Acciones

Diferencia entre revisiones de «Sol 12»

De Lógica matemática y fundamentos (2018-19)

m
 
Línea 1: Línea 1:
<source lang = "isabelle">
+
<source lang="isabelle">
 
chapter {* R12: Recorridos de árboles *}
 
chapter {* R12: Recorridos de árboles *}
  
Línea 40: Línea 40:
 
| "preOrden (N x i d) = x#((preOrden i)@(preOrden d))"
 
| "preOrden (N x i d) = x#((preOrden i)@(preOrden d))"
  
value "preOrden (N e (N c (H a) (H d)) (N g (H f) (H h))) = [e,c,a,d,g,f,h]"  
+
value "preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
 +
      = [e,c,a,d,g,f,h]"  
  
 
text {*   
 
text {*   
Línea 57: Línea 58:
 
| "postOrden (N x i d) = (postOrden i)@(postOrden d)@[x]"
 
| "postOrden (N x i d) = (postOrden i)@(postOrden d)@[x]"
  
value "postOrden (N e (N c (H a) (H d)) (N g (H f) (H h))) = [a,d,c,f,h,g,e]"
+
value "postOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
 +
      = [a,d,c,f,h,g,e]"
  
 
text {*   
 
text {*   
Línea 74: Línea 76:
 
| "inOrden (N x i d) = (inOrden i)@[x]@(inOrden d)"
 
| "inOrden (N x i d) = (inOrden i)@[x]@(inOrden d)"
  
value "inOrden (N e (N c (H a) (H d)) (N g (H f) (H h))) = [a,c,d,e,f,g,h]"
+
value "inOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))  
 +
      = [a,c,d,e,f,g,h]"
  
 
text {*   
 
text {*   
Línea 90: Línea 93:
 
| "espejo (N x i d) = (N x (espejo d) (espejo i))"
 
| "espejo (N x i d) = (N x (espejo d) (espejo i))"
  
value "espejo (N e (N c (H a) (H d)) (N g (H f) (H h))) = N e (N g (H h) (H f)) (N c (H d) (H a))"
+
value "espejo (N e (N c (H a) (H d)) (N g (H f) (H h)))  
 +
      = N e (N g (H h) (H f)) (N c (H d) (H a))"
  
 
text {*   
 
text {*   
Línea 102: Línea 106:
 
by (induct a) simp_all
 
by (induct a) simp_all
  
 +
(* 1ª demostración: sin patrones *)
 +
lemma "preOrden (espejo a) = rev (postOrden a)"
 +
proof (induct a)
 +
  fix x :: 'a
 +
  show "preOrden (espejo (H x)) = rev (postOrden (H x))" by simp
 +
next
 +
  fix x :: 'a and i d :: "'a arbol"
 +
  assume HI1: "preOrden (espejo i) = rev (postOrden i)"
 +
  assume HI2: "preOrden (espejo d) = rev (postOrden d)"
 +
  show "preOrden (espejo (N x i d)) = rev (postOrden (N x i d))"
 +
  proof -
 +
    have "preOrden (espejo (N x i d)) =
 +
          preOrden (N x (espejo d) (espejo i))" by simp
 +
    also have "… = [x] @ preOrden (espejo d) @ preOrden (espejo i)"
 +
      by simp
 +
    also have "… = rev [x] @ rev (postOrden d) @ rev (postOrden i)"
 +
      using HI1 HI2 by simp
 +
    also have "… = rev ((postOrden i) @ (postOrden d) @ [x])" by simp
 +
    finally show ?thesis by simp
 +
  qed
 +
qed
 +
 +
(* 2ª demostración: con patrones *)
 
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
 
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a)
+
proof (induct a)  
 
   fix x
 
   fix x
 
   show "?P (H x)" by simp
 
   show "?P (H x)" by simp
 
next
 
next
   fix a1 a2 a3
+
   fix x i d
   assume HI1: "?P a2"
+
   assume HI1: "?P i"
   assume HI2: "?P a3"
+
   assume HI2: "?P d"
   show "?P (N a1 a2 a3)"
+
   show "?P (N x i d)"
 
   proof -
 
   proof -
     have "preOrden (espejo (N a1 a2 a3)) = preOrden (N a1 (espejo a3) (espejo a2))" by simp
+
     have "preOrden (espejo (N x i d)) =  
     also have "… = [a1] @ preOrden (espejo a3) @ preOrden (espejo a2)" by simp
+
          preOrden (N x (espejo d) (espejo i))" by simp
     also have "… = rev [a1] @ rev (postOrden a3) @ rev (postOrden a2)" using HI1 HI2 by simp  
+
     also have "… = [x] @ preOrden (espejo d) @ preOrden (espejo i)"  
     also have "… = rev ((postOrden a2) @ (postOrden a3) @ [a1])" by simp
+
      by simp
 +
     also have "… = rev [x] @ rev (postOrden d) @ rev (postOrden i)"  
 +
      using HI1 HI2 by simp  
 +
     also have "… = rev ((postOrden i) @ (postOrden d) @ [x])" by simp
 
     finally show ?thesis by simp
 
     finally show ?thesis by simp
 
   qed
 
   qed
Línea 141: Línea 171:
 
   show "?P (N x i d)"
 
   show "?P (N x i d)"
 
   proof -
 
   proof -
     have "postOrden (espejo (N x i d)) = postOrden (N x (espejo d) (espejo i))" by simp
+
     have "postOrden (espejo (N x i d)) =  
     also have "... = postOrden (espejo d) @ postOrden (espejo i) @ [x]" by simp
+
          postOrden (N x (espejo d) (espejo i))" by simp
     also have "... = rev (preOrden d) @ rev (preOrden i) @ rev [x]" using HI1 HI2 by simp
+
     also have "... = postOrden (espejo d) @ postOrden (espejo i) @ [x]"  
 +
      by simp
 +
     also have "... = rev (preOrden d) @ rev (preOrden i) @ rev [x]"  
 +
      using HI1 HI2 by simp
 
     also have "... = rev ([x] @ preOrden i @ preOrden d)" by simp
 
     also have "... = rev ([x] @ preOrden i @ preOrden d)" by simp
 
     finally show ?thesis  by simp
 
     finally show ?thesis  by simp
Línea 158: Línea 191:
 
lemma "inOrden (espejo a) = rev (inOrden a)"
 
lemma "inOrden (espejo a) = rev (inOrden a)"
 
by (induct a) simp_all
 
by (induct a) simp_all
 
 
   
 
   
 
lemma "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
 
lemma "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
Línea 170: Línea 202:
 
   show "?P (N x i d)"
 
   show "?P (N x i d)"
 
   proof -
 
   proof -
     have "inOrden (espejo (N x i d)) = inOrden (N x (espejo d) (espejo i))" by simp
+
     have "inOrden (espejo (N x i d)) =  
     also have "... = inOrden (espejo d) @ [x] @ inOrden (espejo i)" by simp
+
          inOrden (N x (espejo d) (espejo i))" by simp
     also have "... = rev (inOrden d) @ rev [x] @ rev (inOrden i)" using HI1 HI2 by simp
+
     also have "... = inOrden (espejo d) @ [x] @ inOrden (espejo i)"  
 +
      by simp
 +
     also have "... = rev (inOrden d) @ rev [x] @ rev (inOrden i)"  
 +
      using HI1 HI2 by simp
 
     also have "... = rev (inOrden i @ [x] @ inOrden d)" by simp
 
     also have "... = rev (inOrden i @ [x] @ inOrden d)" by simp
 
     finally show ?thesis by simp
 
     finally show ?thesis by simp
Línea 231: Línea 266:
 
   ---------------------------------------------------------------------  
 
   ---------------------------------------------------------------------  
 
*}
 
*}
 
  
 
lemma inOrdenNoVacio: "inOrden a ≠ []"
 
lemma inOrdenNoVacio: "inOrden a ≠ []"
Línea 247: Línea 281:
 
      
 
      
 
theorem "last (inOrden a) = extremo_derecha a"
 
theorem "last (inOrden a) = extremo_derecha a"
by (induct a) (simp_all add: inOrdenNoVacio)
+
  by (induct a) (simp_all add: inOrdenNoVacio)
 
 
  
 
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
 
theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
Línea 260: Línea 293:
 
   show "?P (N x i d)"
 
   show "?P (N x i d)"
 
   proof -
 
   proof -
     have "last (inOrden (N x i d)) = last ((inOrden i)@[x]@(inOrden d))" by simp
+
     have "last (inOrden (N x i d)) = last ((inOrden i)@[x]@(inOrden d))"  
 +
      by simp
 
     also have "... = last (inOrden d)" by (simp add: inOrdenNoVacio)
 
     also have "... = last (inOrden d)" by (simp add: inOrdenNoVacio)
 
     also have "... = extremo_derecha d" using HI2 by simp
 
     also have "... = extremo_derecha d" using HI2 by simp
Línea 267: Línea 301:
 
   qed
 
   qed
 
qed
 
qed
 
thm inOrden.simps(2) 
 
 
 
 
  
 
text {*   
 
text {*   
Línea 278: Línea 308:
 
   ---------------------------------------------------------------------  
 
   ---------------------------------------------------------------------  
 
*}
 
*}
 
  
 
theorem "hd (inOrden a) = extremo_izquierda a"
 
theorem "hd (inOrden a) = extremo_izquierda a"
Línea 296: Línea 325:
 
   show "?P (N x i d)"
 
   show "?P (N x i d)"
 
   proof -
 
   proof -
     have "hd (inOrden (N x i d)) = hd((inOrden i)@[x]@(inOrden d))" by simp
+
     have "hd (inOrden (N x i d)) = hd((inOrden i)@[x]@(inOrden d))"  
 +
      by simp
 
     also have "... = hd (inOrden i)" by (simp add: inOrdenNoVacio)
 
     also have "... = hd (inOrden i)" by (simp add: inOrdenNoVacio)
 
     also have "... = extremo_izquierda i" using HI1 by simp
 
     also have "... = extremo_izquierda i" using HI1 by simp
Línea 303: Línea 333:
 
   qed
 
   qed
 
qed
 
qed
 
 
  
 
text {*   
 
text {*   
Línea 326: Línea 354:
 
   show "?P (N x i d)"
 
   show "?P (N x i d)"
 
   proof -
 
   proof -
     have "hd (preOrden (N x i d)) = hd (x#((preOrden i)@(preOrden d)))" by simp
+
     have "hd (preOrden (N x i d)) = hd (x#((preOrden i)@(preOrden d)))"  
 +
      by simp
 
     also have "... = x" by simp
 
     also have "... = x" by simp
 
     also have "... = last ((postOrden i)@(postOrden d)@[x])" by simp
 
     also have "... = last ((postOrden i)@(postOrden d)@[x])" by simp
Línea 333: Línea 362:
 
   qed
 
   qed
 
qed
 
qed
 
  
 
text {*   
 
text {*   
Línea 344: Línea 372:
 
theorem "hd (preOrden a) = raiz a"
 
theorem "hd (preOrden a) = raiz a"
 
by (induct a) simp_all
 
by (induct a) simp_all
 
  
 
theorem "hd (preOrden a) = raiz a" (is "?P a")
 
theorem "hd (preOrden a) = raiz a" (is "?P a")
Línea 356: Línea 383:
 
   show "?P (N x i d)"
 
   show "?P (N x i d)"
 
   proof -
 
   proof -
     have "hd (preOrden (N x i d)) = hd (x#((preOrden i)@(preOrden d)))" by simp
+
     have "hd (preOrden (N x i d)) = hd (x#((preOrden i)@(preOrden d)))"  
 +
      by simp
 
     also have "... = x" by simp
 
     also have "... = x" by simp
 
     also have "... = raiz (N x i d)" by simp
 
     also have "... = raiz (N x i d)" by simp
Línea 403: Línea 431:
 
   show "?P (N x i d)"
 
   show "?P (N x i d)"
 
   proof -
 
   proof -
     have "last (postOrden (N x i d)) = last ((postOrden i)@(postOrden d)@[x])" by simp
+
     have "last (postOrden (N x i d)) =  
 +
          last ((postOrden i)@(postOrden d)@[x])" by simp
 
     also have "... = last [x]" by simp
 
     also have "... = last [x]" by simp
 
     also have "... = x" by simp
 
     also have "... = x" by simp
Línea 410: Línea 439:
 
   qed
 
   qed
 
qed
 
qed
 
 
  
 
end
 
end
 
 
</source>
 
</source>

Revisión actual del 19:06 26 jun 2019

chapter {* R12: Recorridos de árboles *}

theory R12_sol
imports Main 
begin 

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 1. Definir el tipo de datos arbol para representar los
  árboles binarios que tiene información en los nodos y en las hojas. 
  Por ejemplo, el árbol
          e
         / \
        /   \
       c     g
      / \   / \
     a   d f   h 
  se representa por "N e (N c (H a) (H d)) (N g (H f) (H h))".
  --------------------------------------------------------------------- 
*}

datatype 'a arbol = H "'a" | N "'a" "'a arbol" "'a arbol"

value "N e (N c (H a) (H d)) (N g (H f) (H h))" 

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 2. Definir la función 
     preOrden :: "'a arbol ⇒ 'a list"
  tal que (preOrden a) es el recorrido pre orden del árbol a. Por
  ejemplo, 
     preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
     = [e,c,a,d,g,f,h] 
  --------------------------------------------------------------------- 
*}

fun preOrden :: "'a arbol ⇒ 'a list" where
  "preOrden (H x)     = [x]"
| "preOrden (N x i d) = x#((preOrden i)@(preOrden d))"

value "preOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))  
       = [e,c,a,d,g,f,h]" 

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 3. Definir la función 
     postOrden :: "'a arbol ⇒ 'a list"
  tal que (postOrden a) es el recorrido post orden del árbol a. Por
  ejemplo, 
     postOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
     = [e,c,a,d,g,f,h] 
  --------------------------------------------------------------------- 
*}

fun postOrden :: "'a arbol ⇒ 'a list" where
  "postOrden (H x)     = [x]"
| "postOrden (N x i d) = (postOrden i)@(postOrden d)@[x]"

value "postOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
       = [a,d,c,f,h,g,e]"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 4. Definir la función 
     inOrden :: "'a arbol ⇒ 'a list"
  tal que (inOrden a) es el recorrido in orden del árbol a. Por
  ejemplo, 
     inOrden (N e (N c (H a) (H d)) (N g (H f) (H h)))
     = [a,c,d,e,f,g,h]
  --------------------------------------------------------------------- 
*}

fun inOrden :: "'a arbol ⇒ 'a list" where
  "inOrden (H x)     = [x]"
| "inOrden (N x i d) = (inOrden i)@[x]@(inOrden d)"

value "inOrden (N e (N c (H a) (H d)) (N g (H f) (H h))) 
       = [a,c,d,e,f,g,h]"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 5. Definir la función 
     espejo :: "'a arbol ⇒ 'a arbol"
  tal que (espejo a) es la imagen especular del árbol a. Por ejemplo, 
     espejo (N e (N c (H a) (H d)) (N g (H f) (H h)))
     = N e (N g (H h) (H f)) (N c (H d) (H a))
  --------------------------------------------------------------------- 
*}

fun espejo :: "'a arbol ⇒ 'a arbol" where
  "espejo (H x)     = (H x)"
| "espejo (N x i d) = (N x (espejo d) (espejo i))"

value "espejo (N e (N c (H a) (H d)) (N g (H f) (H h))) 
       = N e (N g (H h) (H f)) (N c (H d) (H a))"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 6. Demostrar que
     preOrden (espejo a) = rev (postOrden a)
  --------------------------------------------------------------------- 
*}

lemma  "preOrden (espejo a) = rev (postOrden a)"
by (induct a) simp_all

(* 1ª demostración: sin patrones *) 
lemma "preOrden (espejo a) = rev (postOrden a)" 
proof (induct a) 
  fix x :: 'a
  show "preOrden (espejo (H x)) = rev (postOrden (H x))" by simp
next
  fix x :: 'a and i d :: "'a arbol"
  assume HI1: "preOrden (espejo i) = rev (postOrden i)"
  assume HI2: "preOrden (espejo d) = rev (postOrden d)"
  show "preOrden (espejo (N x i d)) = rev (postOrden (N x i d))"
  proof -
    have "preOrden (espejo (N x i d)) = 
          preOrden (N x (espejo d) (espejo i))" by simp
    also have "… = [x] @ preOrden (espejo d) @ preOrden (espejo i)" 
      by simp
    also have "… = rev [x] @ rev (postOrden d) @ rev (postOrden i)" 
      using HI1 HI2 by simp 
    also have "… = rev ((postOrden i) @ (postOrden d) @ [x])" by simp
    finally show ?thesis by simp
  qed
qed

(* 2ª demostración: con patrones *) 
lemma "preOrden (espejo a) = rev (postOrden a)" (is "?P a")
proof (induct a) 
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume HI1: "?P i"
  assume HI2: "?P d"
  show "?P (N x i d)"
  proof -
    have "preOrden (espejo (N x i d)) = 
          preOrden (N x (espejo d) (espejo i))" by simp
    also have "… = [x] @ preOrden (espejo d) @ preOrden (espejo i)" 
      by simp
    also have "… = rev [x] @ rev (postOrden d) @ rev (postOrden i)" 
      using HI1 HI2 by simp 
    also have "… = rev ((postOrden i) @ (postOrden d) @ [x])" by simp
    finally show ?thesis by simp
  qed
qed


text {*  
  --------------------------------------------------------------------- 
  Ejercicio 7. Demostrar que
     postOrden (espejo a) = rev (preOrden a)
  --------------------------------------------------------------------- 
*}

lemma "postOrden (espejo a) = rev (preOrden a)"
by (induct a) simp_all

lemma "postOrden (espejo a) = rev (preOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume HI1: "?P i"
  assume HI2: "?P d"
  show "?P (N x i d)"
  proof -
    have "postOrden (espejo (N x i d)) = 
          postOrden (N x (espejo d) (espejo i))" by simp
    also have "... = postOrden (espejo d) @ postOrden (espejo i) @ [x]" 
      by simp
    also have "... = rev (preOrden d) @ rev (preOrden i) @ rev [x]" 
      using HI1 HI2 by simp
    also have "... = rev ([x] @ preOrden i @ preOrden d)" by simp
    finally show ?thesis  by simp
  qed
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 8. Demostrar que
     inOrden (espejo a) = rev (inOrden a)
  --------------------------------------------------------------------- 
*}

lemma "inOrden (espejo a) = rev (inOrden a)"
by (induct a) simp_all
 
lemma "inOrden (espejo a) = rev (inOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume HI1: "?P i"
  assume HI2: "?P d"
  show "?P (N x i d)"
  proof -
    have "inOrden (espejo (N x i d)) = 
          inOrden (N x (espejo d) (espejo i))" by simp
    also have "... = inOrden (espejo d) @ [x] @ inOrden (espejo i)" 
      by simp
    also have "... = rev (inOrden d) @ rev [x] @ rev (inOrden i)" 
      using HI1 HI2 by simp
    also have "... = rev (inOrden i @ [x] @ inOrden d)" by simp
    finally show ?thesis by simp
  qed
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 9. Definir la función 
     raiz :: "'a arbol ⇒ 'a"
  tal que (raiz a) es la raiz del árbol a. Por ejemplo, 
     raiz (N e (N c (H a) (H d)) (N g (H f) (H h))) = e
  --------------------------------------------------------------------- 
*}

fun raiz :: "'a arbol ⇒ 'a" where
  "raiz (H x)     = x"
| "raiz (N x i d) = x"

value "raiz (N e (N c (H a) (H d)) (N g (H f) (H h))) = e"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 10. Definir la función 
     extremo_izquierda :: "'a arbol ⇒ 'a"
  tal que (extremo_izquierda a) es el nodo más a la izquierda del árbol
  a. Por ejemplo,  
     extremo_izquierda (N e (N c (H a) (H d)) (N g (H f) (H h))) = a
  --------------------------------------------------------------------- 
*}

fun extremo_izquierda :: "'a arbol ⇒ 'a" where
  "extremo_izquierda (H a)      = a"
| "extremo_izquierda (N f x y) = (extremo_izquierda x)"

value "extremo_izquierda (N e (N c (H a) (H d)) (N g (H f) (H h))) = a"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 11. Definir la función 
     extremo_derecha :: "'a arbol ⇒ 'a"
  tal que (extremo_derecha a) es el nodo más a la derecha del árbol
  a. Por ejemplo,  
     extremo_derecha (N e (N c (H a) (H d)) (N g (H f) (H h))) = h
  --------------------------------------------------------------------- 
*}

fun extremo_derecha :: "'a arbol ⇒ 'a" where
  "extremo_derecha (H x)     = x"
| "extremo_derecha (N x i d) = (extremo_derecha d)"

value "extremo_derecha (N e (N c (H a) (H d)) (N g (H f) (H h))) = h"

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 12. Demostrar o refutar
     last (inOrden a) = extremo_derecha a
  --------------------------------------------------------------------- 
*}

lemma inOrdenNoVacio: "inOrden a ≠ []"
  apply (induct a)
   apply simp_all
   done 
    
theorem ultimoInOrden: 
  "last (inOrden a) = extremo_derecha a"    
  apply (induct a)
   apply simp
  apply (simp add: inOrdenNoVacio)
  done
    
    
theorem "last (inOrden a) = extremo_derecha a"
  by (induct a) (simp_all add: inOrdenNoVacio)

theorem "last (inOrden a) = extremo_derecha a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume HI1: "?P i"
  assume HI2: "?P d"
  show "?P (N x i d)"
  proof -
    have "last (inOrden (N x i d)) = last ((inOrden i)@[x]@(inOrden d))" 
      by simp
    also have "... = last (inOrden d)" by (simp add: inOrdenNoVacio)
    also have "... = extremo_derecha d" using HI2 by simp
    also have "... = extremo_derecha (N x i d)" by simp
    finally show ?thesis by simp
  qed
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 13. Demostrar o refutar
     hd (inOrden a) = extremo_izquierda a
  --------------------------------------------------------------------- 
*}

theorem "hd (inOrden a) = extremo_izquierda a"
  apply (induct a)
   apply simp
  apply (simp add: inOrdenNoVacio)
  done

theorem "hd (inOrden a) = extremo_izquierda a" (is "?P a")
proof (induct a) 
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume HI1: "?P i"
  assume HI2: "?P d"
  show "?P (N x i d)"
  proof -
    have "hd (inOrden (N x i d)) = hd((inOrden i)@[x]@(inOrden d))" 
      by simp
    also have "... = hd (inOrden i)" by (simp add: inOrdenNoVacio)
    also have "... = extremo_izquierda i" using HI1 by simp
    also have "... = extremo_izquierda (N x i d)" by simp
    finally show ?thesis by simp
  qed
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 14. Demostrar o refutar
     hd (preOrden a) = last (postOrden a)
  --------------------------------------------------------------------- 
*}

theorem "hd (preOrden a) = last (postOrden a)"
by (induct a) simp_all

theorem "hd (preOrden a) = last (postOrden a)" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume HI1: "?P i"
  assume HI2: "?P d"
  show "?P (N x i d)"
  proof -
    have "hd (preOrden (N x i d)) = hd (x#((preOrden i)@(preOrden d)))" 
      by simp
    also have "... = x" by simp
    also have "... = last ((postOrden i)@(postOrden d)@[x])" by simp
    also have "... = last (postOrden (N x i d))" by simp
    finally show ?thesis by simp
  qed
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 15. Demostrar o refutar
     hd (preOrden a) = raiz a
  --------------------------------------------------------------------- 
*}

theorem "hd (preOrden a) = raiz a"
by (induct a) simp_all

theorem "hd (preOrden a) = raiz a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume HI1: "?P i"
  assume HI2: "?P d"
  show "?P (N x i d)"
  proof -
    have "hd (preOrden (N x i d)) = hd (x#((preOrden i)@(preOrden d)))" 
      by simp
    also have "... = x" by simp
    also have "... = raiz (N x i d)" by simp
    finally show ?thesis by simp
  qed
qed

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 16. Demostrar o refutar
     hd (inOrden a) = raiz a
  --------------------------------------------------------------------- 
*}

theorem "hd (inOrden a) = raiz a"
quickcheck
oops

text {*
  Quickcheck found a counterexample:
  a = N a1 (H a2) (H a1)
  
  Evaluated terms:
  hd (inOrden a) = a2
  raiz a = a1
*}

text {*  
  --------------------------------------------------------------------- 
  Ejercicio 17. Demostrar o refutar
     last (postOrden a) = raiz a
  --------------------------------------------------------------------- 
*}

lemma "last (postOrden a) = raiz a"
by (induct a) simp_all

lemma "last (postOrden a) = raiz a" (is "?P a")
proof (induct a)
  fix x
  show "?P (H x)" by simp
next
  fix x i d
  assume HI1: "?P i"
  assume HI2: "?P d"
  show "?P (N x i d)"
  proof -
    have "last (postOrden (N x i d)) = 
          last ((postOrden i)@(postOrden d)@[x])" by simp
    also have "... = last [x]" by simp
    also have "... = x" by simp
    also have "... = raiz (N x i d)" by simp
    finally show ?thesis by simp
  qed
qed

end