Diferencia entre revisiones de «Relación 7»
De Lógica matemática y fundamentos (2017-18)
(No se muestra una edición intermedia de otro usuario) | |||
Línea 1: | Línea 1: | ||
− | <source lang = " | + | <source lang = "isabelle"> |
chapter {* R7: Deducción natural en lógica de primer orden *} | chapter {* R7: Deducción natural en lógica de primer orden *} | ||
Línea 73: | Línea 73: | ||
} | } | ||
thus "(! x. P x) ⟶ (! x. Q x)" by (rule impI) | thus "(! x. P x) ⟶ (! x. Q x)" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | joslopjim4 | ||
+ | |||
+ | assumes "∀x. P x ⟶ Q x" | ||
+ | shows "(∀x. P x) ⟶ (∀x. Q x)" | ||
+ | proof (rule impI) | ||
+ | assume "∀x. P x" | ||
+ | show "∀x. Q x" | ||
+ | proof (rule allI) | ||
+ | fix a | ||
+ | have "P a ⟶ Q a" using assms by (rule allE) | ||
+ | have "P a" using `∀x. P x` by (rule allE) | ||
+ | show "Q a" using `P a ⟶ Q a` `P a` by (rule mp) | ||
+ | qed | ||
qed | qed | ||
Línea 90: | Línea 105: | ||
} | } | ||
thus "¬(! x. P x)" by (rule notI) | thus "¬(! x. P x)" by (rule notI) | ||
+ | qed | ||
+ | |||
+ | joslopjim4 | ||
+ | |||
+ | assumes "∃x. ¬(P x)" | ||
+ | shows "¬(∀x. P x)" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬¬(∀x. P x)" | ||
+ | then have "∀x. P x" by (rule notnotD) | ||
+ | obtain a where "¬(P a)" using assms by (rule exE) | ||
+ | have "P a" using `∀x. P x` by (rule allE) | ||
+ | show False using `¬(P a)` `P a` by (rule notE) | ||
qed | qed | ||
Línea 105: | Línea 132: | ||
} | } | ||
thus "! y. P y" by (rule allI) | thus "! y. P y" by (rule allI) | ||
+ | qed | ||
+ | |||
+ | joslopjim4 | ||
+ | |||
+ | assumes "∀x. P x" | ||
+ | shows "∀y. P y" | ||
+ | proof (rule allI) | ||
+ | fix a | ||
+ | show "P a" using assms by (rule allE) | ||
qed | qed | ||
Línea 125: | Línea 161: | ||
} | } | ||
thus "(!x. ¬(Q x)) ⟶ (!x. ¬ (P x))" by (rule impI) | thus "(!x. ¬(Q x)) ⟶ (!x. ¬ (P x))" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | joslopjim4 | ||
+ | |||
+ | assumes "∀x. P x ⟶ Q x" | ||
+ | shows "(∀x. ¬(Q x)) ⟶ (∀x. ¬ (P x))" | ||
+ | proof (rule impI) | ||
+ | assume "∀x. ¬(Q x)" | ||
+ | show "∀x. ¬ (P x)" | ||
+ | proof (rule allI) | ||
+ | fix a | ||
+ | have "¬(Q a)" using `∀x. ¬(Q x)` by (rule allE) | ||
+ | have "P a ⟶ Q a" using assms by (rule allE) | ||
+ | thus "¬(P a)" using `¬(Q a)` by (rule mt) | ||
+ | qed | ||
qed | qed | ||
Línea 145: | Línea 196: | ||
} | } | ||
thus "¬(? x. P x & Q x)" by (rule notI) | thus "¬(? x. P x & Q x)" by (rule notI) | ||
+ | qed | ||
+ | |||
+ | joslopjim4 | ||
+ | |||
+ | assumes "∀x. P x ⟶ ¬(Q x)" | ||
+ | shows "¬(∃x. P x ∧ Q x)" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬¬(∃x. P x ∧ Q x)" | ||
+ | then have "∃x. P x ∧ Q x" by (rule notnotD) | ||
+ | obtain b where "P b ∧ Q b" using `∃x. P x ∧ Q x` by (rule exE) | ||
+ | have "P b" using `P b ∧ Q b` by (rule conjunct1) | ||
+ | have "Q b" using `P b ∧ Q b` by (rule conjunct2) | ||
+ | have "P b ⟶ ¬(Q b)" | ||
+ | proof - | ||
+ | fix b | ||
+ | show "P b ⟶ ¬(Q b)" using assms by (rule allE) | ||
+ | qed | ||
+ | have "¬(Q b)" using `P b ⟶ ¬(Q b)` `P b` by (rule mp) | ||
+ | show False using `¬(Q b)` `Q b` by (rule notE) | ||
qed | qed | ||
Línea 164: | Línea 234: | ||
} | } | ||
thus "!u v. P u v" by (rule allI) | thus "!u v. P u v" by (rule allI) | ||
+ | qed | ||
+ | |||
+ | joslopjim4 | ||
+ | |||
+ | assumes "∀x y. P x y" | ||
+ | shows "∀u v. P u v" | ||
+ | proof (rule allI) | ||
+ | fix a | ||
+ | have "∀y. P a y" using assms by (rule allE) | ||
+ | show "∀v. P a v" | ||
+ | proof (rule allI) | ||
+ | fix b | ||
+ | show "P a b" using `∀y. P a y` by (rule allE) | ||
+ | qed | ||
qed | qed | ||
Línea 179: | Línea 263: | ||
have 4: "? v. P a v" using 3 by (rule exI) | have 4: "? v. P a v" using 3 by (rule exI) | ||
show 5: "? u v. P u v" using 4 by (rule exI) | show 5: "? u v. P u v" using 4 by (rule exI) | ||
+ | qed | ||
+ | |||
+ | joslopjim4 | ||
+ | |||
+ | assumes "∃x y. P x y" | ||
+ | shows "∃u v. P u v" | ||
+ | proof- | ||
+ | obtain a where "∃y. P a y" using assms by (rule exE) | ||
+ | obtain b where "P a b" using `∃y. P a y` by (rule exE) | ||
+ | then have "∃v. P a v" by (rule exI) | ||
+ | thus "∃u v. P u v" by (rule exI) | ||
qed | qed | ||
Línea 196: | Línea 291: | ||
} | } | ||
thus "! y. ? x. P x y" by (rule allI) | thus "! y. ? x. P x y" by (rule allI) | ||
+ | qed | ||
+ | |||
+ | joslopjim4 | ||
+ | |||
+ | assumes "∃x. ∀y. P x y" | ||
+ | shows "∀y. ∃x. P x y" | ||
+ | proof (rule allI) | ||
+ | fix b | ||
+ | obtain a where "∀y. P a y" using assms by (rule exE) | ||
+ | then have "P a b" by (rule allE) | ||
+ | then show "∃x. P x b" by (rule exI) | ||
qed | qed | ||
Línea 215: | Línea 321: | ||
qed | qed | ||
+ | joslopjim4 | ||
+ | |||
+ | assumes "∃x. P a ⟶ Q x" | ||
+ | shows "P a ⟶ (∃x. Q x)" | ||
+ | proof (rule impI) | ||
+ | assume "P a" | ||
+ | obtain b where "P a ⟶ Q b" using assms by (rule exE) | ||
+ | then have "Q b" using `P a` by (rule mp) | ||
+ | thus "∃x. Q x" by (rule exI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 247: | Línea 363: | ||
qed | qed | ||
+ | joslopjim4 | ||
+ | |||
+ | fixes P Q :: "'b ⇒ bool" | ||
+ | assumes "P a ⟶ (∃x. Q x)" | ||
+ | shows "∃x. P a ⟶ Q x" | ||
+ | proof- | ||
+ | have "¬(P a) ∨ P a" by (rule excluded_middle) | ||
+ | thus "∃x. P a ⟶ Q x" | ||
+ | proof | ||
+ | assume "P a" | ||
+ | have "∃x. Q x" using assms `P a` by (rule mp) | ||
+ | obtain b where "Q b" using `∃x. Q x` by (rule exE) | ||
+ | have "P a ⟶ Q b" | ||
+ | proof | ||
+ | assume "P a" | ||
+ | show "Q b" using `Q b` by this | ||
+ | qed | ||
+ | show "∃x. P a ⟶ Q x" using `P a ⟶ Q b` by (rule exI) | ||
+ | next | ||
+ | assume "¬(P a)" | ||
+ | have "P a ⟶ Q a" | ||
+ | proof | ||
+ | assume "P a" | ||
+ | have False using `¬(P a)` `P a` by (rule notE) | ||
+ | thus "Q a" by (rule FalseE) | ||
+ | qed | ||
+ | show "∃x. P a ⟶ Q x" using `P a ⟶ Q a` by (rule exI) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- |
Revisión actual del 20:48 14 jul 2018
chapter {* R7: Deducción natural en lógica de primer orden *}
theory R7
imports Main
begin
text {*
Demostrar o refutar los siguientes lemas usando sólo las reglas
básicas de deducción natural de la lógica proposicional, de los
cuantificadores y de la igualdad:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
· excluded_middel:(¬P ∨ P)
· allI: ⟦∀x. P x; P x ⟹ R⟧ ⟹ R
· allE: (⋀x. P x) ⟹ ∀x. P x
· exI: P x ⟹ ∃x. P x
· exE: ⟦∃x. P x; ⋀x. P x ⟹ Q⟧ ⟹ Q
· refl: t = t
· subst: ⟦s = t; P s⟧ ⟹ P t
· trans: ⟦r = s; s = t⟧ ⟹ r = t
· sym: s = t ⟹ t = s
· not_sym: t ≠ s ⟹ s ≠ t
· ssubst: ⟦t = s; P s⟧ ⟹ P t
· box_equals: ⟦a = b; a = c; b = d⟧ ⟹ a: = d
· arg_cong: x = y ⟹ f x = f y
· fun_cong: f = g ⟹ f x = g x
· cong: ⟦f = g; x = y⟧ ⟹ f x = g y
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación.
*}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
∀x. P x ⟶ Q x ⊢ (∀x. P x) ⟶ (∀x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_1a: carmarria
assumes 1: "∀x. P x ⟶ Q x"
shows "(∀x. P x) ⟶ (∀x. Q x)"
proof -
{assume 2: "! x. P x"
{fix a
have 3: "P a ⟶ Q a" using 1 by (rule allE)
have 4: "P a" using 2 by (rule allE)
have 5: "Q a" using 3 4 by (rule mp)
}
hence 6: "! x. Q x" by (rule allI)
}
thus "(! x. P x) ⟶ (! x. Q x)" by (rule impI)
qed
joslopjim4
assumes "∀x. P x ⟶ Q x"
shows "(∀x. P x) ⟶ (∀x. Q x)"
proof (rule impI)
assume "∀x. P x"
show "∀x. Q x"
proof (rule allI)
fix a
have "P a ⟶ Q a" using assms by (rule allE)
have "P a" using `∀x. P x` by (rule allE)
show "Q a" using `P a ⟶ Q a` `P a` by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
∃x. ¬(P x) ⊢ ¬(∀x. P x)
------------------------------------------------------------------ *}
lemma ejercicio_2a: carmarria
assumes 1: "∃x. ¬(P x)"
shows "¬(∀x. P x)"
proof -
obtain a where 2: "¬(P a)" using 1 by (rule exE)
{assume 3: "! x. P x"
have 4: "P a" using 3 by (rule allE)
have 5: False using 2 4 by (rule notE)
}
thus "¬(! x. P x)" by (rule notI)
qed
joslopjim4
assumes "∃x. ¬(P x)"
shows "¬(∀x. P x)"
proof (rule ccontr)
assume "¬¬(∀x. P x)"
then have "∀x. P x" by (rule notnotD)
obtain a where "¬(P a)" using assms by (rule exE)
have "P a" using `∀x. P x` by (rule allE)
show False using `¬(P a)` `P a` by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
∀x. P x ⊢ ∀y. P y
------------------------------------------------------------------ *}
lemma ejercicio_3a: carmarria
assumes 1: "∀x. P x"
shows "∀y. P y"
proof -
{fix a
have 2: "P a" using 1 by (rule allE)
}
thus "! y. P y" by (rule allI)
qed
joslopjim4
assumes "∀x. P x"
shows "∀y. P y"
proof (rule allI)
fix a
show "P a" using assms by (rule allE)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
∀x. P x ⟶ Q x ⊢ (∀x. ¬(Q x)) ⟶ (∀x. ¬ (P x))
------------------------------------------------------------------ *}
lemma ejercicio_4: carmarria
assumes 1: "∀x. P x ⟶ Q x"
shows "(∀x. ¬(Q x)) ⟶ (∀x. ¬ (P x))"
proof -
{assume 2: "!x. ¬(Q x)"
{fix a
have 3: "¬(Q a)" using 2 by (rule allE)
have 4: "P a ⟶ Q a" using 1 by (rule allE)
have 5: "¬(P a)" using 4 3 by (rule mt)
}
hence 6: "!x. ¬ (P x)" by (rule allI)
}
thus "(!x. ¬(Q x)) ⟶ (!x. ¬ (P x))" by (rule impI)
qed
joslopjim4
assumes "∀x. P x ⟶ Q x"
shows "(∀x. ¬(Q x)) ⟶ (∀x. ¬ (P x))"
proof (rule impI)
assume "∀x. ¬(Q x)"
show "∀x. ¬ (P x)"
proof (rule allI)
fix a
have "¬(Q a)" using `∀x. ¬(Q x)` by (rule allE)
have "P a ⟶ Q a" using assms by (rule allE)
thus "¬(P a)" using `¬(Q a)` by (rule mt)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
∀x. P x ⟶ ¬(Q x) ⊢ ¬(∃x. P x ∧ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_5: carmarria
assumes 1: "∀x. P x ⟶ ¬(Q x)"
shows "¬(∃x. P x ∧ Q x)"
proof -
{assume 2: "? x. P x & Q x"
obtain a where 3: "P a & Q a" using 2 by (rule exE)
have 4: "P a ⟶ ¬(Q a)" using 1 by (rule allE)
have 5: "P a" using 3 by (rule conjunct1)
have 6: "Q a" using 3 by (rule conjunct2)
have 7: "¬(Q a)" using 4 5 by (rule mp)
have 8: False using 7 6 by (rule notE)
}
thus "¬(? x. P x & Q x)" by (rule notI)
qed
joslopjim4
assumes "∀x. P x ⟶ ¬(Q x)"
shows "¬(∃x. P x ∧ Q x)"
proof (rule ccontr)
assume "¬¬(∃x. P x ∧ Q x)"
then have "∃x. P x ∧ Q x" by (rule notnotD)
obtain b where "P b ∧ Q b" using `∃x. P x ∧ Q x` by (rule exE)
have "P b" using `P b ∧ Q b` by (rule conjunct1)
have "Q b" using `P b ∧ Q b` by (rule conjunct2)
have "P b ⟶ ¬(Q b)"
proof -
fix b
show "P b ⟶ ¬(Q b)" using assms by (rule allE)
qed
have "¬(Q b)" using `P b ⟶ ¬(Q b)` `P b` by (rule mp)
show False using `¬(Q b)` `Q b` by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
∀x y. P x y ⊢ ∀u v. P u v
------------------------------------------------------------------ *}
lemma ejercicio_6: carmarria
assumes 1: "∀x y. P x y"
shows "∀u v. P u v"
proof -
{fix a
have 2: "! y. P a y" using 1 by (rule allE)
{fix b
have 3: "P a b" using 2 by (rule allE)
}
hence 4: "!v. P a v" by (rule allI)
}
thus "!u v. P u v" by (rule allI)
qed
joslopjim4
assumes "∀x y. P x y"
shows "∀u v. P u v"
proof (rule allI)
fix a
have "∀y. P a y" using assms by (rule allE)
show "∀v. P a v"
proof (rule allI)
fix b
show "P a b" using `∀y. P a y` by (rule allE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
∃x y. P x y ⟹ ∃u v. P u v
------------------------------------------------------------------ *}
lemma ejercicio_7: carmarria
assumes 1: "∃x y. P x y"
shows "∃u v. P u v"
proof -
obtain a where 2: "? y. P a y" using 1 by (rule exE)
obtain b where 3: "P a b" using 2 by (rule exE)
have 4: "? v. P a v" using 3 by (rule exI)
show 5: "? u v. P u v" using 4 by (rule exI)
qed
joslopjim4
assumes "∃x y. P x y"
shows "∃u v. P u v"
proof-
obtain a where "∃y. P a y" using assms by (rule exE)
obtain b where "P a b" using `∃y. P a y` by (rule exE)
then have "∃v. P a v" by (rule exI)
thus "∃u v. P u v" by (rule exI)
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
∃x. ∀y. P x y ⊢ ∀y. ∃x. P x y
------------------------------------------------------------------ *}
lemma ejercicio_8: carmarria
assumes 1: "∃x. ∀y. P x y"
shows "∀y. ∃x. P x y"
proof -
obtain a where 2: "! y. P a y" using 1 by (rule exE)
{fix b
have 3: "P a b" using 2 by (rule allE)
have 4: "? x. P x b" using 3 by (rule exI)
}
thus "! y. ? x. P x y" by (rule allI)
qed
joslopjim4
assumes "∃x. ∀y. P x y"
shows "∀y. ∃x. P x y"
proof (rule allI)
fix b
obtain a where "∀y. P a y" using assms by (rule exE)
then have "P a b" by (rule allE)
then show "∃x. P x b" by (rule exI)
qed
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
∃x. P a ⟶ Q x ⊢ P a ⟶ (∃x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_9: carmarria
assumes 1: "∃x. P a ⟶ Q x"
shows "P a ⟶ (∃x. Q x)"
proof -
{assume 2: "P a"
obtain b where 3: "P a ⟶ Q b" using 1 by (rule exE)
have 4: "Q b" using 3 2 by (rule mp)
have 5: "? x. Q x" using 4 by (rule exI)
}
thus "P a ⟶ (? x. Q x)" by (rule impI)
qed
joslopjim4
assumes "∃x. P a ⟶ Q x"
shows "P a ⟶ (∃x. Q x)"
proof (rule impI)
assume "P a"
obtain b where "P a ⟶ Q b" using assms by (rule exE)
then have "Q b" using `P a` by (rule mp)
thus "∃x. Q x" by (rule exI)
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
P a ⟶ (∃x. Q x) ⊢ ∃x. P a ⟶ Q x
------------------------------------------------------------------ *}
lemma ejercicio_10a: carmarria
fixes P Q :: "'b ⇒ bool"
assumes 1: "P a ⟶ (∃x. Q x)"
shows "∃x. P a ⟶ Q x"
proof -
have 2: "¬(P a) ∨ (P a)" by (rule excluded_middle)
moreover {assume 3: "¬(P a)"
{assume 4: "P a"
have 5: False using 3 4 by (rule notE)
have 6: "Q b" using 5 by (rule FalseE)
}
hence 7: "P a ⟶Q b" by (rule impI)
have 8: "? x. P a ⟶ Q x" using 7 by (rule exI)
}
moreover {assume 9: "P a"
have 10: "? x. Q x" using 1 9 by (rule mp)
obtain b where 11: "Q b" using 10 by (rule exE)
{assume 12: "P a"
have 13: "Q b" using 11 by this
}
hence 13: "P a ⟶ Q b" by (rule impI)
have 14: "? x. P a ⟶ Q x" using 13 by (rule exI)
}
ultimately show "? x. P a ⟶ Q x" by (rule disjE)
qed
joslopjim4
fixes P Q :: "'b ⇒ bool"
assumes "P a ⟶ (∃x. Q x)"
shows "∃x. P a ⟶ Q x"
proof-
have "¬(P a) ∨ P a" by (rule excluded_middle)
thus "∃x. P a ⟶ Q x"
proof
assume "P a"
have "∃x. Q x" using assms `P a` by (rule mp)
obtain b where "Q b" using `∃x. Q x` by (rule exE)
have "P a ⟶ Q b"
proof
assume "P a"
show "Q b" using `Q b` by this
qed
show "∃x. P a ⟶ Q x" using `P a ⟶ Q b` by (rule exI)
next
assume "¬(P a)"
have "P a ⟶ Q a"
proof
assume "P a"
have False using `¬(P a)` `P a` by (rule notE)
thus "Q a" by (rule FalseE)
qed
show "∃x. P a ⟶ Q x" using `P a ⟶ Q a` by (rule exI)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
(∃x. P x) ⟶ Q a ⊢ ∀x. P x ⟶ Q a
------------------------------------------------------------------ *}
lemma ejercicio_11a: carmarria
assumes 1:"(∃x. P x) ⟶ Q a"
shows "∀x. P x ⟶ Q a"
proof-
{fix b
{assume 2: "P b"
have 3: "? x. P x" using 2 by (rule exI)
have 4: "Q a" using 1 3 by (rule mp)
}
hence 5: "P b ⟶ Q a" by (rule impI)
}
thus "! x. P x ⟶ Q a" by (rule allI)
qed
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
∀x. P x ⟶ Q a ⊢ ∃ x. P x ⟶ Q a
------------------------------------------------------------------ *}
lemma ejercicio_12a: carmarria
assumes 1: "∀x. P x ⟶ Q a"
shows "∃x. P x ⟶ Q a"
proof -
have 2: "P b ⟶ Q a" using 1 by (rule allE)
show 3: "? x. P x ⟶ Q a" using 2 by (rule exI)
qed
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
(∀x. P x) ∨ (∀x. Q x) ⊢ ∀x. P x ∨ Q x
------------------------------------------------------------------ *}
lemma ejercicio_13a: carmarria
assumes 1: "(∀x. P x) ∨ (∀x. Q x)"
shows "∀x. P x ∨ Q x"
proof -
{fix a
have 2: "(! x. P x) ∨ (! x. Q x)" using 1 by this
moreover {assume 3:"! x. P x"
have 4: "P a" using 3 by (rule allE)
have 5: "P a | Q a" using 4 by (rule disjI1)
}
moreover {assume 6: "! x. Q x"
have 7: "Q a" using 6 by (rule allE)
have 8: "P a | Q a" using 7 by (rule disjI2)
}
ultimately have 9: "P a | Q a" by (rule disjE)
}
thus "! x. P x | Q x" by (rule allI)
qed
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
∃x. P x ∧ Q x ⊢ (∃x. P x) ∧ (∃x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_14a: carmarria
assumes 1: "∃x. P x ∧ Q x"
shows "(∃x. P x) ∧ (∃x. Q x)"
proof -
obtain a where 2: "P a & Q a" using 1 by (rule exE)
have 3: "P a" using 2 by (rule conjunct1)
have 4: "Q a" using 2 by (rule conjunct2)
have 5: "? x. P x" using 3 by (rule exI)
have 6: "? x. Q x" using 4 by (rule exI)
show "(? x. P x) ∧ (? x. Q x)" using 5 6 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
∀x y. P y ⟶ Q x ⊢ (∃y. P y) ⟶ (∀x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_15a: carmarria
assumes 1: "∀x y. P y ⟶ Q x"
shows "(∃y. P y) ⟶ (∀x. Q x)"
proof -
{assume 2: "? y. P y"
{fix a
have 3: "! y. P y ⟶ Q a" using 1 by (rule allE)
obtain b where 4: "P b" using 2 by (rule exE)
have 5: "P b ⟶ Q a" using 3 by (rule allE)
have 6: "Q a" using 5 4 by (rule mp)
}
hence 7: "! x. Q x" by (rule allI)
}
thus "(? y. P y) ⟶ (! x. Q x)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
¬(∀x. ¬(P x)) ⊢ ∃x. P x
------------------------------------------------------------------ *}
lemma ejercicio_16a: carmarria
assumes 1: "¬(∀x. ¬(P x))"
shows "∃x. P x"
proof -
{assume 2: "¬(? x. P x)"
{fix b
{assume 3: "P b"
have 4: "? x. P x" using 3 by (rule exI)
have 5: False using 2 4 by (rule notE)
}
hence 6: "¬(P b)" by (rule notI)
}
hence 7: "! x. ¬(P x)" by (rule allI)
have 8: False using 1 7 by (rule notE)
}
hence 9: "¬¬(? x. P x)" by (rule notI)
show "? x. P x" using 9 by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
∀x. ¬(P x) ⊢ ¬(∃x. P x)
------------------------------------------------------------------ *}
lemma ejercicio_17a: carmarria
assumes 1: "∀x. ¬(P x)"
shows "¬(∃x. P x)"
proof -
{assume 2: "? x. P x"
obtain a where 3: "P a" using 2 by (rule exE)
have 4: "¬(P a)" using 1 by (rule allE)
have 5: False using 4 3 by (rule notE)
}
thus "¬(? x. P x)" by (rule notI)
qed
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
∃x. P x ⊢ ¬(∀x. ¬(P x))
------------------------------------------------------------------ *}
lemma ejercicio_18a: carmarria
assumes 1: "∃x. P x"
shows "¬(∀x. ¬(P x))"
proof-
{assume 2: "! x. ¬(P x)"
obtain a where 3: "P a" using 1 by (rule exE)
have 4: "¬(P a)" using 2 by (rule allE)
have 5: False using 4 3 by (rule notE)
}
thus "¬(! x. ¬(P x))" by (rule notI)
qed
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
P a ⟶ (∀x. Q x) ⊢ ∀x. P a ⟶ Q x
------------------------------------------------------------------ *}
lemma ejercicio_19a: carmarria
assumes 1: "P a ⟶ (∀x. Q x)"
shows "∀x. P a ⟶ Q x"
proof -
{fix b
{assume 2: "P a"
have 3: "! x. Q x" using 1 2 by (rule mp)
have 4: "Q b" using 3 by (rule allE)
}
hence 5: "P a ⟶ Q b" by (rule impI)
}
thus "! x. P a ⟶ Q x" by (rule allI)
qed
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
{∀x y z. R x y ∧ R y z ⟶ R x z,
∀x. ¬(R x x)}
⊢ ∀x y. R x y ⟶ ¬(R y x)
------------------------------------------------------------------ *}
lemma ejercicio_20a: carmarria
assumes 1: "∀x y z. R x y ∧ R y z ⟶ R x z" and
2: "∀x. ¬(R x x)"
shows "∀x y. R x y ⟶ ¬(R y x)"
proof -
{fix a
{fix b
{assume 3: "R a b"
have 4: "! y z. R a y & R y z ⟶ R a z" using 1 by (rule allE)
have 5: "! z. R a b & R b z ⟶ R a z" using 4 by (rule allE)
have 6: "R a b & R b a ⟶ R a a" using 5 by (rule allE)
have 7: "¬(R a a)" using 2 by (rule allE)
have 8: "¬(R a b & R b a)" using 6 7 by (rule mt)
{assume 9: "R b a"
have 10: "R a b & R b a" using 3 9 by (rule conjI)
have 11: False using 8 10 by (rule notE)
}
hence 12: "¬(R b a)" by (rule notI)
}
hence 13: "R a b ⟶ ¬(R b a)" by (rule impI)
}
hence 14: "! y. R a y ⟶ ¬(R y a)" by (rule allI)
}
thus "! x y. R x y ⟶ ¬(R y x)" by (rule allI)
qed
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
{∀x. P x ∨ Q x, ∃x. ¬(Q x), ∀x. R x ⟶ ¬(P x)} ⊢ ∃x. ¬(R x)
------------------------------------------------------------------ *}
lemma ejercicio_21a: carmarria
assumes 1: "∀x. P x ∨ Q x" and
2: "∃x. ¬(Q x)" and
3: "∀x. R x ⟶ ¬(P x)"
shows "∃x. ¬(R x)"
proof -
obtain a where 4: "¬(Q a)" using 2 by (rule exE)
have 5: "P a | Q a" using 1 by (rule allE)
moreover {assume 6: "P a"
have 7: "¬¬(P a)" using 6 by (rule notnotI)
have 8: "R a ⟶ ¬(P a)" using 3 by (rule allE)
have 9: "¬(R a)" using 8 7 by (rule mt)
have 10: "? x. ¬(R x)" using 9 by (rule exI)
}
moreover {assume 10: "Q a"
have 11: False using 4 10 by (rule notE)
have 12: "? x. ¬(R x)" using 11 by (rule FalseE)
}
ultimately show "? x. ¬(R x)" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
{∀x. P x ⟶ Q x ∨ R x, ¬(∃x. P x ∧ R x)} ⊢ ∀x. P x ⟶ Q x
------------------------------------------------------------------ *}
lemma ejercicio_22a: carmarria
assumes 1: "∀x. P x ⟶ Q x ∨ R x" and
2: "¬(∃x. P x ∧ R x)"
shows "∀x. P x ⟶ Q x"
proof -
{fix a
{assume 3: "P a"
have 4: "P a ⟶ Q a | R a" using 1 by (rule allE)
have 5: "Q a | R a" using 4 3 by (rule mp)
moreover {assume 6: "Q a"
}
moreover {assume 7: "R a"
have 8: "P a & R a" using 3 7 by (rule conjI)
have 9: "? x. P x & R x" using 8 by (rule exI)
have 10: False using 2 9 by (rule notE)
have 11: "Q a" using 10 by (rule FalseE)
}
ultimately have 12: "Q a" by (rule disjE)
}
hence 13: "P a ⟶ Q a" by (rule impI)
}
thus "! x. P x ⟶ Q x" by (rule allI)
qed
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
∃x y. R x y ∨ R y x ⊢ ∃x y. R x y
------------------------------------------------------------------ *}
lemma ejercicio_23a: carmarria
assumes 1: "∃x y. R x y ∨ R y x"
shows "∃x y. R x y"
proof -
obtain a where 2: "? y. R a y | R y a" using 1 by (rule exE)
obtain b where 3: "R a b | R b a" using 2 by (rule exE)
moreover {assume 4: "R a b"
have 5: "? y. R a y" using 4 by (rule exI)
have 6: "? x y. R x y" using 5 by (rule exI)
}
moreover {assume 7: "R b a"
have 8: "? y. R b y" using 7 by (rule exI)
have 9: "? x y. R x y" using 8 by (rule exI)
}
ultimately show "? x y. R x y" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
(∃x. ∀y. P x y) ⟶ (∀y. ∃x. P x y)
------------------------------------------------------------------ *}
lemma ejercicio_24a: carmarria
"(∃x. ∀y. P x y) ⟶ (∀y. ∃x. P x y)"
proof -
{assume 1: "? x. ! y. P x y"
{fix b
obtain a where 2: "! y. P a y" using 1 by (rule exE)
have 3: "P a b" using 2 by (rule allE)
have 4: "? x. P x b" using 3 by (rule exI)
}
hence 5: "! y. ? x. P x y" by (rule allI)
}
thus "(? x. ! y. P x y) ⟶ (! y. ? x. P x y)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
(∀x. P x ⟶ Q) ⟷ ((∃x. P x) ⟶ Q)
------------------------------------------------------------------ *}
lemma ejercicio_25a: carmarria
"(∀x. P x ⟶ Q) ⟷ ((∃x. P x) ⟶ Q)"
proof (rule iffI)
{assume 1: "! x. P x ⟶ Q"
{assume 2: "? x. P x"
obtain a where 3: "P a" using 2 by (rule exE)
have 4: "P a ⟶ Q" using 1 by (rule allE)
have 5: Q using 4 3 by (rule mp)
}
thus 6: "(? x. P x) ⟶ Q" by (rule impI)
}
next
{assume 7: "(? x. P x) ⟶ Q"
{fix a
{assume 8: "P a"
have 9: "? x. P x" using 8 by (rule exI)
have 10: Q using 7 9 by (rule mp)
}
hence 11: "P a ⟶ Q" by (rule impI)
}
thus 12: "! x. P x ⟶ Q" by (rule allI)
}
qed
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
((∀x. P x) ∧ (∀x. Q x)) ⟷ (∀x. P x ∧ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_26a: carmarria
"((∀x. P x) ∧ (∀x. Q x)) ⟷ (∀x. P x ∧ Q x)"
proof (rule iffI)
{assume 1: "((! x. P x) ∧ (! x. Q x))"
have 2: "! x. P x" using 1 by (rule conjunct1)
have 3: "! x. Q x" using 1 by (rule conjunct2)
{fix a
have 4: "P a" using 2 by (rule allE)
have 5: "Q a" using 3 by (rule allE)
have 6: "P a & Q a" using 4 5 by (rule conjI)
}
thus 7: "! x. P x & Q x" by (rule allI)
}
next
{assume 8: "! x. P x & Q x"
{fix a
have 9: "P a & Q a" using 8 by (rule allE)
have 10: "P a" using 9 by (rule conjunct1)
}
hence 11: "! x. P x" by (rule allI)
{fix a
have 12: "P a & Q a" using 8 by (rule allE)
have 13: "Q a" using 12 by (rule conjunct2)
}
hence 14: "! x. Q x" by (rule allI)
show "(! x. P x) & (! x. Q x)" using 11 14 by (rule conjI)
}
qed
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar o refutar
((∀x. P x) ∨ (∀x. Q x)) ⟷ (∀x. P x ∨ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_27a: carmarria
"((∀x. P x) ∨ (∀x. Q x)) ⟷ (∀x. P x ∨ Q x)"
proof (rule iffI)
{assume 1: "(! x. P x) | (! x. Q x)"
moreover {assume 2: "! x. P x"
{fix a
have 3: "P a" using 2 by (rule allE)
have 4: "P a | Q a" using 3 by (rule disjI1)
}
hence 5: "! x. P x | Q x" by (rule allI)
}
moreover {assume 6: "! x. Q x"
{fix a
have 7: "Q a" using 6 by (rule allE)
have 8:"P a | Q a" using 7 by (rule disjI2)
}
hence 9: "! x. P x | Q x" by (rule allI)
}
ultimately show "! x. P x | Q x" by (rule disjE)
}
next
{assume 10: "! x. P x | Q x"
oops
(* Si tomamos el universo {1,2}, P(x): x=1, Q(x): x=2. Tenemos que es verdad que
(∀x. x=1 ∨ x=2), pero no se cumple ni (∀x. x=1) ni (∀x. x=2), por lo tanto el bicondicional es falso *)
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar o refutar
((∃x. P x) ∨ (∃x. Q x)) ⟷ (∃x. P x ∨ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_28a: carmarria
"((∃x. P x) ∨ (∃x. Q x)) ⟷ (∃x. P x ∨ Q x)"
proof (rule iffI)
{assume 1:"(? x. P x) | (? x. Q x)"
moreover {assume 2: "? x. P x"
obtain a where 3: "P a" using 2 by (rule exE)
have 4: "P a | Q a" using 3 by (rule disjI1)
have 5: "? x. P x | Q x" using 4 by (rule exI)
}
moreover {assume 6: "? x. Q x"
obtain a where 7: "Q a" using 6 by (rule exE)
have 8: "P a | Q a" using 7 by (rule disjI2)
have 9: "? x. P x | Q x" using 8 by (rule exI)
}
ultimately show "? x. P x | Q x" by (rule disjE)
}
next
{assume 10: "? x. P x | Q x"
obtain a where 11: "P a | Q a" using 10 by (rule exE)
moreover {assume 12: "P a"
have 13: "? x. P x" using 12 by (rule exI)
have 14: "(? x. P x) | (? x. Q x)" using 13 by (rule disjI1)
}
moreover {assume 15: "Q a"
have 16: "? x. Q x" using 15 by (rule exI)
have 17: "(? x. P x) | (? x. Q x)" using 16 by (rule disjI2)
}
ultimately show "(? x. P x) | (? x. Q x)" by (rule disjE)
}
qed
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar o refutar
(∀x. ∃y. P x y) ⟶ (∃y. ∀x. P x y)
------------------------------------------------------------------ *}
lemma ejercicio_29: carmarria
"(∀x. ∃y. P x y) ⟶ (∃y. ∀x. P x y)"
oops
(* Si tomamos el universo {1,2} y P(x,y): x=y, entonces tenemos que (∀x. ∃y. x=y) pero no se cumple
que (∃y. ∀x. x=y) *)
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar o refutar
(¬(∀x. P x)) ⟷ (∃x. ¬P x)
------------------------------------------------------------------ *}
lemma ejercicio_30a: carmarria
"(¬(∀x. P x)) ⟷ (∃x. ¬P x)"
proof (rule iffI)
{assume 1: "¬(! x. P x)"
{assume 2: "¬(? x. ¬(P x))"
{fix a
{assume 3: "¬P a"
have 4: "? x. ¬P x" using 3 by (rule exI)
have 5: False using 2 4 by (rule notE)
}
hence 6: "¬(¬P a)" by (rule notI)
have 7: "P a" using 6 by (rule notnotD)
}
hence 8: "! x. P x" by (rule allI)
have 9: False using 1 8 by (rule notE)
}
hence 10: "¬¬(? x. ¬(P x))" by (rule notI)
show "? x. ¬(P x)" using 10 by (rule notnotD)
}
next
{assume 11: "? x. ¬P x"
obtain a where 12: "¬P a" using 11 by (rule exE)
{assume 13: "! x. P x"
have 14: "P a" using 13 by (rule allE)
have 15: False using 12 14 by (rule notE)
}
thus "¬(! x. P x)" by (rule notI)
}
qed
section {* Ejercicios sobre igualdad *}
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar o refutar
P a ⟹ ∀x. x = a ⟶ P x
------------------------------------------------------------------ *}
lemma ejercicio_31a: carmarria
assumes 1: "P a"
shows "∀x. x = a ⟶ P x"
proof -
{fix b
{assume 2: "b = a"
have 3: "a = b" using 2 by (rule sym)
have 4: "P b" using 3 1 by (rule subst)
}
hence 5: "b = a ⟶ P b" by (rule impI)
}
thus "! x. x = a ⟶ P x" by (rule allI)
qed
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar o refutar
∃x y. R x y ∨ R y x; ¬(∃x. R x x)⟧ ⟹ ∃x y. x ≠ y
------------------------------------------------------------------ *}
lemma ejercicio_32a: carmarria
fixes R :: "'c ⇒ 'c ⇒ bool"
assumes 1: "∃x y. R x y ∨ R y x" and
2: "¬(∃x. R x x)"
shows "∃(x::'c) y. x ≠ y"
proof -
obtain a where 3: "? y. R a y | R y a" using 1 by (rule exE)
obtain b where 4: "R a b | R b a" using 3 by (rule exE)
{assume 5: "a = b"
have 6: "R a b | R b a" using 4 by this
moreover {assume 7: "R a b"
have 8: "R b b" using 5 7 by (rule subst)
}
moreover {assume 9: "R b a"
have 10: "R b b" using 5 9 by (rule subst)
}
ultimately have 11: "R b b" by (rule disjE)
have 12: "? x. R x x" using 11 by (rule exI)
have 13: False using 2 12 by (rule notE)
}
hence 14: " a ≠ b " by (rule notI)
have 15: "? y. a ≠ y" using 14 by (rule exI)
show "? x y. (x ≠ y)" (* using 15 by (rule exI) *)
oops
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar o refutar
{∀x. P a x x,
∀x y z. P x y z ⟶ P (f x) y (f z)}
⊢ P (f a) a (f a)
------------------------------------------------------------------ *}
lemma ejercicio_33a: carmarria
assumes 1: "∀x. P a x x" and
2: "∀x y z. P x y z ⟶ P (f x) y (f z)"
shows "P (f a) a (f a)"
proof -
have 3: "P a a a" using 1 by (rule allE)
have 4: "! y z. P a y z ⟶ P (f a) y (f z)" using 2 by (rule allE)
have 5: "! z. P a a z ⟶ P (f a) a (f z)" using 4 by (rule allE)
have 6: "P a a a ⟶ P (f a) a (f a)" using 5 by (rule allE)
show "P (f a) a (f a)" using 6 3 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar o refutar
{∀x. P a x x,
∀x y z. P x y z ⟶ P (f x) y (f z)⟧
⊢ ∃z. P (f a) z (f (f a))
------------------------------------------------------------------ *}
lemma ejercicio_34a: carmarria
assumes 1: "∀x. P a x x" and
2: "∀x y z. P x y z ⟶ P (f x) y (f z)"
shows "∃z. P (f a) z (f (f a))"
proof -
have 3: "P a (f a) (f a)" using 1 by (rule allE)
have 4: "! y z. P a y z ⟶ P (f a) y (f z)" using 2 by (rule allE)
have 5: "! z. P a (f a) z ⟶ P (f a) (f a) (f z)" using 4 by (rule allE)
have 6: "P a (f a) (f a) ⟶ P (f a) (f a) (f (f a))" using 5 by (rule allE)
have 7: "P (f a) (f a) (f (f a))" using 6 3 by (rule mp)
show 8: "? z. P (f a) z (f (f a))" using 7 by (rule exI)
qed
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar o refutar
{∀y. Q a y,
∀x y. Q x y ⟶ Q (s x) (s y)}
⊢ ∃z. Qa z ∧ Q z (s (s a))
------------------------------------------------------------------ *}
lemma ejercicio_35a: carmarria
assumes 1: "∀y. Q a y" and
2: "∀x y. Q x y ⟶ Q (s x) (s y)"
shows "∃z. Q a z ∧ Q z (s (s a))"
proof-
have 3: "! y. Q a y ⟶ Q (s a) (s y)" using 2 by (rule allE)
have 4: "Q a (s a) ⟶ Q (s a) (s (s a))" using 3 by (rule allE)
have 5: "Q a (s a)" using 1 by (rule allE)
have 6: "Q (s a) (s (s a))" using 4 5 by (rule mp)
have 7: "Q a (s a) & Q (s a) (s (s a))" using 5 6 by (rule conjI)
show "? z. Q a z & Q z (s (s a))" using 7 by (rule exI)
qed
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar o refutar
{x = f x, odd (f x)} ⊢ odd x
------------------------------------------------------------------ *}
lemma ejercicio_36a: carmarria
assumes 1: "x = f x" and
2: "odd (f x)"
shows "odd x"
proof -
have 3: "f x = x" using 1 by (rule sym)
show "odd x" using 3 2 by (rule subst)
qed
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar o refutar
{x = f x, triple (f x) (f x) x} ⊢ triple x x x
------------------------------------------------------------------ *}
lemma ejercicio_37a: carmarria
assumes 1: "x = f x" and
2: "triple (f x) (f x) x"
shows "triple x x x"
proof -
have 3: "f x = x" using 1 by (rule sym)
show 4: "triple x x x" using 3 2 by (rule subst)
qed
end