Acciones

Usuario discusión

Diferencia entre revisiones de «Jgiraldez»

De Razonamiento automático (2010-11)

(RA_Relacion_1)
 
(Página blanqueada)
 
(No se muestran 6 ediciones intermedias del mismo usuario)
Línea 1: Línea 1:
== RA_Relacion_1 ==
 
  
theory Relacion_2
 
imports Main
 
begin
 
 
(* Demostrar o refutar los siguientes lemas usando sólo las reglas básicas
 
  de deducción natural de la lógica proposicional y de la lógica de
 
  predicados (allI, allE, exI y exE). *)
 
 
 
lemma "(∃x. ∀y. P x y) ⟶ (∀y. ∃x. P x y)"
 
proof (rule impI)
 
  assume 1: "(∃x. ∀y. P x y)"
 
  show "(∀y. ∃x. P x y)"
 
  proof (rule allI)
 
    from 1 obtain x where 2: "∀y. P x y" by (rule exE)
 
    fix y
 
    from 2 have 3: "P x y" by (rule allE)
 
    from 3 show 4: "∃x. P x y" by (rule exI)
 
  qed
 
qed
 
 
lemma "(∀x. P x ⟶ Q) = ((∃x. P x) ⟶ Q)"
 
proof
 
{ assume 1: "∀x. P x ⟶ Q"
 
  show "(∃x. P x) ⟶ Q"
 
  proof
 
    assume "∃x. P x"
 
    then obtain a where "P a" by (rule exE)
 
    have "P a ⟶ Q" using 1 by (rule allE)
 
    thus "Q" using `P a` by (rule mp)
 
  qed }
 
next
 
{ assume 2: "(∃x. P x) ⟶ Q"
 
  show "∀x. P x ⟶ Q"
 
  proof
 
    fix a
 
    show "P a ⟶ Q"
 
    proof
 
      assume "P a"
 
      hence 3: "∃x. P x" by (rule exI)
 
      from 2 and 3 show "Q" by (rule mp)
 
    qed
 
  qed }
 
qed
 
 
lemma "((∀ x. P x) ∧ (∀ x. Q x)) = (∀ x. (P x ∧ Q x))"
 
proof
 
{
 
  assume 1: "(∀ x. P x) ∧ (∀ x. Q x)"
 
  show "(∀ x. (P x ∧ Q x))"
 
    proof (rule allI)
 
      from 1 have 2: "(∀ x. P x)" by (rule conjE)
 
      from 1 have 3: "(∀ x. Q x)" by (rule conjE)
 
      fix a
 
      from 2 have 4: "P a" by (rule allE)
 
      from 3 have 5: "Q a" by (rule allE)
 
      from 4 and 5 show 6: "(P a) ∧ (Q a)" by (rule conjI)
 
    qed
 
}
 
next
 
{
 
  assume 7: "∀ x. (P x ∧ Q x)"
 
  show "(∀ x. P x) ∧ (∀ x. Q x)"
 
    proof
 
      fix a
 
      from 7 have 8: "P a ∧ Q a" by (rule allE)
 
      from 8 have 9: "P a" by (rule conjE)
 
      (* seguir... *)
 
      from 8 have 11: "Q a" by (rule allE)
 
      (* seguir... *)
 
    qed
 
}
 
qed     
 
     
 
oops
 
 
lemma "((∀ x. P x) ∨ (∀ x. Q x)) = (∀ x. (P x ∨ Q x))"
 
oops
 
 
lemma "((∃ x. P x) ∨ (∃ x. Q x)) = (∃ x. (P x ∨ Q x))"
 
oops
 
 
lemma "(∀x. ∃y. P x y) ⟶ (∃y. ∀x. P x y)"
 
oops
 
(*
 
proof (rule impI)
 
  assume 1: "∀x. ∃y. P x y"
 
  show "∃y. ∀x. P x y"
 
    proof (rule exI)
 
      show " ∀x. P x y"
 
        proof (rule allI)
 
          fix x
 
          from 1 have 2: "∃y. P x y" by (rule allE)
 
          from 2 obtain y where 3: "P x y" by (rule exE)
 
          thus ?thesis ..
 
        qed
 
*)
 
 
lemma "(¬ (∀ x. P x)) = (∃ x. ¬ P x)"
 
proof
 
{
 
  assume 1: "¬ (∀ x. P x)"
 
  show "∃ x. ¬ P x"
 
    proof
 
     
 
 
    qed
 
}
 
next
 
{
 
  assume 2: "∃ x. ¬ P x"
 
  show "¬ (∀ x. P x)"
 
    proof
 
     
 
    qed
 
}
 
qed
 
 
end
 

Revisión actual del 01:05 7 feb 2011