Sol 9
De Lógica matemática y fundamentos (2018-19)
Revisión del 17:53 26 jun 2019 de Mjoseh (discusión | contribuciones)
chapter {* R9 Programación funcional en Isabelle *}
theory R9_sol
imports Main
begin
text {* ----------------------------------------------------------------
Ejercicio 0. Definir, por recursión, la función
factorial :: nat ⇒ nat
tal que (factorial n) es el factorial de n. Por ejemplo,
factorial 4 = 24
------------------------------------------------------------------- *}
fun factorial :: "nat ⇒ nat" where
"factorial 0 = 1"
|" factorial (Suc m) = (Suc m)*(factorial m)"
(* value "factorial (4::nat)"*)
text {* ----------------------------------------------------------------
Ejercicio 1. Definir, por recursión, la función
longitud :: 'a list ⇒ nat
tal que (longitud xs) es la longitud de la listas xs. Por ejemplo,
longitud [4,2,5] = 3
------------------------------------------------------------------- *}
fun longitud :: "'a list ⇒ nat" where
"longitud [] = 0"
| "longitud (x#xs) = 1 + longitud xs"
value "longitud [a,b,c]" ― ‹= 3›
text {* ---------------------------------------------------------------
Ejercicio 2. Definir la función
fun intercambia :: 'a × 'b ⇒ 'b × 'a
tal que (intercambia p) es el par obtenido intercambiando las
componentes del par p. Por ejemplo,
intercambia (u,v) = (v,u)
------------------------------------------------------------------ *}
fun intercambia :: "'a × 'b ⇒ 'b × 'a" where
"intercambia (x,y) = (y,x)"
value "intercambia (u,v)" ― ‹= (v,u)›
text {* ---------------------------------------------------------------
Ejercicio 3. Definir, por recursión, la función
inversa :: 'a list ⇒ 'a list
tal que (inversa xs) es la lista obtenida invirtiendo el orden de los
elementos de xs. Por ejemplo,
inversa [a,d,c] = [c,d,a]
------------------------------------------------------------------ *}
fun inversa :: "'a list ⇒ 'a list" where
"inversa [] = []"
| "inversa (x#xs) = inversa xs @ [x]"
value "inversa [a,d,c]" ― ‹= [c,d,a]›
text {* ---------------------------------------------------------------
Ejercicio 4. Definir la función
repite :: nat ⇒ 'a ⇒ 'a list
tal que (repite n x) es la lista formada por n copias del elemento
x. Por ejemplo,
repite 3 a = [a,a,a]
------------------------------------------------------------------ *}
fun repite :: "nat ⇒ 'a ⇒ 'a list" where
"repite 0 x = []"
| "repite (Suc n) x = x # (repite n x)"
value "repite 3 a" ― ‹= [a,a,a]›
text {* ---------------------------------------------------------------
Ejercicio 5. Definir la función
conc :: 'a list ⇒ 'a list ⇒ 'a list
tal que (conc xs ys) es la concatención de las listas xs e ys. Por
ejemplo,
conc [a,d] [b,d,a,c] = [a,d,b,d,a,c]
------------------------------------------------------------------ *}
fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where
"conc [] ys = ys"
| "conc (x#xs) ys = x # (conc xs ys)"
value "conc [a,d] [b,d,a,c]" ― ‹= [a,d,b,d,a,c]›
text {* ---------------------------------------------------------------
Ejercicio 6. Definir la función
coge :: nat ⇒ 'a list ⇒ 'a list
tal que (coge n xs) es la lista de los n primeros elementos de xs. Por
ejemplo,
coge 2 [a,c,d,b,e] = [a,c]
------------------------------------------------------------------ *}
fun coge :: "nat ⇒ 'a list ⇒ 'a list" where
"coge n [] = []"
| "coge 0 xs = []"
| "coge (Suc n) (x#xs) = x # (coge n xs)"
value "coge 2 [a,c,d,b,e]" ― ‹= [a,c]›
text {* ---------------------------------------------------------------
Ejercicio 7. Definir la función
elimina :: nat ⇒ 'a list ⇒ 'a list
tal que (elimina n xs) es la lista obtenida eliminando los n primeros
elementos de xs. Por ejemplo,
elimina 2 [a,c,d,b,e] = [d,b,e]
------------------------------------------------------------------ *}
fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina n [] = []"
| "elimina 0 xs = xs"
| "elimina (Suc n) (x#xs) = elimina n xs"
value "elimina 2 [a,c,d,b,e]" ― ‹= [d,b,e]›
text {* ---------------------------------------------------------------
Ejercicio 8. Definir la función
esVacia :: 'a list ⇒ bool
tal que (esVacia xs) se verifica si xs es la lista vacía. Por ejemplo,
esVacia [] = True
esVacia [1] = False
------------------------------------------------------------------ *}
fun esVacia :: "'a list ⇒ bool" where
"esVacia [] = True"
| "esVacia (x#xs) = False"
(*
value "esVacia []" ― ‹= True›
value "esVacia [1]" ― ‹= False›
*)
text {* ---------------------------------------------------------------
Ejercicio 9. Definir la función
inversaAc :: 'a list ⇒ 'a list
tal que (inversaAc xs) es a inversa de xs calculada usando
acumuladores. Por ejemplo,
inversaAc [a,c,b,e] = [e,b,c,a]
------------------------------------------------------------------ *}
fun inversaAcAux :: "'a list ⇒ 'a list ⇒ 'a list" where
"inversaAcAux [] ys = ys"
| "inversaAcAux (x#xs) ys = inversaAcAux xs (x#ys)"
fun inversaAc :: "'a list ⇒ 'a list" where
"inversaAc xs = inversaAcAux xs []"
value "inversaAc [a,c,b,e]" ― ‹= [e,b,c,a]›
text {* ---------------------------------------------------------------
Ejercicio 10. Definir la función
sum :: nat list ⇒ nat
tal que (sum xs) es la suma de los elementos de xs. Por ejemplo,
sum [3,2,5] = 10
------------------------------------------------------------------ *}
fun sum :: "nat list ⇒ nat" where
"sum [] = 0"
| "sum (x#xs) = x + sum xs"
(*
value "sum [3,2,5]" ― ‹= 10›
*)
text {* ---------------------------------------------------------------
Ejercicio 11. Definir la función
map :: ('a ⇒ 'b) ⇒ 'a list ⇒ 'b list
tal que (map f xs) es la lista obtenida aplicando la función f a los
elementos de xs. Por ejemplo,
map (λx. 2*x) [3,2,5] = [6,4,10]
------------------------------------------------------------------ *}
fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
"map f [] = []"
| "map f (x#xs) = (f x) # map f xs"
(*
value "map (λx. 2*x) [3::nat,2,5]" ― ‹= [6,4,10]›
*)
end