Diferencia entre revisiones de «Relación 7»
De Lógica matemática y fundamentos (2017-18)
(Página creada con '<source lang = "isar"> chapter {* R7: Deducción natural en lógica de primer orden *} theory R7 imports Main begin text {* Demostrar o refutar los siguientes lemas usando ...') |
|||
Línea 60: | Línea 60: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_1a: | + | lemma ejercicio_1a: carmarria |
− | assumes "∀x. P x ⟶ Q x" | + | assumes 1: "∀x. P x ⟶ Q x" |
shows "(∀x. P x) ⟶ (∀x. Q x)" | shows "(∀x. P x) ⟶ (∀x. Q x)" | ||
− | + | proof - | |
+ | {assume 2: "! x. P x" | ||
+ | {fix a | ||
+ | have 3: "P a ⟶ Q a" using 1 by (rule allE) | ||
+ | have 4: "P a" using 2 by (rule allE) | ||
+ | have 5: "Q a" using 3 4 by (rule mp) | ||
+ | } | ||
+ | hence 6: "! x. Q x" by (rule allI) | ||
+ | } | ||
+ | thus "(! x. P x) ⟶ (! x. Q x)" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 70: | Línea 80: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_2a: | + | lemma ejercicio_2a: carmarria |
− | assumes "∃x. ¬(P x)" | + | assumes 1: "∃x. ¬(P x)" |
shows "¬(∀x. P x)" | shows "¬(∀x. P x)" | ||
− | + | proof - | |
+ | obtain a where 2: "¬(P a)" using 1 by (rule exE) | ||
+ | {assume 3: "! x. P x" | ||
+ | have 4: "P a" using 3 by (rule allE) | ||
+ | have 5: False using 2 4 by (rule notE) | ||
+ | } | ||
+ | thus "¬(! x. P x)" by (rule notI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 80: | Línea 97: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_3a: | + | lemma ejercicio_3a: carmarria |
− | assumes "∀x. P x" | + | assumes 1: "∀x. P x" |
shows "∀y. P y" | shows "∀y. P y" | ||
− | + | proof - | |
+ | {fix a | ||
+ | have 2: "P a" using 1 by (rule allE) | ||
+ | } | ||
+ | thus "! y. P y" by (rule allI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 90: | Línea 112: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_4: | + | lemma ejercicio_4: carmarria |
− | assumes "∀x. P x ⟶ Q x" | + | assumes 1: "∀x. P x ⟶ Q x" |
shows "(∀x. ¬(Q x)) ⟶ (∀x. ¬ (P x))" | shows "(∀x. ¬(Q x)) ⟶ (∀x. ¬ (P x))" | ||
− | + | proof - | |
+ | {assume 2: "!x. ¬(Q x)" | ||
+ | {fix a | ||
+ | have 3: "¬(Q a)" using 2 by (rule allE) | ||
+ | have 4: "P a ⟶ Q a" using 1 by (rule allE) | ||
+ | have 5: "¬(P a)" using 4 3 by (rule mt) | ||
+ | } | ||
+ | hence 6: "!x. ¬ (P x)" by (rule allI) | ||
+ | } | ||
+ | thus "(!x. ¬(Q x)) ⟶ (!x. ¬ (P x))" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 100: | Línea 132: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_5: | + | lemma ejercicio_5: carmarria |
− | assumes "∀x. P x ⟶ ¬(Q x)" | + | assumes 1: "∀x. P x ⟶ ¬(Q x)" |
shows "¬(∃x. P x ∧ Q x)" | shows "¬(∃x. P x ∧ Q x)" | ||
− | + | proof - | |
+ | {assume 2: "? x. P x & Q x" | ||
+ | obtain a where 3: "P a & Q a" using 2 by (rule exE) | ||
+ | have 4: "P a ⟶ ¬(Q a)" using 1 by (rule allE) | ||
+ | have 5: "P a" using 3 by (rule conjunct1) | ||
+ | have 6: "Q a" using 3 by (rule conjunct2) | ||
+ | have 7: "¬(Q a)" using 4 5 by (rule mp) | ||
+ | have 8: False using 7 6 by (rule notE) | ||
+ | } | ||
+ | thus "¬(? x. P x & Q x)" by (rule notI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- |
Revisión del 17:37 6 abr 2018
chapter {* R7: Deducción natural en lógica de primer orden *}
theory R7
imports Main
begin
text {*
Demostrar o refutar los siguientes lemas usando sólo las reglas
básicas de deducción natural de la lógica proposicional, de los
cuantificadores y de la igualdad:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
· excluded_middel:(¬P ∨ P)
· allI: ⟦∀x. P x; P x ⟹ R⟧ ⟹ R
· allE: (⋀x. P x) ⟹ ∀x. P x
· exI: P x ⟹ ∃x. P x
· exE: ⟦∃x. P x; ⋀x. P x ⟹ Q⟧ ⟹ Q
· refl: t = t
· subst: ⟦s = t; P s⟧ ⟹ P t
· trans: ⟦r = s; s = t⟧ ⟹ r = t
· sym: s = t ⟹ t = s
· not_sym: t ≠ s ⟹ s ≠ t
· ssubst: ⟦t = s; P s⟧ ⟹ P t
· box_equals: ⟦a = b; a = c; b = d⟧ ⟹ a: = d
· arg_cong: x = y ⟹ f x = f y
· fun_cong: f = g ⟹ f x = g x
· cong: ⟦f = g; x = y⟧ ⟹ f x = g y
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación.
*}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
∀x. P x ⟶ Q x ⊢ (∀x. P x) ⟶ (∀x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_1a: carmarria
assumes 1: "∀x. P x ⟶ Q x"
shows "(∀x. P x) ⟶ (∀x. Q x)"
proof -
{assume 2: "! x. P x"
{fix a
have 3: "P a ⟶ Q a" using 1 by (rule allE)
have 4: "P a" using 2 by (rule allE)
have 5: "Q a" using 3 4 by (rule mp)
}
hence 6: "! x. Q x" by (rule allI)
}
thus "(! x. P x) ⟶ (! x. Q x)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
∃x. ¬(P x) ⊢ ¬(∀x. P x)
------------------------------------------------------------------ *}
lemma ejercicio_2a: carmarria
assumes 1: "∃x. ¬(P x)"
shows "¬(∀x. P x)"
proof -
obtain a where 2: "¬(P a)" using 1 by (rule exE)
{assume 3: "! x. P x"
have 4: "P a" using 3 by (rule allE)
have 5: False using 2 4 by (rule notE)
}
thus "¬(! x. P x)" by (rule notI)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
∀x. P x ⊢ ∀y. P y
------------------------------------------------------------------ *}
lemma ejercicio_3a: carmarria
assumes 1: "∀x. P x"
shows "∀y. P y"
proof -
{fix a
have 2: "P a" using 1 by (rule allE)
}
thus "! y. P y" by (rule allI)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
∀x. P x ⟶ Q x ⊢ (∀x. ¬(Q x)) ⟶ (∀x. ¬ (P x))
------------------------------------------------------------------ *}
lemma ejercicio_4: carmarria
assumes 1: "∀x. P x ⟶ Q x"
shows "(∀x. ¬(Q x)) ⟶ (∀x. ¬ (P x))"
proof -
{assume 2: "!x. ¬(Q x)"
{fix a
have 3: "¬(Q a)" using 2 by (rule allE)
have 4: "P a ⟶ Q a" using 1 by (rule allE)
have 5: "¬(P a)" using 4 3 by (rule mt)
}
hence 6: "!x. ¬ (P x)" by (rule allI)
}
thus "(!x. ¬(Q x)) ⟶ (!x. ¬ (P x))" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
∀x. P x ⟶ ¬(Q x) ⊢ ¬(∃x. P x ∧ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_5: carmarria
assumes 1: "∀x. P x ⟶ ¬(Q x)"
shows "¬(∃x. P x ∧ Q x)"
proof -
{assume 2: "? x. P x & Q x"
obtain a where 3: "P a & Q a" using 2 by (rule exE)
have 4: "P a ⟶ ¬(Q a)" using 1 by (rule allE)
have 5: "P a" using 3 by (rule conjunct1)
have 6: "Q a" using 3 by (rule conjunct2)
have 7: "¬(Q a)" using 4 5 by (rule mp)
have 8: False using 7 6 by (rule notE)
}
thus "¬(? x. P x & Q x)" by (rule notI)
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
∀x y. P x y ⊢ ∀u v. P u v
------------------------------------------------------------------ *}
lemma ejercicio_6:
assumes "∀x y. P x y"
shows "∀u v. P u v"
oops
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
∃x y. P x y ⟹ ∃u v. P u v
------------------------------------------------------------------ *}
lemma ejercicio_7:
assumes "∃x y. P x y"
shows "∃u v. P u v"
oops
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
∃x. ∀y. P x y ⊢ ∀y. ∃x. P x y
------------------------------------------------------------------ *}
lemma ejercicio_8:
assumes "∃x. ∀y. P x y"
shows "∀y. ∃x. P x y"
oops
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
∃x. P a ⟶ Q x ⊢ P a ⟶ (∃x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_9:
assumes "∃x. P a ⟶ Q x"
shows "P a ⟶ (∃x. Q x)"
oops
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
P a ⟶ (∃x. Q x) ⊢ ∃x. P a ⟶ Q x
------------------------------------------------------------------ *}
lemma ejercicio_10a:
fixes P Q :: "'b ⇒ bool"
assumes "P a ⟶ (∃x. Q x)"
shows "∃x. P a ⟶ Q x"
oops
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
(∃x. P x) ⟶ Q a ⊢ ∀x. P x ⟶ Q a
------------------------------------------------------------------ *}
lemma ejercicio_11a:
assumes "(∃x. P x) ⟶ Q a"
shows "∀x. P x ⟶ Q a"
oops
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
∀x. P x ⟶ Q a ⊢ ∃ x. P x ⟶ Q a
------------------------------------------------------------------ *}
lemma ejercicio_12a:
assumes "∀x. P x ⟶ Q a"
shows "∃x. P x ⟶ Q a"
oops
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
(∀x. P x) ∨ (∀x. Q x) ⊢ ∀x. P x ∨ Q x
------------------------------------------------------------------ *}
lemma ejercicio_13a:
assumes "(∀x. P x) ∨ (∀x. Q x)"
shows "∀x. P x ∨ Q x"
oops
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
∃x. P x ∧ Q x ⊢ (∃x. P x) ∧ (∃x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_14a:
assumes "∃x. P x ∧ Q x"
shows "(∃x. P x) ∧ (∃x. Q x)"
oops
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
∀x y. P y ⟶ Q x ⊢ (∃y. P y) ⟶ (∀x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_15a:
assumes "∀x y. P y ⟶ Q x"
shows "(∃y. P y) ⟶ (∀x. Q x)"
oops
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
¬(∀x. ¬(P x)) ⊢ ∃x. P x
------------------------------------------------------------------ *}
lemma ejercicio_16a:
assumes "¬(∀x. ¬(P x))"
shows "∃x. P x"
oops
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
∀x. ¬(P x) ⊢ ¬(∃x. P x)
------------------------------------------------------------------ *}
lemma ejercicio_17a:
assumes "∀x. ¬(P x)"
shows "¬(∃x. P x)"
oops
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
∃x. P x ⊢ ¬(∀x. ¬(P x))
------------------------------------------------------------------ *}
lemma ejercicio_18a:
assumes "∃x. P x"
shows "¬(∀x. ¬(P x))"
oops
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
P a ⟶ (∀x. Q x) ⊢ ∀x. P a ⟶ Q x
------------------------------------------------------------------ *}
lemma ejercicio_19a:
assumes "P a ⟶ (∀x. Q x)"
shows "∀x. P a ⟶ Q x"
oops
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
{∀x y z. R x y ∧ R y z ⟶ R x z,
∀x. ¬(R x x)}
⊢ ∀x y. R x y ⟶ ¬(R y x)
------------------------------------------------------------------ *}
lemma ejercicio_20a:
assumes "∀x y z. R x y ∧ R y z ⟶ R x z"
"∀x. ¬(R x x)"
shows "∀x y. R x y ⟶ ¬(R y x)"
oops
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
{∀x. P x ∨ Q x, ∃x. ¬(Q x), ∀x. R x ⟶ ¬(P x)} ⊢ ∃x. ¬(R x)
------------------------------------------------------------------ *}
lemma ejercicio_21a:
assumes "∀x. P x ∨ Q x"
"∃x. ¬(Q x)"
"∀x. R x ⟶ ¬(P x)"
shows "∃x. ¬(R x)"
oops
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
{∀x. P x ⟶ Q x ∨ R x, ¬(∃x. P x ∧ R x)} ⊢ ∀x. P x ⟶ Q x
------------------------------------------------------------------ *}
lemma ejercicio_22a:
assumes "∀x. P x ⟶ Q x ∨ R x"
"¬(∃x. P x ∧ R x)"
shows "∀x. P x ⟶ Q x"
oops
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
∃x y. R x y ∨ R y x ⊢ ∃x y. R x y
------------------------------------------------------------------ *}
lemma ejercicio_23a:
assumes "∃x y. R x y ∨ R y x"
shows "∃x y. R x y"
oops
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
(∃x. ∀y. P x y) ⟶ (∀y. ∃x. P x y)
------------------------------------------------------------------ *}
lemma ejercicio_24a:
"(∃x. ∀y. P x y) ⟶ (∀y. ∃x. P x y)"
oops
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
(∀x. P x ⟶ Q) ⟷ ((∃x. P x) ⟶ Q)
------------------------------------------------------------------ *}
lemma ejercicio_25a:
"(∀x. P x ⟶ Q) ⟷ ((∃x. P x) ⟶ Q)"
oops
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
((∀x. P x) ∧ (∀x. Q x)) ⟷ (∀x. P x ∧ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_26a:
"((∀x. P x) ∧ (∀x. Q x)) ⟷ (∀x. P x ∧ Q x)"
oops
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar o refutar
((∀x. P x) ∨ (∀x. Q x)) ⟷ (∀x. P x ∨ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_27a:
"((∀x. P x) ∨ (∀x. Q x)) ⟷ (∀x. P x ∨ Q x)"
oops
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar o refutar
((∃x. P x) ∨ (∃x. Q x)) ⟷ (∃x. P x ∨ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_28a:
"((∃x. P x) ∨ (∃x. Q x)) ⟷ (∃x. P x ∨ Q x)"
oops
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar o refutar
(∀x. ∃y. P x y) ⟶ (∃y. ∀x. P x y)
------------------------------------------------------------------ *}
lemma ejercicio_29:
"(∀x. ∃y. P x y) ⟶ (∃y. ∀x. P x y)"
oops
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar o refutar
(¬(∀x. P x)) ⟷ (∃x. ¬P x)
------------------------------------------------------------------ *}
lemma ejercicio_30a:
"(¬(∀x. P x)) ⟷ (∃x. ¬P x)"
oops
section {* Ejercicios sobre igualdad *}
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar o refutar
P a ⟹ ∀x. x = a ⟶ P x
------------------------------------------------------------------ *}
lemma ejercicio_31a:
assumes "P a"
shows "∀x. x = a ⟶ P x"
oops
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar o refutar
∃x y. R x y ∨ R y x; ¬(∃x. R x x)⟧ ⟹ ∃x y. x ≠ y
------------------------------------------------------------------ *}
lemma ejercicio_32a:
fixes R :: "'c ⇒ 'c ⇒ bool"
assumes "∃x y. R x y ∨ R y x"
"¬(∃x. R x x)"
shows "∃(x::'c) y. x ≠ y"
oops
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar o refutar
{∀x. P a x x,
∀x y z. P x y z ⟶ P (f x) y (f z)}
⊢ P (f a) a (f a)
------------------------------------------------------------------ *}
lemma ejercicio_33a:
assumes "∀x. P a x x"
"∀x y z. P x y z ⟶ P (f x) y (f z)"
shows "P (f a) a (f a)"
oops
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar o refutar
{∀x. P a x x,
∀x y z. P x y z ⟶ P (f x) y (f z)⟧
⊢ ∃z. P (f a) z (f (f a))
------------------------------------------------------------------ *}
lemma ejercicio_34a:
assumes "∀x. P a x x"
"∀x y z. P x y z ⟶ P (f x) y (f z)"
shows "∃z. P (f a) z (f (f a))"
oops
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar o refutar
{∀y. Q a y,
∀x y. Q x y ⟶ Q (s x) (s y)}
⊢ ∃z. Qa z ∧ Q z (s (s a))
------------------------------------------------------------------ *}
lemma ejercicio_35a:
assumes "∀y. Q a y"
"∀x y. Q x y ⟶ Q (s x) (s y)"
shows "∃z. Q a z ∧ Q z (s (s a))"
oops
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar o refutar
{x = f x, odd (f x)} ⊢ odd x
------------------------------------------------------------------ *}
lemma ejercicio_36a:
assumes "x = f x" and
"odd (f x)"
shows "odd x"
oops
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar o refutar
{x = f x, triple (f x) (f x) x} ⊢ triple x x x
------------------------------------------------------------------ *}
lemma ejercicio_37a:
assumes "x = f x" and
"triple (f x) (f x) x"
shows "triple x x x"
oops
end