Acciones

Usuario discusión

Diferencia entre revisiones de «Jgiraldez»

De Razonamiento automático (2010-11)

(RA_Relacion_2)
(Página blanqueada)
 
(No se muestran 2 ediciones intermedias del mismo usuario)
Línea 1: Línea 1:
== RA_Relacion_1 ==
 
<source lang="isar">
 
theory Relacion_1
 
imports Main
 
begin
 
  
(* Demostrar los siguientes lemas usando sólo las reglas básicas de deducción
 
  natural de la lógica proposicional. *)
 
 
lemma I: "A ⟶ A"
 
proof
 
  assume 1: "A"
 
qed
 
 
 
lemma 0: "A ∧ B ⟶ B ∧ A"
 
proof
 
  assume 1: "A ∧ B"
 
  from 1 have 2: "A" by (rule conjunct1)
 
  from 1 have 3: "B" by (rule conjunct2)
 
  from 3 and 2 show "B ∧ A" by (rule conjI)
 
qed
 
 
lemma "A ∧ B ⟶ A ∨ B"
 
proof
 
  assume 1: "A ∧ B"
 
  from 1 have 2: "A" by (rule conjunct1)
 
  from 1 have 3: "B" by (rule conjunct2)
 
  from 2 show "A ∨ B" by (rule disjI1)
 
qed
 
 
lemma "(A ∨ B) ∨ C ⟶ A ∨ (B ∨ C)"
 
proof
 
  assume 1: "(A ∨ B) ∨ C"
 
  show "A ∨ (B ∨ C)"
 
  proof -
 
    note 1
 
    moreover{
 
      assume 2: "A ∨ B"
 
      have "A ∨ (B ∨ C)"
 
        proof -
 
          note 2
 
          moreover{
 
            assume 3: "A"
 
            from 3 have 4:"A ∨ (B ∨ C)" by (rule disjI1)
 
          }
 
          moreover{
 
            assume 5:"B"
 
            from 5 have 6: "B ∨ C" by (rule disjI1)
 
            from 6 have 7: "A ∨ (B ∨ C)" by (rule disjI2)
 
          }
 
          ultimately show "A ∨ (B ∨ C)" by (rule disjE)
 
        qed
 
      }
 
      moreover{
 
        assume 8: "C"
 
        from 8 have 9: "B ∨ C" by (rule disjI2)
 
        from 9 have "A ∨ (B ∨ C)" by (rule disjI2)
 
      }
 
      ultimately show "A ∨ (B ∨ C)" by (rule disjE)
 
    qed
 
qed
 
 
lemma Aux:
 
  assumes "A"
 
  shows "B ⟶ A"
 
using assms by simp
 
 
lemma K: "A ⟶ (B ⟶ A)"
 
proof
 
  assume 1: "A"
 
  from 1 show "B ⟶ A" by (rule Aux)
 
qed
 
 
 
lemma S: "(A ⟶ (B ⟶ C)) ⟶ ((A ⟶ B) ⟶ (A ⟶ C))"
 
proof
 
  assume 1: "(A ⟶ (B ⟶ C))"
 
  show "(A ⟶ B) ⟶ (A ⟶ C)"
 
  proof
 
    assume 2: "A ⟶ B"
 
    show "A ⟶ C"
 
    proof
 
      assume 3: "A"
 
      from 2 and 3 have 4: "B" by (rule mp)
 
      from 1 and 3 have 5: "B ⟶ C" by (rule mp)
 
      from 5 and 4 show 6: "C" by (rule mp)
 
    qed
 
  qed
 
qed
 
 
lemma "(A ⟶ B) ⟶ ((B ⟶ C) ⟶ (A ⟶ C))"
 
proof
 
  assume 1: "A ⟶ B"
 
  show "(B ⟶ C) ⟶ (A ⟶ C)"
 
  proof
 
    assume 2: "B ⟶ C"
 
    show "A ⟶ C"
 
    proof
 
      assume 3: "A"
 
      from 1 and 3 have 4: "B" by (rule mp)
 
      from 2 and 4 show 5: "C" by (rule mp)
 
    qed
 
  qed
 
qed
 
 
 
 
lemma "¬¬A ⟶ A"
 
proof
 
  assume 1: "¬¬A"
 
  from 1 show "A" by (rule notnotD)
 
qed
 
 
lemma "A ⟶ ¬¬A"
 
proof
 
  assume 1: "A"
 
  from 1 show "¬¬A" by (rule contrapos_pn)
 
qed
 
 
lemma MT:
 
  assumes 1: "F ⟶ G" and
 
          2: "¬G"
 
  shows "¬F"
 
proof (rule notI)
 
  assume 3: "F"
 
  from 1 and 3 have 4: "G" by (rule mp)
 
  from 2 and 4 show False by (rule notE)
 
qed
 
 
lemma "(¬A ⟶ B) ⟶ (¬B ⟶ A)"
 
proof
 
  assume 1: "¬A ⟶ B"
 
  show "¬B ⟶ A"
 
  proof
 
    assume 2: "¬B"
 
    from 1 and 2 have 3:"¬¬A" by (rule MT)
 
    from 3 show "A" by (rule notnotD)
 
  qed
 
qed
 
 
lemma "((A ⟶ B) ⟶ A) ⟶ A"
 
proof
 
  assume 1: "(A ⟶ B) ⟶ A"
 
  have 8: "¬¬A"
 
  proof (rule notI)
 
      assume 2: "¬A"
 
      have 3: "A ⟶ B"
 
      proof (rule impI)
 
        assume 4: "A"
 
        from 2 and 4 show "B" by (rule notE)
 
      qed
 
      from 1 and 3 have 5: "A" by (rule mp)
 
      from 2 and 5 show False by (rule notE)
 
  qed
 
  from 8 show "A" by (rule notnotD)
 
qed
 
 
lemma "A ∨ ¬A"
 
proof cases
 
  assume "A" thus ?thesis ..
 
next
 
  assume "¬A" thus ?thesis ..
 
qed
 
 
 
 
lemma "(¬(A ∧ B)) = (¬A ∨ ¬B)"
 
proof
 
  {
 
  assume 1: "¬(A ∧ B)"
 
  have 2: "¬A ∨ A" by (rule excluded_middle)
 
  thus "¬A ∨ ¬B"
 
    proof (rule disjE)
 
      { assume 3: "¬A"
 
        thus  "¬A ∨ ¬B" by (rule disjI1) }
 
    next
 
      { assume 4: "A"
 
        have 5: "¬B ∨ B" by (rule excluded_middle)
 
        thus "¬A ∨ ¬B"
 
        proof (rule disjE)
 
          {assume 6: "¬B"
 
            thus "¬A ∨ ¬B" by (rule disjI2) }
 
          next
 
          {assume 7: "B"
 
            from 4 and 7 have 8: "A ∧ B" by (rule conjI)
 
            from 1 and 8 show "¬A ∨ ¬B" by (rule notE) }
 
        qed
 
      }     
 
    qed
 
  }
 
next
 
  { assume 1: "¬A ∨ ¬B"
 
    show "¬(A ∧ B)"
 
    proof (rule notI)
 
      assume 2: "A ∧ B"
 
      from 1 have 3:"¬A ∨ ¬B" .
 
      moreover
 
      { assume 4: "¬A"
 
        from 2 have 5:"A" by (rule conjunct1)
 
        from 4 and 5 have False by (rule notE) }
 
      moreover
 
      { assume 6: "¬B"
 
        from 2 have 7: "B" by (rule conjunct2)
 
        from 6 and 7 have False by (rule notE) }
 
      ultimately show False by (rule disjE)       
 
    qed
 
 
  }
 
qed
 
 
end
 
 
</source>
 
 
== RA_Relacion_2 ==
 
<source lang="isar">
 
 
theory Relacion_2
 
imports Main
 
begin
 
 
(* Demostrar o refutar los siguientes lemas usando sólo las reglas básicas
 
  de deducción natural de la lógica proposicional y de la lógica de
 
  predicados (allI, allE, exI y exE). *)
 
 
 
lemma "(∃x. ∀y. P x y) ⟶ (∀y. ∃x. P x y)"
 
proof (rule impI)
 
  assume 1: "(∃x. ∀y. P x y)"
 
  show "(∀y. ∃x. P x y)"
 
  proof (rule allI)
 
    from 1 obtain x where 2: "∀y. P x y" by (rule exE)
 
    fix y
 
    from 2 have 3: "P x y" by (rule allE)
 
    from 3 show 4: "∃x. P x y" by (rule exI)
 
  qed
 
qed
 
 
lemma "(∀x. P x ⟶ Q) = ((∃x. P x) ⟶ Q)"
 
proof
 
{ assume 1: "∀x. P x ⟶ Q"
 
  show "(∃x. P x) ⟶ Q"
 
  proof
 
    assume "∃x. P x"
 
    then obtain a where "P a" by (rule exE)
 
    have "P a ⟶ Q" using 1 by (rule allE)
 
    thus "Q" using `P a` by (rule mp)
 
  qed }
 
next
 
{ assume 2: "(∃x. P x) ⟶ Q"
 
  show "∀x. P x ⟶ Q"
 
  proof
 
    fix a
 
    show "P a ⟶ Q"
 
    proof
 
      assume "P a"
 
      hence 3: "∃x. P x" by (rule exI)
 
      from 2 and 3 show "Q" by (rule mp)
 
    qed
 
  qed }
 
qed
 
 
lemma "((∀ x. P x) ∧ (∀ x. Q x)) = (∀ x. (P x ∧ Q x))"
 
proof
 
{
 
  assume 1: "(∀ x. P x) ∧ (∀ x. Q x)"
 
  show "(∀ x. (P x ∧ Q x))"
 
    proof (rule allI)
 
      from 1 have 2: "(∀ x. P x)" by (rule conjE)
 
      from 1 have 3: "(∀ x. Q x)" by (rule conjE)
 
      fix a
 
      from 2 have 4: "P a" by (rule allE)
 
      from 3 have 5: "Q a" by (rule allE)
 
      from 4 and 5 show 6: "(P a) ∧ (Q a)" by (rule conjI)
 
    qed
 
}
 
next
 
{
 
  assume 7: "∀ x. (P x ∧ Q x)"
 
  show "(∀ x. P x) ∧ (∀ x. Q x)"
 
    proof
 
      fix a
 
      from 7 have 8: "P a ∧ Q a" by (rule allE)
 
      from 8 have 9: "P a" by (rule conjE)
 
      (* seguir... *)
 
      from 8 have 11: "Q a" by (rule allE)
 
      (* seguir... *)
 
    qed
 
}
 
qed     
 
     
 
oops
 
 
lemma "((∀ x. P x) ∨ (∀ x. Q x)) = (∀ x. (P x ∨ Q x))"
 
oops
 
 
lemma "((∃ x. P x) ∨ (∃ x. Q x)) = (∃ x. (P x ∨ Q x))"
 
oops
 
 
lemma "(∀x. ∃y. P x y) ⟶ (∃y. ∀x. P x y)"
 
oops
 
(*
 
proof (rule impI)
 
  assume 1: "∀x. ∃y. P x y"
 
  show "∃y. ∀x. P x y"
 
    proof (rule exI)
 
      show " ∀x. P x y"
 
        proof (rule allI)
 
          fix x
 
          from 1 have 2: "∃y. P x y" by (rule allE)
 
          from 2 obtain y where 3: "P x y" by (rule exE)
 
          thus ?thesis ..
 
        qed
 
*)
 
 
lemma "(¬ (∀ x. P x)) = (∃ x. ¬ P x)"
 
proof
 
{
 
  assume 1: "¬ (∀ x. P x)"
 
  show "∃ x. ¬ P x"
 
    proof
 
     
 
 
    qed
 
}
 
next
 
{
 
  assume 2: "∃ x. ¬ P x"
 
  show "¬ (∀ x. P x)"
 
    proof
 
     
 
    qed
 
}
 
qed
 
 
end
 
 
</source>
 

Revisión actual del 01:05 7 feb 2011