ | finally show "factI' (Suc n) x = x * factR (Suc n)" by simp | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 127: | Línea 191: | ||
factI n = factR n | factI n = factR n | ||
------------------------------------------------------------------- *} | ------------------------------------------------------------------- *} | ||
+ | |||
+ | -- "maresccas4" | ||
corollary "factI n = factR n" | corollary "factI n = factR n" | ||
− | + | proof - | |
+ | show "factI n = factR n" by (simp add:fact) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 11. Definir, recursivamente y sin usar (@), la función | Ejercicio 11. Definir, recursivamente y sin usar (@), la función | ||
− | amplia :: 'a list | + | amplia :: 'a list \<Rightarrow> 'a \<Rightarrow> 'a list |
tal que (amplia xs y) es la lista obtenida añadiendo el elemento y al | tal que (amplia xs y) es la lista obtenida añadiendo el elemento y al | ||
final de la lista xs. Por ejemplo, | final de la lista xs. Por ejemplo, | ||
Línea 139: | Línea 207: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | fun amplia :: "'a list | + | -- "maresccas4" |
− | "amplia xs y = | + | |
+ | fun amplia :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list" where | ||
+ | "amplia [] y = [y]" | ||
+ | | "amplia (x#xs) y = x # (amplia xs y)" | ||
value "amplia [d,a] t" -- "= [d,a,t]" | value "amplia [d,a] t" -- "= [d,a,t]" | ||
Línea 148: | Línea 219: | ||
amplia xs y = xs @ [y] | amplia xs y = xs @ [y] | ||
------------------------------------------------------------------- *} | ------------------------------------------------------------------- *} | ||
+ | |||
+ | -- "maresccas4" | ||
lemma "amplia xs y = xs @ [y]" | lemma "amplia xs y = xs @ [y]" | ||
− | + | proof (induct xs) | |
+ | show "amplia [] y = [] @ [y]" by simp | ||
+ | next | ||
+ | fix x xs | ||
+ | assume HI: "amplia xs y = xs @ [y]" | ||
+ | have "amplia (x#xs) y = x # (amplia xs y)" by (simp only: amplia.simps(2)) | ||
+ | also have "... = x # xs @ [y]" using HI by simp | ||
+ | finally show "amplia (x#xs) y = (x#xs) @ [y]" by simp | ||
+ | qed | ||
end | end | ||
</source> | </source> |
Revisión del 22:17 22 nov 2013
header {* R3: Razonamiento sobre programas en Isabelle/HOL *}
theory R3
imports Main
begin
text {* ---------------------------------------------------------------
Ejercicio 1. Definir la función
sumaImpares :: nat \<Rightarrow> nat
tal que (sumaImpares n) es la suma de los n primeros números
impares. Por ejemplo,
sumaImpares 5 = 25
------------------------------------------------------------------ *}
-- "maresccas4"
fun sumaImpares :: "nat \<Rightarrow> nat" where
"sumaImpares 0 = 0"
| "sumaImpares (Suc n) = (2 * n + 1) + sumaImpares n"
value "sumaImpares 5" -- "= 25"
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar que
sumaImpares n = n*n
------------------------------------------------------------------- *}
-- "maresccas4"
lemma "sumaImpares n = n*n"
proof (induct n)
show "sumaImpares 0 = 0*0" by simp
next
fix n
assume HI: "sumaImpares n = n*n"
have "sumaImpares (Suc n) = (2 * n + 1) + sumaImpares n" by (simp only: sumaImpares.simps(2))
also have "... = 2 * n + 1 + n * n" using HI by simp
finally show "sumaImpares (Suc n) = (Suc n) * (Suc n)" by simp
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Definir la función
sumaPotenciasDeDosMasUno :: nat \<Rightarrow> nat
tal que
(sumaPotenciasDeDosMasUno n) = 1 + 2^0 + 2^1 + 2^2 + ... + 2^n.
Por ejemplo,
sumaPotenciasDeDosMasUno 3 = 16
------------------------------------------------------------------ *}
-- "maresccas4"
fun sumaPotenciasDeDosMasUno :: "nat \<Rightarrow> nat" where
"sumaPotenciasDeDosMasUno 0 = 2"
| "sumaPotenciasDeDosMasUno (Suc n) = 2^(Suc n) + sumaPotenciasDeDosMasUno n"
value "sumaPotenciasDeDosMasUno 3" -- "= 16"
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar que
sumaPotenciasDeDosMasUno n = 2^(n+1)
------------------------------------------------------------------- *}
-- "maresccas4"
lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)"
proof (induct n)
show "sumaPotenciasDeDosMasUno 0 = 2^(0+1)" by simp
next
fix n
assume HI: "sumaPotenciasDeDosMasUno n = 2^(n+1)"
have "sumaPotenciasDeDosMasUno (Suc n) = 2^(Suc n) + sumaPotenciasDeDosMasUno n" by (simp only: sumaPotenciasDeDosMasUno.simps(2))
also have "... = 2^(Suc n) + 2^(n+1)" using HI by simp
also have "... = 2^(n+1) + 2^(n+1)" by simp
also have "... = 2 * (2^n + 2^n)" by simp
also have "... = 2 * (2 * 2^n)" by simp
also have "... = 2 * 2^(Suc n)" by simp
finally show "sumaPotenciasDeDosMasUno (Suc n) = 2^((Suc n)+1)" by simp
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Definir la función
copia :: nat \<Rightarrow> 'a \<Rightarrow> 'a list
tal que (copia n x) es la lista formado por n copias del elemento
x. Por ejemplo,
copia 3 x = [x,x,x]
------------------------------------------------------------------ *}
-- "maresccas4"
fun copia :: "nat \<Rightarrow> 'a \<Rightarrow> 'a list" where
"copia 0 x = []"
| "copia (Suc n) x = x # copia n x"
value "copia 3 x" -- "= [x,x,x]"
text {* ---------------------------------------------------------------
Ejercicio 6. Definir la función
todos :: ('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool
tal que (todos p xs) se verifica si todos los elementos de xs cumplen
la propiedad p. Por ejemplo,
todos (\<lambda>x. x>(1::nat)) [2,6,4] = True
todos (\<lambda>x. x>(2::nat)) [2,6,4] = False
Nota: La conjunción se representa por \<and>
----------------------------------------------------------------- *}
-- "maresccas4"
fun todos :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where
"todos p [] = True"
| "todos p (x#xs) = (p x \<and> todos p xs)"
value "todos (\<lambda>x. x>(1::nat)) [2,6,4]" -- "= True"
value "todos (\<lambda>x. x>(2::nat)) [2,6,4]" -- "= False"
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar que todos los elementos de (copia n x) son
iguales a x.
------------------------------------------------------------------- *}
-- "maresccas4"
lemma "todos (\<lambda>y. y=x) (copia n x)"
proof (induct n)
show "todos (\<lambda>y. y=x) (copia 0 x)" by simp
next
fix n
assume HI: "todos (\<lambda>y. y=x) (copia n x)"
have "todos (\<lambda>y. y=x) (copia (Suc n) x) = todos (\<lambda>y. y=x) (x # copia n x)" by (simp only: copia.simps(2))
also have "... = todos (\<lambda>y. y=x) (copia n x)" by simp
finally show "todos (\<lambda>y. y=x) (copia (Suc n) x)" using HI by simp
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Definir la función
factR :: nat \<Rightarrow> nat
tal que (factR n) es el factorial de n. Por ejemplo,
factR 4 = 24
------------------------------------------------------------------ *}
-- "maresccas4"
fun factR :: "nat \<Rightarrow> nat" where
"factR 0 = 1"
| "factR (Suc n) = Suc n * factR n"
value "factR 4" -- "= 24"
text {* ---------------------------------------------------------------
Ejercicio 9. Se considera la siguiente definición iterativa de la
función factorial
factI :: "nat \<Rightarrow> nat" where
factI n = factI' n 1
factI' :: nat \<Rightarrow> nat \<Rightarrow> nat" where
factI' 0 x = x
factI' (Suc n) x = factI' n (Suc n)*x
Demostrar que, para todo n y todo x, se tiene
factI' n x = x * factR n
------------------------------------------------------------------- *}
fun factI' :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
"factI' 0 x = x"
| "factI' (Suc n) x = factI' n (Suc n)*x"
fun factI :: "nat \<Rightarrow> nat" where
"factI n = factI' n 1"
value "factI 4" -- "= 24"
-- "maresccas4"
lemma fact: "factI' n x = x * factR n"
proof (induct n arbitrary: x)
show "\<And>x. factI' 0 x = x * factR 0" by simp
next
fix n
assume HI: "\<And>x. factI' n x = x * factR n"
show "\<And>x. factI' (Suc n) x = x * factR (Suc n)"
proof -
fix x
have "factI' (Suc n) x = factI' n (Suc n)*x" by (simp only: factI'.simps(2))
also have "... = x * factI' n (Suc n)" by simp
also have "... = x * ((Suc n) * factR n)" using HI by simp
finally show "factI' (Suc n) x = x * factR (Suc n)" by simp
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar que
factI n = factR n
------------------------------------------------------------------- *}
-- "maresccas4"
corollary "factI n = factR n"
proof -
show "factI n = factR n" by (simp add:fact)
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Definir, recursivamente y sin usar (@), la función
amplia :: 'a list \<Rightarrow> 'a \<Rightarrow> 'a list
tal que (amplia xs y) es la lista obtenida añadiendo el elemento y al
final de la lista xs. Por ejemplo,
amplia [d,a] t = [d,a,t]
------------------------------------------------------------------ *}
-- "maresccas4"
fun amplia :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list" where
"amplia [] y = [y]"
| "amplia (x#xs) y = x # (amplia xs y)"
value "amplia [d,a] t" -- "= [d,a,t]"
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar que
amplia xs y = xs @ [y]
------------------------------------------------------------------- *}
-- "maresccas4"
lemma "amplia xs y = xs @ [y]"
proof (induct xs)
show "amplia [] y = [] @ [y]" by simp
next
fix x xs
assume HI: "amplia xs y = xs @ [y]"
have "amplia (x#xs) y = x # (amplia xs y)" by (simp only: amplia.simps(2))
also have "... = x # xs @ [y]" using HI by simp
finally show "amplia (x#xs) y = (x#xs) @ [y]" by simp
qed
end