Relación 1
De Razonamiento automático (2010-11)
Revisión del 09:50 16 jul 2018 de Jalonso (discusión | contribuciones) (Texto reemplazado: «"isar"» por «"isabelle"»)
header {* 1ª relación de ejercicios *}
theory Relacion_1
imports Main
begin
text {*
---------------------------------------------------------------------
Demostrar los siguientes lemas usando sólo las reglas básicas de
deducción natural de la lógica proposicional.
---------------------------------------------------------------------
*}
lemma ej1_d1: "A ⟶ A"
by (rule imp_refl)
-- "Se puede hacer automáticamente"
lemma ej1_d2: "A ⟶ A"
by auto
-- "Otra forma (más explicita)"
lemma ej1_d3: "A ⟶ A"
proof (rule impI)
assume 1: "A"
qed
lemma ej2_d1:
assumes 1:"A ∧ B"
shows "B ∧ A"
proof -
from 1 have 2:"A" by (rule conjunct1)
from 1 have 3:"B" by (rule conjunct2)
from 3 2 show "B ∧ A" by (rule conjI)
qed
text {*
El ejercicio anterior hecho de un modo automático (dado que no es
posible hacerlo por auto, es un buen candidato a que lo resuelvan
otros demostradores automáticos proposicionales
*}
lemma ej2_d2:
assumes 1:"A ∧ B"
shows "B ∧ A"
by (metis 1)
text {*
Comentario de J.A. Alonso: El ejercicio 2 puede resolverse por
auto.
*}
lemma ej3_d1: "A ∧ B ⟶ A ∨ B"
proof
assume "A ∧ B"
hence "A" ..
thus "A ∨ B" ..
qed
-- "Otra versión"
lemma ej3_d2: "A ∧ B ⟶ A ∨ B"
proof
assume 1: "A ∧ B"
from 1 have 2: "A" by (rule conjunct1)
from 2 show "A ∨ B" by (rule disjI1)
qed
lemma ej4_d1:
assumes 1:"(A ∨ B) ∨ C"
shows "A ∨ (B ∨ C)"
proof -
note 1
moreover
{ assume 2: "C"
from 2 have 3:"B ∨ C" by (rule disjI2)
from 3 have "A ∨ (B ∨ C)" by (rule disjI2)}
moreover
{ assume 4: "A ∨ B"
from 4 have "(A ∨ B) ∨ C" by (rule disjI1) }
ultimately show "A ∨ (B ∨ C) " by simp
qed
-- "Otra forma (más explícita)"
lemma ej4_d2: "(A ∨ B) ∨ C ⟶ A ∨ (B ∨ C)"
proof
assume 1: "(A ∨ B) ∨ C"
show "A ∨ (B ∨ C)"
proof -
note 1
moreover{
assume 2: "A ∨ B"
have "A ∨ (B ∨ C)"
proof -
note 2
moreover{
assume 3: "A"
from 3 have 4:"A ∨ (B ∨ C)" by (rule disjI1)
}
moreover{
assume 5:"B"
from 5 have 6: "B ∨ C" by (rule disjI1)
from 6 have 7: "A ∨ (B ∨ C)" by (rule disjI2)
}
ultimately show "A ∨ (B ∨ C)" by (rule disjE)
qed
}
moreover{
assume 8: "C"
from 8 have 9: "B ∨ C" by (rule disjI2)
from 9 have "A ∨ (B ∨ C)" by (rule disjI2)
}
ultimately show "A ∨ (B ∨ C)" by (rule disjE)
qed
qed
text {*
Comentario de J.A. Alonso: El enunciado de ej4_d2 no es exactamente
el mismo que el original y la demostración es demasiado larga.
*}
text {*
La versión anterior de la propiedad asociativa de la disyunción (es
decir, en forma de proposición implicativa) demostrada de forma muy
automática y breve.
*}
lemma ej4_d3: "(A ∨ B) ∨ C ⟶ A ∨ (B ∨ C)"
by auto
text {*
Comentario de J.A. Alonso: El enunciado de ej4_d3 no es exactamente
el mismo que el original.
*}
-- "Otra versión. la sentencia note no es necesaria."
lemma ej4_d4: "(A ∨ B) ∨ C ⟶ A ∨ (B ∨ C)"
proof
assume 1: "(A ∨ B) ∨ C"
moreover
{ assume 4: "(A ∨ B)"
moreover
{ assume 5: "A"
from 5 have 6: "A ∨ (B ∨ C)" by (rule disjI1)}
moreover
{ assume 7: "B"
from 7 have 8: "(B ∨ C)" by (rule disjI1)
from 8 have 9: "A ∨ (B ∨ C)" by (rule disjI2)}
ultimately have "A ∨ (B ∨ C)" by (rule disjE)}
moreover
{ assume 2: "C"
from 2 have 3: "(B ∨ C)" by (rule disjI2)
from 3 have "A ∨ (B ∨ C)" by (rule disjI2)}
ultimately show "A ∨ (B ∨ C)" by (rule disjE)
qed
text {*
Comentario de J.A. Alonso: El enunciado de ej4_d4 no es exactamente
el mismo que el original y la demostración es demasiado larga.
*}
lemma ej5_aux:
assumes "A"
shows "B ⟶ A"
using assms
by simp
lemma ej5_d1: "A ⟶ (B ⟶ A)"
proof
assume 1: "A"
from 1 show "B ⟶ A" by (rule ej5_aux)
qed
text {*
Comentario de J.A. Alonso: En la prueba anterior puede eliminarse la
etiqueta.
*}
-- "Éste también se puede obtener de forma totalmente automática."
lemma ej5_d2: "A ⟶ (B ⟶ A)"
by auto
lemma ej6_d1: "(A ⟶ (B ⟶ C)) ⟶ ((A ⟶ B) ⟶ (A ⟶ C))"
proof
assume 1:"A ⟶ (B ⟶ C)"
show "(A ⟶ B) ⟶ (A ⟶ C)"
proof
assume 2:"(A ⟶ B)"
show "A ⟶ C"
proof
assume 3:"A"
from 2 3 have 4:"B" by (rule mp)
from 1 3 have 5:"B ⟶ C" by (rule mp)
from 5 4 show "C" by (rule mp)
qed
qed
qed
-- "Por simplificación es inmediata su justificación"
lemma ej6_d2: "(A ⟶ (B ⟶ C)) ⟶ ((A ⟶ B) ⟶ (A ⟶ C))"
by auto
lemma ej7_d1: "(A ⟶ B) ⟶ ((B ⟶ C) ⟶ (A ⟶ C))"
proof
assume 1:"A ⟶ B"
show "(B ⟶ C) ⟶ (A ⟶ C)"
proof
assume 2:"B ⟶ C"
show "A ⟶ C"
proof
assume 3:"A"
from 1 3 have 4:"B" by (rule mp)
from 2 4 show "C" by (rule mp)
qed
qed
qed
-- "Por simplificación es inmediata su justificación"
lemma ej7_d2: "(A ⟶ B) ⟶ ((B ⟶ C) ⟶ (A ⟶ C))"
by simp
lemma ej8_d1: "¬¬A ⟶ A"
proof
assume 1:"¬¬A"
from 1 show "A" by (rule notnotD)
qed
-- "Está claro que éste sale por auto y por simp"
lemma ej8_d2: "¬¬A ⟶ A"
by simp
lemma ej9_d1: "A ⟶ ¬¬A"
proof
assume 1:"A"
from 1 show "¬¬A" by (rule contrapos_pn)
qed
text {*
Comentario de J.A. Alonso: Puede demostrase sin etiquetas.
*}
lemma MT: -- "ej10"
assumes 1:"F ⟶ G" and 2:"¬G"
shows "¬F"
proof (rule notI)
assume 3:"F"
from 1 and 3 have 4: "G" by (rule mp)
from 2 and 4 show False by (rule notE)
qed
lemma ej11_d1: "(¬A ⟶ B) ⟶ (¬B ⟶ A)"
proof
assume 1:"(¬A ⟶ B)"
show "¬B ⟶ A"
proof
assume 2:"¬B"
from 1 2 have 3:"¬¬A" by (rule MT)
from 3 show "A" by (rule notnotD)
qed
qed
lemma ej12_d1: "((A ⟶ B) ⟶ A) ⟶ A"
proof
assume 1: "(A ⟶ B) ⟶ A"
have 8: "¬¬A"
proof (rule notI)
assume 2: "¬A"
have 3: "A ⟶ B"
proof (rule impI)
assume 4: "A"
from 2 and 4 show "B" by (rule notE)
qed
from 1 and 3 have 5: "A" by (rule mp)
from 2 and 5 show False by (rule notE)
qed
from 8 show "A" by (rule notnotD)
qed
-- "Éste sale por auto pero no por el método simp"
lemma ej12_d2: "((A ⟶ B) ⟶ A) ⟶ A"
by auto
lemma ej13_d1: "A ∨ ¬A"
proof cases
assume "A" thus ?thesis ..
next
assume "¬A" thus ?thesis ..
qed
-- "Demostración aún más corta y automática"
lemma ej13_d2: "A ∨ ¬A"
by simp
lemma ej14_d1: "(¬(A ∧ B)) = (¬A ∨ ¬B)"
proof
{
assume 1: "¬(A ∧ B)"
have 2: "¬A ∨ A" by (rule excluded_middle)
thus "¬A ∨ ¬B"
proof (rule disjE)
{ assume 3: "¬A"
thus "¬A ∨ ¬B" by (rule disjI1) }
next
{ assume 4: "A"
have 5: "¬B ∨ B" by (rule excluded_middle)
thus "¬A ∨ ¬B"
proof (rule disjE)
{assume 6: "¬B"
thus "¬A ∨ ¬B" by (rule disjI2) }
next
{assume 7: "B"
from 4 and 7 have 8: "A ∧ B" by (rule conjI)
from 1 and 8 show "¬A ∨ ¬B" by (rule notE) }
qed
}
qed
}
next
{ assume 1: "¬A ∨ ¬B"
show "¬(A ∧ B)"
proof (rule notI)
assume 2: "A ∧ B"
from 1 have 3:"¬A ∨ ¬B" .
moreover
{ assume 4: "¬A"
from 2 have 5:"A" by (rule conjunct1)
from 4 and 5 have False by (rule notE) }
moreover
{ assume 6: "¬B"
from 2 have 7: "B" by (rule conjunct2)
from 6 and 7 have False by (rule notE) }
ultimately show False by (rule disjE)
qed
}
qed
-- "Si no queremos entrar en detalles lo podríamos mandar a la 'maza'"
lemma ej14_d2: "(¬(A ∧ B)) = (¬A ∨ ¬B)"
by metis
end