Diferencia entre revisiones de «Relación 4»
De Lógica matemática y fundamentos (2017-18)
(No se muestra una edición intermedia de otro usuario) | |||
Línea 1: | Línea 1: | ||
− | <source lang = " | + | <source lang = "isabelle"> |
chapter {* R4: Deducción natural proposicional *} | chapter {* R4: Deducción natural proposicional *} | ||
Línea 60: | Línea 60: | ||
qed | qed | ||
− | lemma ej_1: joslopjim4 | + | lemma ej_1: joslopjim4 marcabcar1 |
assumes "p --> q" | assumes "p --> q" | ||
"p" | "p" | ||
Línea 84: | Línea 84: | ||
qed | qed | ||
− | lemma ej_2: joslopjim4 | + | lemma ej_2: joslopjim4 marcabcar1 |
assumes "p ⟶ q" | assumes "p ⟶ q" | ||
"q ⟶ r" | "q ⟶ r" | ||
Línea 112: | Línea 112: | ||
qed | qed | ||
− | lemma ej_3: joslopjim4 | + | lemma ej_3: joslopjim4 marcabcar1 |
assumes "p ⟶ (q ⟶ r)" | assumes "p ⟶ (q ⟶ r)" | ||
"p ⟶ q" | "p ⟶ q" | ||
Línea 174: | Línea 174: | ||
qed | qed | ||
− | lemma ej_4: joslopjim4 | + | lemma ej_4: joslopjim4 marcabcar1 |
assumes "p ⟶ q" | assumes "p ⟶ q" | ||
"q ⟶ r" | "q ⟶ r" | ||
Línea 246: | Línea 246: | ||
qed | qed | ||
− | lemma ej_5: joslopjim4 | + | lemma ej_5: joslopjim4 marcabcar1 |
assumes "p ⟶ (q ⟶ r)" | assumes "p ⟶ (q ⟶ r)" | ||
shows "q ⟶ (p ⟶ r)" | shows "q ⟶ (p ⟶ r)" | ||
Línea 309: | Línea 309: | ||
qed | qed | ||
− | lemma ej_6: joslopjim4 | + | lemma ej_6: joslopjim4 marcabcar1 |
assumes "p ⟶ (q ⟶ r)" | assumes "p ⟶ (q ⟶ r)" | ||
shows "(p ⟶ q) ⟶ (p ⟶ r)" | shows "(p ⟶ q) ⟶ (p ⟶ r)" | ||
Línea 360: | Línea 360: | ||
qed | qed | ||
− | lemma ej_7: joslopjim4 | + | lemma ej_7: joslopjim4 marcabcar1 |
assumes "p" | assumes "p" | ||
shows "q ⟶ p" | shows "q ⟶ p" | ||
Línea 397: | Línea 397: | ||
qed | qed | ||
− | lemma ej_8: joslopjim4 | + | lemma ej_8: joslopjim4 marcabcar1 |
shows "p⟶(q⟶p)" | shows "p⟶(q⟶p)" | ||
proof (rule impI) | proof (rule impI) | ||
Línea 440: | Línea 440: | ||
qed | qed | ||
− | lemma ej_9: joslopjim4 | + | lemma ej_9: joslopjim4 marcabcar1 |
assumes "p ⟶ q" | assumes "p ⟶ q" | ||
shows "(q ⟶ r) ⟶ (p ⟶ r)" | shows "(q ⟶ r) ⟶ (p ⟶ r)" | ||
Línea 495: | Línea 495: | ||
qed | qed | ||
− | lemma ej_10: joslopjim4 | + | lemma ej_10: joslopjim4 marcabcar1 |
assumes "p ⟶ (q ⟶ (r ⟶ s))" | assumes "p ⟶ (q ⟶ (r ⟶ s))" | ||
shows "r ⟶ (q ⟶ (p ⟶ s))" | shows "r ⟶ (q ⟶ (p ⟶ s))" | ||
Línea 552: | Línea 552: | ||
qed | qed | ||
− | lemma ej_11: joslopjim4 | + | lemma ej_11: joslopjim4 marcabcar1 |
shows "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | shows "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | ||
proof (rule impI) | proof (rule impI) | ||
Línea 591: | Línea 591: | ||
qed | qed | ||
− | lemma ej_12: joslopjim4 | + | lemma ej_12: joslopjim4 marcabcar1 |
assumes "(p ⟶ q) ⟶ r" | assumes "(p ⟶ q) ⟶ r" | ||
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
Línea 624: | Línea 624: | ||
qed | qed | ||
− | lemma ej_13: joslopjim4 | + | lemma ej_13: joslopjim4 marcabcar1 |
assumes "p" | assumes "p" | ||
"q" | "q" | ||
Línea 645: | Línea 645: | ||
qed | qed | ||
− | lemma ej_14: joslopjim4 | + | lemma ej_14: joslopjim4 marcabcar1 |
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "p" | shows "p" | ||
Línea 665: | Línea 665: | ||
qed | qed | ||
− | lemma ej_15: joslopjim4 | + | lemma ej_15: joslopjim4 marcabcar1 |
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "q" | shows "q" | ||
Línea 690: | Línea 690: | ||
qed | qed | ||
− | lemma ej_16: joslopjim4 | + | lemma ej_16: joslopjim4 marcabcar1 |
assumes "p ∧ (q ∧ r)" | assumes "p ∧ (q ∧ r)" | ||
shows "(p ∧ q) ∧ r" | shows "(p ∧ q) ∧ r" | ||
Línea 736: | Línea 736: | ||
− | lemma ej_17: joslopjim4 | + | lemma ej_17: joslopjim4 marcabcar1 |
assumes "(p ∧ q) ∧ r" | assumes "(p ∧ q) ∧ r" | ||
shows "p ∧ (q ∧ r)" | shows "p ∧ (q ∧ r)" | ||
Línea 771: | Línea 771: | ||
qed | qed | ||
− | lemma ej_18: joslopjim4 | + | lemma ej_18: joslopjim4 marcabcar1 |
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
Línea 810: | Línea 810: | ||
qed | qed | ||
− | lemma ej_19: joslopjim4 | + | lemma ej_19: joslopjim4 marcabcar1 |
assumes "(p ⟶ q) ∧ (p ⟶ r)" | assumes "(p ⟶ q) ∧ (p ⟶ r)" | ||
shows "p ⟶ q ∧ r" | shows "p ⟶ q ∧ r" | ||
Línea 844: | Línea 844: | ||
qed | qed | ||
− | lemma ej_20: joslopjim4 | + | lemma ej_20: joslopjim4 marcabcar1 |
assumes "p ⟶ q ∧ r" | assumes "p ⟶ q ∧ r" | ||
shows "(p ⟶ q) ∧ (p ⟶ r)" | shows "(p ⟶ q) ∧ (p ⟶ r)" | ||
Línea 892: | Línea 892: | ||
qed | qed | ||
− | lemma ej_21: joslopjim4 | + | lemma ej_21: joslopjim4 marcabcar1 |
assumes "p ⟶ (q ⟶ r)" | assumes "p ⟶ (q ⟶ r)" | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
Línea 935: | Línea 935: | ||
qed | qed | ||
− | lemma ej_22: joslopjim4 | + | lemma ej_22: joslopjim4 marcabcar1 |
assumes "p ∧ q ⟶ r" | assumes "p ∧ q ⟶ r" | ||
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
Línea 978: | Línea 978: | ||
qed | qed | ||
− | lemma ej_23: joslopjim4 | + | lemma ej_23: joslopjim4 marcabcar1 |
assumes "(p ⟶ q) ⟶ r" | assumes "(p ⟶ q) ⟶ r" | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
Línea 1020: | Línea 1020: | ||
qed | qed | ||
− | lemma ej_24: joslopjim4 | + | lemma ej_24: joslopjim4 marcabcar1 |
assumes "p ∧ (q ⟶ r)" | assumes "p ∧ (q ⟶ r)" | ||
shows "(p ⟶ q) ⟶ r" | shows "(p ⟶ q) ⟶ r" | ||
Línea 1045: | Línea 1045: | ||
qed | qed | ||
− | lemma ej_25: joslopjim4 | + | lemma ej_25: joslopjim4 marcabcar1 |
assumes "p" | assumes "p" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
Línea 1064: | Línea 1064: | ||
qed | qed | ||
− | lemma ej_26: joslopjim4 | + | lemma ej_26: joslopjim4 marcabcar1 |
assumes "q" | assumes "q" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
Línea 1092: | Línea 1092: | ||
qed | qed | ||
− | lemma ej_27: joslopjim4 | + | lemma ej_27: joslopjim4 marcabcar1 |
assumes "p ∨ q" | assumes "p ∨ q" | ||
shows "q ∨ p" | shows "q ∨ p" | ||
Línea 1128: | Línea 1128: | ||
qed | qed | ||
− | lemma ej_28: joslopjim4 | + | lemma ej_28: joslopjim4 marcabcar1 |
assumes "q ⟶ r" | assumes "q ⟶ r" | ||
shows "p ∨ q ⟶ p ∨ r" | shows "p ∨ q ⟶ p ∨ r" | ||
Línea 1178: | Línea 1178: | ||
show False using `¬p` `p` by (rule notE) | show False using `¬p` `p` by (rule notE) | ||
qed | qed | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_29: marcabcar1 | ||
+ | assumes "p ∨ p" | ||
+ | shows "p" | ||
+ | using `p ∨ p` | ||
+ | proof (rule disjE) | ||
+ | {assume "p" | ||
+ | show "p" using `p` by this} | ||
+ | next | ||
+ | {assume "p" | ||
+ | show "p" using `p` by this} | ||
qed | qed | ||
Línea 1192: | Línea 1204: | ||
qed | qed | ||
− | lemma ej_30: joslopjim4 | + | lemma ej_30: joslopjim4 marcabcar1 |
assumes "p" | assumes "p" | ||
shows "p ∨ p" | shows "p ∨ p" | ||
Línea 1226: | Línea 1238: | ||
qed | qed | ||
− | lemma ej_31: joslopjim4 | + | lemma ej_31: joslopjim4 marcabcar1 |
assumes "p ∨ (q ∨ r)" | assumes "p ∨ (q ∨ r)" | ||
shows "(p ∨ q) ∨ r" | shows "(p ∨ q) ∨ r" | ||
Línea 1275: | Línea 1287: | ||
qed | qed | ||
− | lemma ej_32: joslopjim4 | + | lemma ej_32: joslopjim4 marcabcar1 |
assumes "(p ∨ q) ∨ r" | assumes "(p ∨ q) ∨ r" | ||
shows "p ∨ (q ∨ r)" | shows "p ∨ (q ∨ r)" | ||
Línea 1319: | Línea 1331: | ||
qed | qed | ||
− | lemma ej_33: joslopjim4 | + | lemma ej_33: joslopjim4 marcabcar1 |
assumes "p ∧ (q ∨ r)" | assumes "p ∧ (q ∨ r)" | ||
shows "(p ∧ q) ∨ (p ∧ r)" | shows "(p ∧ q) ∨ (p ∧ r)" | ||
Línea 1363: | Línea 1375: | ||
qed | qed | ||
− | lemma ej_34: joslopjim4 | + | lemma ej_34: joslopjim4 marcabcar1 |
assumes "(p ∧ q) ∨ (p ∧ r)" | assumes "(p ∧ q) ∨ (p ∧ r)" | ||
shows "p ∧ (q ∨ r)" | shows "p ∧ (q ∨ r)" | ||
Línea 1406: | Línea 1418: | ||
qed | qed | ||
− | lemma ej_35: joslopjim4 | + | lemma ej_35: joslopjim4 marcabcar1 |
assumes "p ∨ (q ∧ r)" | assumes "p ∨ (q ∧ r)" | ||
shows "(p ∨ q) ∧ (p ∨ r)" | shows "(p ∨ q) ∧ (p ∨ r)" | ||
Línea 1451: | Línea 1463: | ||
qed | qed | ||
− | lemma ej_36: joslopjim4 | + | lemma ej_36: joslopjim4 marcabcar1 |
assumes "(p ∨ q) ∧ (p ∨ r)" | assumes "(p ∨ q) ∧ (p ∨ r)" | ||
shows "p ∨ (q ∧ r)" | shows "p ∨ (q ∧ r)" | ||
Línea 1500: | Línea 1512: | ||
qed | qed | ||
− | lemma ej_37: joslopjim4 | + | lemma ej_37: joslopjim4 marcabcar1 |
assumes "(p ⟶ r) ∧ (q ⟶ r)" | assumes "(p ⟶ r) ∧ (q ⟶ r)" | ||
shows "p ∨ q ⟶ r" | shows "p ∨ q ⟶ r" | ||
Línea 1540: | Línea 1552: | ||
qed | qed | ||
− | lemma ej_38: joslopjim4 | + | lemma ej_38: joslopjim4 marcabcar1 |
assumes "p ∨ q ⟶ r" | assumes "p ∨ q ⟶ r" | ||
shows "(p ⟶ r) ∧ (q ⟶ r)" | shows "(p ⟶ r) ∧ (q ⟶ r)" | ||
Línea 1573: | Línea 1585: | ||
qed | qed | ||
− | lemma ej_39: joslopjim4 | + | lemma ej_39: joslopjim4 marcabcar1 |
assumes "p" | assumes "p" | ||
shows "¬¬p" | shows "¬¬p" | ||
Línea 1597: | Línea 1609: | ||
qed | qed | ||
− | lemma ej_40: joslopjim4 | + | lemma ej_40: joslopjim4 marcabcar1 |
assumes "¬p" | assumes "¬p" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
Línea 1620: | Línea 1632: | ||
qed | qed | ||
− | lemma ej_41: joslopjim4 | + | lemma ej_41: joslopjim4 marcabcar1 |
assumes "p ⟶ q" | assumes "p ⟶ q" | ||
shows "¬q ⟶ ¬p" | shows "¬q ⟶ ¬p" | ||
Línea 1648: | Línea 1660: | ||
qed | qed | ||
− | lemma ej_42: joslopjim4 | + | lemma ej_42: joslopjim4 marcabcar1 |
assumes "p∨q" | assumes "p∨q" | ||
"¬q" | "¬q" | ||
Línea 1681: | Línea 1693: | ||
qed | qed | ||
− | lemma ej_43: joslopjim4 | + | lemma ej_43: joslopjim4 marcabcar1 |
assumes "p ∨ q" | assumes "p ∨ q" | ||
"¬p" | "¬p" | ||
Línea 1721: | Línea 1733: | ||
qed | qed | ||
− | lemma ej_44: joslopjim4 | + | lemma ej_44: joslopjim4 marcabcar1 |
assumes "p∨q" | assumes "p∨q" | ||
shows "¬(¬p∧¬q)" | shows "¬(¬p∧¬q)" | ||
Línea 1762: | Línea 1774: | ||
qed | qed | ||
− | lemma ej_45: joslopjim4 | + | lemma ej_45: joslopjim4 marcabcar1 |
assumes "p∧q" | assumes "p∧q" | ||
shows "¬(¬p∨¬q)" | shows "¬(¬p∨¬q)" | ||
Línea 1820: | Línea 1832: | ||
qed | qed | ||
qed | qed | ||
+ | |||
+ | lemma ejercicio_46: marcabcar1 | ||
+ | assumes "¬(p ∨ q)" | ||
+ | shows "¬p ∧ ¬q" | ||
+ | proof (rule conjI) | ||
+ | show "¬p" | ||
+ | proof (rule disjE) | ||
+ | show "p∨¬p" by (rule excluded_middle) | ||
+ | {assume "p" | ||
+ | have "p ∨ q" using `p` by (rule disjI1) | ||
+ | show "¬p" using `¬(p ∨ q)` and `p ∨ q` by (rule notE)} | ||
+ | next | ||
+ | {assume "¬p" | ||
+ | show "¬p" using `¬p` by this} | ||
+ | qed | ||
+ | show "¬q" | ||
+ | proof (rule disjE) | ||
+ | show "q∨¬q" by (rule excluded_middle) | ||
+ | {assume "q" | ||
+ | have "p ∨ q" using `q` by (rule disjI2) | ||
+ | show "¬q" using `¬(p ∨ q)` and `p ∨ q` by (rule notE)} | ||
+ | next | ||
+ | {assume "¬q" | ||
+ | show "¬q" using `¬q` by this} | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1844: | Línea 1882: | ||
qed | qed | ||
− | lemma ej_47: joslopjim4 | + | lemma ej_47: joslopjim4 marcabcar1 |
assumes "¬p∧¬q" | assumes "¬p∧¬q" | ||
shows "¬(p∨q)" | shows "¬(p∨q)" | ||
Línea 1888: | Línea 1926: | ||
qed | qed | ||
− | lemma ej_48: joslopjim4 | + | lemma ej_48: joslopjim4 marcabcar1 |
assumes "¬p ∨ ¬q" | assumes "¬p ∨ ¬q" | ||
shows "¬(p ∧ q)" | shows "¬(p ∧ q)" | ||
Línea 1924: | Línea 1962: | ||
qed | qed | ||
− | lemma ej_49: joslopjim4 | + | lemma ej_49: joslopjim4 marcacar1 |
shows "¬(p∧¬p)" | shows "¬(p∧¬p)" | ||
proof | proof | ||
Línea 1948: | Línea 1986: | ||
qed | qed | ||
− | lemma ej_50: joslopjim4 | + | lemma ej_50: joslopjim4 marcabcar1 |
assumes "p∧¬p" | assumes "p∧¬p" | ||
shows "q" | shows "q" | ||
Línea 1963: | Línea 2001: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_51: carmarria joslopjim4 | + | lemma ejercicio_51: carmarria joslopjim4 marcabcar1 |
assumes "¬¬p" | assumes "¬¬p" | ||
shows "p" | shows "p" | ||
Línea 1990: | Línea 2028: | ||
show "p | ~p" using 8 by (rule notnotD) | show "p | ~p" using 8 by (rule notnotD) | ||
qed | qed | ||
− | + | ||
+ | lemma ejercicio_52: marcabcar1 | ||
+ | "p ∨ ¬p" | ||
+ | proof (rule ccontr) | ||
+ | {assume "¬(p ∨ ¬p)" | ||
+ | have "¬p" | ||
+ | proof (rule notI) | ||
+ | {assume "p" | ||
+ | have "p ∨ ¬p" using `p` by (rule disjI1) | ||
+ | show "False" using `¬(p ∨ ¬p)` and `(p ∨ ¬p)` by (rule notE)} | ||
+ | qed | ||
+ | have "p ∨ ¬p" using `¬p` by (rule disjI2) | ||
+ | show "False" using `¬(p ∨ ¬p)` and `p ∨ ¬p` by (rule notE)} | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 2032: | Línea 2083: | ||
thus "((p ⟶ q)⟶p)⟶p" by (rule impI) | thus "((p ⟶ q)⟶p)⟶p" by (rule impI) | ||
qed | qed | ||
+ | |||
+ | lemma ejercicio_53: marcabcar1 | ||
+ | "((p ⟶ q) ⟶ p) ⟶ p" | ||
+ | proof (rule impI) | ||
+ | assume "(p ⟶ q) ⟶ p" | ||
+ | show "p" | ||
+ | proof (rule disjE) | ||
+ | show "p ∨ ¬p" by (rule excluded_middle) | ||
+ | {assume "p" | ||
+ | show "p" using `p` by this} | ||
+ | next | ||
+ | {assume "¬p" | ||
+ | have "¬(p⟶q)" using `(p ⟶ q) ⟶ p` and `¬p` by (rule mt) | ||
+ | have "p⟶q" | ||
+ | proof (rule impI) | ||
+ | {assume "p" | ||
+ | show "q" using `¬p` and `p` by (rule notE)} | ||
+ | qed | ||
+ | show "p" using `¬(p⟶q)` and `p⟶q` by (rule notE)} | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 2059: | Línea 2131: | ||
thus "p ⟶q" by (rule impI) | thus "p ⟶q" by (rule impI) | ||
qed | qed | ||
+ | |||
+ | lemma ejercicio_54: marcabcar1 | ||
+ | assumes "¬q ⟶ ¬p" | ||
+ | shows "p ⟶ q" | ||
+ | proof (rule impI) | ||
+ | {assume "p" | ||
+ | have "q∨¬q" by (rule excluded_middle) | ||
+ | show "q" | ||
+ | proof (rule disjE) | ||
+ | show "q ∨ ¬q" using `q ∨ ¬q` by this | ||
+ | {assume "q" | ||
+ | show "q" using `q` by this} | ||
+ | next | ||
+ | {assume "¬q" | ||
+ | have "¬p" using `¬q ⟶ ¬p` and `¬q` by (rule mp) | ||
+ | show "q" using `¬p` and `p` by (rule notE)} | ||
+ | qed} | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 2115: | Línea 2205: | ||
show "p∨q" using `p` by (rule disjI1) | show "p∨q" using `p` by (rule disjI1) | ||
qed | qed | ||
+ | qed | ||
+ | |||
+ | |||
+ | lemma ejercicio_55:marcabcar1 | ||
+ | assumes "¬(¬p ∧ ¬q)" | ||
+ | shows "p ∨ q" | ||
+ | proof (rule disjE) | ||
+ | show "p ∨ ¬p" by (rule excluded_middle) | ||
+ | {assume "p" | ||
+ | show "p ∨ q" using `p` by (rule disjI1)} | ||
+ | next | ||
+ | {assume "¬p" | ||
+ | show "p ∨ q" | ||
+ | proof (rule disjE) | ||
+ | show "q ∨ ¬q" by (rule excluded_middle) | ||
+ | {assume "q" | ||
+ | show "p ∨ q" using `q` by (rule disjI2)} | ||
+ | next | ||
+ | {assume "¬q" | ||
+ | have "¬p ∧ ¬q" using `¬p` and `¬q` by (rule conjI) | ||
+ | show "p ∨ q" using `¬(¬p ∧ ¬q)` and `(¬p ∧ ¬q)` by (rule notE)} | ||
+ | qed} | ||
qed | qed | ||
Línea 2141: | Línea 2253: | ||
qed | qed | ||
− | lemma ej_56: joslopjim4 | + | lemma ej_56: joslopjim4 marcabcar1 |
assumes "¬(¬p ∨ ¬q)" | assumes "¬(¬p ∨ ¬q)" | ||
shows "p ∧ q" | shows "p ∧ q" | ||
Línea 2195: | Línea 2307: | ||
qed | qed | ||
− | lemma ej_57: joslopjim4 | + | lemma ej_57: joslopjim4 marcabcar1 |
assumes "¬(p ∧ q)" | assumes "¬(p ∧ q)" | ||
shows "¬p ∨ ¬q" | shows "¬p ∨ ¬q" | ||
Línea 2225: | Línea 2337: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ej_58: joslopjim4 | + | lemma ej_58: joslopjim4 marcabcar1 |
shows "(p ⟶ q) ∨ (q ⟶ p)" | shows "(p ⟶ q) ∨ (q ⟶ p)" | ||
proof - | proof - | ||
Línea 2258: | Línea 2370: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ej_59: joslopjim4 | + | lemma ej_59: joslopjim4 marcabcar1 |
assumes "p∧¬(q⟶r)" | assumes "p∧¬(q⟶r)" | ||
shows "(p∧q)∧¬r" | shows "(p∧q)∧¬r" |
Revisión actual del 20:47 14 jul 2018
chapter {* R4: Deducción natural proposicional *}
theory R4
imports Main
begin
text {*
---------------------------------------------------------------------
El objetivo de esta relación es demostrar cada uno de los ejercicios
usando sólo las reglas básicas de deducción natural de la lógica
proposicional (sin usar el método auto).
Las reglas básicas de la deducción natural son las siguientes:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· notnotI: P ⟹ ¬¬ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· mt: ⟦F ⟶ G; ¬G⟧ ⟹ ¬F
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
---------------------------------------------------------------------
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación. *}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
section {* Implicaciones *}
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
p ⟶ q, p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_1: josrodjim2 carmarria inmbenber marmedmar3
assumes 1: "p ⟶ q" and
2: "p"
shows "q"
proof -
show 1: "q" using 1 2 by (rule mp)
qed
lemma ej_1: joslopjim4 marcabcar1
assumes "p --> q"
"p"
shows "q"
proof -
show "q" using assms(1) assms(2) by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
p ⟶ q, q ⟶ r, p ⊢ r
------------------------------------------------------------------ *}
lemma ejercicio_2: josrodjim2 carmarria inmbenber marmedmar3
assumes 1: "p ⟶ q" and
2: "q ⟶ r" and
3: "p"
shows "r"
proof-
have 4: "q" using 1 3 by (rule mp)
show "r" using 2 4 by (rule mp)
qed
lemma ej_2: joslopjim4 marcabcar1
assumes "p ⟶ q"
"q ⟶ r"
"p"
shows "r"
proof -
have "q" using `p⟶q` `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
------------------------------------------------------------------ *}
lemma ejercicio_3: josrodjim2 carmarria inmbenber marmedmar3
assumes 1: "p ⟶ (q ⟶ r)" and
2: "p ⟶ q" and
3: "p"
shows "r"
proof-
have 4: "q" using 2 3 by (rule mp)
have 5: "(q ⟶ r)" using 1 3 by (rule mp)
show "r" using 5 4 by (rule mp)
qed
lemma ej_3: joslopjim4 marcabcar1
assumes "p ⟶ (q ⟶ r)"
"p ⟶ q"
"p"
shows "r"
proof -
have "q" using `p⟶q` `p` by (rule mp)
have "q⟶r" using `p ⟶ (q ⟶ r)` `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
p ⟶ q, q ⟶ r ⊢ p ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_4: josrodjim2
assumes 1: "p ⟶ q" and
2: "q ⟶ r"
shows "p ⟶ r"
proof-
{ assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
have 5: "r" using 2 4 by (rule mp)}
hence 6: "p ⟶ r" using 3 5 by (rule impI)
show "p⟶r" using 6 by this
oops
lemma ejercicio_4: carmarria
assumes 1: "p ⟶ q" and
2: "q ⟶ r"
shows "p ⟶ r"
proof -
{ assume 3: p
have 4: "q" using 1 3 by (rule mp)
have 5: "r" using 2 4 by (rule mp)
}
thus "p ⟶ r" by (rule impI)
qed
lemma ejercicio_4: inmbenber
assumes 1: "p ⟶ q" and
2: "q ⟶ r"
shows "p ⟶ r"
proof -
{ assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
have 5: "r" using 2 4 by (rule mp) }
thus "p ⟶ r" by (rule impI)
qed
lemma ejercicio_4:marmedmar3
assumes "p ⟶ q"
"q ⟶ r"
shows "p ⟶ r"
proof
assume "p"
with assms(1) have "q" by (rule mp)
with assms(2) show "r" by (rule mp)
qed
lemma ej_4: joslopjim4 marcabcar1
assumes "p ⟶ q"
"q ⟶ r"
shows "p ⟶ r"
proof (rule impI)
assume "p"
have "q" using assms(1) `p` by (rule mp)
show "r" using assms(2) `q` by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_5: josrodjim2 (NO DA ERROR, PERO SI ALERTA)
assumes "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof -
{ assume 2: "q"
{assume 3: "p"
have 4: "q ⟶r" using 1 3 by (rule mp)
have 5: "r" using 4 2 by (rule mp)}
hence 6: "p⟶r" using 3 5 by (rule impI)}
hence 7: "q ⟶ (p ⟶ r)" using 2 6 by (rule impI)
show "q ⟶ (p ⟶ r)" using 7 by this
oops
lemma ejercicio_5: carmarria
assumes 1: "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof -
{assume 2: q
{assume 3: p
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "r" using 4 2 by (rule mp)
}
hence " p ⟶ r" by (rule impI)
}
thus "q ⟶ (p ⟶ r)" by (rule impI)
qed
lemma ejercicio_5: inmbenber
assumes 1: "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof -
{assume 2: "q"
{assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "r" using 4 2 by (rule mp) }
hence " p ⟶ r" by (rule impI) }
thus "q ⟶ (p ⟶ r)" by (rule impI)
qed
lemma ejercicio_5: marmedmar3
assumes "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof
assume "q"
show "(p ⟶ r)"
proof
assume "p"
with assms(1) have "(q ⟶ r)" by (rule mp)
thus "r" using `q` by (rule mp)
qed
qed
lemma ej_5: joslopjim4 marcabcar1
assumes "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof (rule impI)
assume "q"
show "p⟶r"
proof (rule impI)
assume "p"
have "q⟶r" using `p ⟶ (q ⟶ r)` `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_6:josrodjim2
assumes 1: "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof-
{assume 2: "p⟶q"
{assume 3: "p"
have 4: "q⟶r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
have 6: "r" using 4 5 by (rule mp)}
hence 7: "p⟶r" using 3 6 by (rule impI)}
hence 8: "(p ⟶ q) ⟶ (p ⟶ r)" using 2 7 by (rule impI)
show "(p ⟶ q) ⟶ (p ⟶ r)" using 8 by this
oops
lemma ejercicio_6: carmarria, inmbenber
assumes 1: "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof -
{assume 2: "p ⟶ q"
{assume 3: "p"
have 4: "q" using 2 3 by (rule mp)
have 5: "q ⟶ r" using 1 3 by (rule mp)
have 6: "r" using 5 4 by (rule mp)
}
hence 7: "p ⟶ r" by (rule impI)
}
thus "(p ⟶ q) ⟶ (p ⟶ r)" by (rule impI)
qed
lemma ejercicio_6:marmedmar3
assumes 1: "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof
assume 2: "(p ⟶ q)"
show "(p ⟶ r)"
proof
assume 3: "p"
have 4: "q" using 2 3 by (rule mp)
have 5: "(q ⟶ r)" using 1 3 by (rule mp)
show "r" using 5 4 by (rule mp)
qed
qed
lemma ej_6: joslopjim4 marcabcar1
assumes "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof (rule impI)
assume "(p⟶q)"
show "p⟶r"
proof (rule impI)
assume "p"
have "q⟶r" using `p ⟶ (q ⟶ r)` `p` by (rule mp)
have "q" using `p⟶q` `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
p ⊢ q ⟶ p
------------------------------------------------------------------ *}
lemma ejercicio_7: (NO SE QUE ESTA MAL)
assumes "p"
shows "q ⟶ p"
proof -
{ assume 2: "q"
have 3: "p" using 1
}
hence 4: "q⟶p" using 2 3 by (rule impI)
show "q⟶p" using 4 by this
oops
lemma ejercicio_7: carmarria, inmbenber
assumes 1: "p"
shows "q ⟶ p"
proof -
{assume 2: "q"
have 3: "p" using 1 by this}
thus "q ⟶ p" by (rule impI)
qed
lemma ejercicio_7:marmedmar3
assumes "p"
shows "q ⟶ p"
proof
assume "q"
show "p" using assms(1) by this
qed
lemma ej_7: joslopjim4 marcabcar1
assumes "p"
shows "q ⟶ p"
proof (rule impI)
assume "q"
show "p" using assms by this
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
⊢ p ⟶ (q ⟶ p)
------------------------------------------------------------------ *}
lemma ejercicio_8: carmarria
"p ⟶ (q ⟶ p)"
proof -
{assume 1: p
{assume 2: q
have 3: p using 1 by this
}
hence 4: "q ⟶ p" by (rule impI)
}
thus "p ⟶ (q ⟶ p)" by (rule impI)
qed
lemma ejercicio_8: marmedmar3
"p ⟶ (q ⟶ p)"
proof
assume 1: "p"
show "(q ⟶ p)"
proof
assume 2: "q"
show "p" using 1 by this
qed
qed
lemma ej_8: joslopjim4 marcabcar1
shows "p⟶(q⟶p)"
proof (rule impI)
assume "p"
show "q⟶p"
proof (rule impI)
assume "q"
show "p" using `p` by this
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_9: carmarria
assumes 1: "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof -
{assume 2: "q ⟶ r"
{assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
have 5: "r" using 2 4 by (rule mp)
}
hence 6: "p ⟶ r" by (rule impI)
}
thus 7: "(q ⟶ r) ⟶ (p ⟶ r)" by (rule impI)
qed
lemma ejercicio_9: marmedmar3
assumes "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof
assume "(q ⟶ r)"
show "(p ⟶ r)"
proof
assume "p"
with `(p ⟶ q)` have "q" by (rule mp)
with `(q ⟶ r)` show "r" by (rule mp)
qed
qed
lemma ej_9: joslopjim4 marcabcar1
assumes "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof (rule impI)
assume "q⟶r"
show "p⟶r"
proof (rule impI)
assume "p"
have "q" using `p⟶q` `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s))
------------------------------------------------------------------ *}
lemma ejercicio_10: carmarria
assumes 1: "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof-
{assume 2: r
{assume 3: q
{assume 4: p
have 5: "q ⟶ (r ⟶ s)" using 1 4 by (rule mp)
have 6: "r ⟶ s" using 5 3 by (rule mp)
have 7: s using 6 2 by (rule mp)
}
hence 8: "p ⟶ s" by (rule impI)
}
hence 9: "q ⟶ (p ⟶ s)" by (rule impI)
}
thus "r ⟶ (q ⟶ (p ⟶ s))" by (rule impI)
qed
lemma ejercicio_10: marmedmar3
assumes 1: "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof
assume 2: "r"
show "(q ⟶ (p ⟶ s))"
proof
assume 3: "q"
show "(p ⟶ s)"
proof
assume 4: "p"
have 5: "(q ⟶ (r ⟶ s))" using 1 4 by (rule mp)
have 6: "(r ⟶ s)" using 5 3 by (rule mp)
show "s" using 6 2 by (rule mp)
qed
qed
qed
lemma ej_10: joslopjim4 marcabcar1
assumes "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof (rule impI)
assume "r"
show "q⟶(p⟶s)"
proof (rule impI)
assume "q"
show "p⟶s"
proof (rule impI)
assume "p"
have "q ⟶ (r ⟶ s)" using `p ⟶ (q ⟶ (r ⟶ s))` `p` by (rule mp)
have "r⟶s" using `q ⟶ (r ⟶ s)` `q` by (rule mp)
show "s" using `r-->s` `r` by (rule mp)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
------------------------------------------------------------------ *}
lemma ejercicio_11: carmarria
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof -
{assume 1: "p ⟶ (q ⟶ r)"
{assume 2: "p ⟶ q"
{assume 3: p
have 4: q using 2 3 by (rule mp)
have 5: "q ⟶ r" using 1 3 by (rule mp)
have 6: r using 5 4 by (rule mp)
}
hence 7: "p ⟶ r" by (rule impI)
}
hence 8: "(p ⟶ q) ⟶ (p ⟶ r)" by (rule impI)
}
thus "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" by (rule impI)
qed
lemma ejercicio_11: marmedmar3
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof
assume 1: "(p ⟶ (q ⟶ r))"
show "((p ⟶ q) ⟶ (p ⟶ r))"
proof
assume 2: "(p ⟶ q)"
show "(p ⟶ r)"
proof
assume 3: "p"
have 4: "(q ⟶ r)" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show "r" using 4 5 by (rule mp)
qed
qed
qed
lemma ej_11: joslopjim4 marcabcar1
shows "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof (rule impI)
assume "p⟶(q⟶r)"
show "(p⟶q)⟶(p⟶r)"
proof (rule impI)
assume "p⟶q"
show "p⟶r"
proof (rule impI)
assume "p"
have "q" using `p⟶q` `p` by (rule mp)
have "q⟶r" using `p⟶(q⟶r)` `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_12: carmarria
assumes 1: "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof -
{assume 2: p
{assume 3: q
{assume 4: p
have 5: q using 3 by this
}
hence 6: "p ⟶ q" by (rule impI)
have 7: r using 1 6 by (rule mp)
}
hence 8: "q ⟶ r" by (rule impI)
}
thus "p ⟶ (q ⟶ r)" by (rule impI)
qed
lemma ej_12: joslopjim4 marcabcar1
assumes "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof (rule impI)
assume "p"
show "q⟶r"
proof (rule impI)
assume "q"
have "p⟶q"
proof (rule impI)
assume "p"
show "q" using `q` by this
qed
show "r" using `(p ⟶ q) ⟶ r` `p⟶q` by (rule mp)
qed
qed
section {* Conjunciones *}
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
p, q ⊢ p ∧ q
------------------------------------------------------------------ *}
lemma ejercicio_13: carmarria marmedmar3
assumes "p"
"q"
shows "p ∧ q"
proof-
show "p \<and> q" using assms(1) assms(2) by (rule conjI)
qed
lemma ej_13: joslopjim4 marcabcar1
assumes "p"
"q"
shows "p ∧ q"
proof-
show "p∧q" using `p` `q` by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
p ∧ q ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_14: carmarria marmedmar3
assumes "p ∧ q"
shows "p"
proof -
show "p" using assms by (rule conjunct1)
qed
lemma ej_14: joslopjim4 marcabcar1
assumes "p ∧ q"
shows "p"
proof -
show "p" using assms by (rule conjunct1)
qed
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
p ∧ q ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_15: carmarria marmedmar3
assumes "p ∧ q"
shows "q"
proof -
show q using assms(1) by (rule conjunct2)
qed
lemma ej_15: joslopjim4 marcabcar1
assumes "p ∧ q"
shows "q"
proof-
show "q" using assms by (rule conjunct2)
qed
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r
------------------------------------------------------------------ *}
lemma ejercicio_16: carmarria marmedmar3
assumes 1: "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
proof -
have 2: "q \<and> r" using 1 by (rule conjunct2)
have 3: p using 1 by (rule conjunct1)
have 4: q using 2 by (rule conjunct1)
have 5: r using 2 by (rule conjunct2)
have 6: "p \<and> q" using 3 4 by (rule conjI)
show "(p \<and> q) \<and> r" using 6 5 by (rule conjI)
qed
lemma ej_16: joslopjim4 marcabcar1
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
proof-
have "p" using assms by (rule conjunct1)
have "q∧r" using assms by (rule conjunct2)
have "q" using `q∧r` by (rule conjunct1)
have "r" using `q∧r` by (rule conjunct2)
have "p∧q" using `p` `q` by (rule conjI)
show "(p∧q)∧r" using `p∧q` `r` by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
(p ∧ q) ∧ r ⊢ p ∧ (q ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_17:
assumes "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof (rule conjI)
have "p ∧ q" using assms ..
thus "p" ..
next
show "q ∧ r"
proof (rule conjI)
have "p ∧ q" using assms ..
thus "q" ..
next
show "r" using assms ..
qed
qed
lemma ejercicio_17: carmarria marmedmar3
assumes 1:"(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof-
have 2:"p \<and> q" using 1 by (rule conjunct1)
have 3: r using 1 by (rule conjunct2)
have 4: p using 2 by (rule conjunct1)
have 5: q using 2 by (rule conjunct2)
have 6: "q \<and> r" using 5 3 by (rule conjI)
show "p \<and> (q \<and> r)" using 4 6 by (rule conjI)
qed
lemma ej_17: joslopjim4 marcabcar1
assumes "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof-
have "p∧q" using assms by (rule conjunct1)
have "r" using assms by (rule conjunct2)
have "p" using `p∧q` by (rule conjunct1)
have "q" using `p∧q` by (rule conjunct2)
have "q∧r" using `q` `r` by (rule conjI)
show "p∧(q∧r)" using `p` `q∧r` by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
p ∧ q ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_18: carmarria
assumes "p ∧ q"
shows "p ⟶ q"
proof -
{assume p
have q using assms(1) by (rule conjunct2)
}
thus "p ⟶ q" by (rule impI)
qed
lemma ejercicio_18: marmedmar3
assumes "p ∧ q"
shows "p ⟶ q"
proof
assume "p"
show "q" using assms by (rule conjunct2)
qed
lemma ej_18: joslopjim4 marcabcar1
assumes "p ∧ q"
shows "p ⟶ q"
proof (rule impI)
assume "p"
show "q" using assms by (rule conjunct2)
qed
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r
------------------------------------------------------------------ *}
lemma ejercicio_19: carmarria
assumes 1: "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof -
{assume 2: p
have 3: "p ⟶ q" using 1 by (rule conjunct1)
have 4: "p ⟶ r" using 1 by (rule conjunct2)
have 5: q using 3 2 by (rule mp)
have 6: r using 4 2 by (rule mp)
have 7: "q \<and> r" using 5 6 by (rule conjI)
}
thus "p ⟶ q \<and> r" by (rule impI)
qed
lemma ejercicio_19: marmedmar3
assumes 1: "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof
have 2: "(p ⟶ q)" using assms by (rule conjunct1)
have 3: "(p ⟶ r)" using assms by (rule conjunct2)
assume 4: "p"
with `(p ⟶ q)` have 5: "q" by (rule mp)
have 6: "r" using 3 4 by (rule mp)
show "q ∧ r" using 5 6 by (rule conjI)
qed
lemma ej_19: joslopjim4 marcabcar1
assumes "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof (rule impI)
assume "p"
have "p⟶q" using assms by (rule conjunct1)
have "q" using `p⟶q` `p` by (rule mp)
have "p⟶r" using assms by (rule conjunct2)
have "r" using `p⟶r` `p` by (rule mp)
show "q∧r" using `q` `r` by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_20: carmarria
assumes 1: "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof -
{assume 2: p
have 3: "q \<and> r" using 1 2 by (rule mp)
have 4: q using 3 by (rule conjunct1)
}
hence 5: "p ⟶ q" by (rule impI)
{assume 6: p
have 7: "q \<and> r" using 1 6 by (rule mp)
have 8: r using 7 by (rule conjunct2)
}
hence 9: "p ⟶ r" by (rule impI)
show "(p ⟶ q) \<and> (p ⟶ r)" using 5 9 by (rule conjI)
qed
lemma ej_20: joslopjim4 marcabcar1
assumes "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof-
have "p⟶q"
proof
assume "p"
have "q∧r" using assms `p` by (rule mp)
show "q" using `q∧r` by (rule conjunct1)
qed
have "p⟶r"
proof
assume "p"
have "q∧r" using assms `p` by (rule mp)
show "r" using `q∧r` by (rule conjunct2)
qed
show "(p⟶q)∧(p⟶r)" using `p⟶q` `p⟶r` by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_21: carmarria
assumes 1: "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof -
{assume 2: "p \<and> q"
have 3: p using 2 by (rule conjunct1)
have 4: q using 2 by (rule conjunct2)
have 5: "q ⟶ r" using 1 3 by (rule mp)
have 6: r using 5 4 by (rule mp)
}
thus "p ∧ q ⟶ r" by (rule impI)
qed
lemma ejercicio_21: marmedmar3
assumes "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof
assume "p ∧ q"
hence "p" by (rule conjunct1)
with assms have "(q ⟶ r)" by (rule mp)
have "q" using `p ∧ q` by (rule conjunct2)
with `(q ⟶ r)` show "r" by (rule mp)
qed
lemma ej_21: joslopjim4 marcabcar1
assumes "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof (rule impI)
assume "p∧q"
have "p" using `p∧q` by (rule conjunct1)
have "q" using `p∧q` by (rule conjunct2)
have "q⟶r" using assms `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_22: carmarria
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof -
{assume p
{assume q
have "p \<and> q" using `p` `q` by (rule conjI)
have r using assms(1) `p \<and> q` by (rule mp)
}
hence "q ⟶ r" by (rule impI)
}
thus "p ⟶ (q ⟶ r)" by (rule impI)
qed
lemma ejercicio_22: marmedmar3
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof
assume "p"
show "(q ⟶ r)"
proof
assume "q"
with `p` have "p ∧ q" by (rule conjI)
with assms show "r" by (rule mp)
qed
qed
lemma ej_22: joslopjim4 marcabcar1
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof (rule impI)
assume "p"
show "q⟶r"
proof (rule impI)
assume "q"
have "p∧q" using `p` `q` by (rule conjI)
show "r" using assms `p∧q` by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_23: carmarria
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof -
{assume "p \<and> q"
{assume p
have q using `p \<and> q` by (rule conjunct2)
}
hence "p ⟶ q" by (rule impI)
have r using assms(1) `p ⟶ q` by (rule mp)
}
thus "p \<and> q ⟶ r" by (rule impI)
qed
lemma ejercicio_23: marmedmar3
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof
assume "p ∧ q"
have "p" using `p ∧ q` by (rule conjunct1)
have "q" using `p ∧ q` by (rule conjunct2)
hence "(p ⟶ q)" by (rule impI)
with assms show "r" by (rule mp)
qed
lemma ej_23: joslopjim4 marcabcar1
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof (rule impI)
assume "p∧q"
have "p⟶q"
proof
assume "p"
show "q" using `p∧q` by (rule conjunct2)
qed
show "r" using assms `p⟶q` by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_24: carmarria
assumes 1: "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof -
{assume 2: "p ⟶ q"
have 3: p using 1 by (rule conjunct1)
have 4: "q ⟶ r" using 1 by (rule conjunct2)
have 5: q using 2 3 by (rule mp)
have 6: r using 4 5 by (rule mp)
}
thus "(p ⟶ q) ⟶ r" by (rule impI)
qed
lemma ejercicio_24: marmedmar3
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof
assume "(p ⟶ q)"
have "(q ⟶ r)" using assms by (rule conjunct2)
have "p" using assms by (rule conjunct1)
with `(p ⟶ q)` have "q" by (rule mp)
with `(q ⟶ r)` show "r" by (rule mp)
qed
lemma ej_24: joslopjim4 marcabcar1
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof (rule impI)
assume "p⟶q"
have "p" using assms by (rule conjunct1)
have "q⟶r" using assms by (rule conjunct2)
have "q" using `p⟶q` `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
section {* Disyunciones *}
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
p ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_25: carmarria
assumes "p"
shows "p ∨ q"
proof -
show "p | q" using assms(1) by (rule disjI1)
qed
lemma ej_25: joslopjim4 marcabcar1
assumes "p"
shows "p ∨ q"
proof (rule disjI1)
show "p" using assms by this
qed
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
q ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_26: carmarria
assumes "q"
shows "p ∨ q"
proof -
show "p | q" using assms(1) by (rule disjI2)
qed
lemma ej_26: joslopjim4 marcabcar1
assumes "q"
shows "p ∨ q"
proof (rule disjI2)
show "q" using assms by this
qed
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar
p ∨ q ⊢ q ∨ p
------------------------------------------------------------------ *}
lemma ejercicio_27: carmarria
assumes "p ∨ q"
shows "q ∨ p"
proof -
have "p | q" using assms(1) by this
moreover
{assume p
have "q | p" using `p` by (rule disjI2)
}
moreover
{assume q
have "q | p" using `q` by (rule disjI1)
}
ultimately show "q | p" by (rule disjE)
qed
lemma ej_27: joslopjim4 marcabcar1
assumes "p ∨ q"
shows "q ∨ p"
using assms
proof
assume "p"
then show "q∨p" by(rule disjI2)
next
assume "q"
show "q∨p" using `q` by(rule disjI1)
qed
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
------------------------------------------------------------------ *}
lemma ejercicio_28: carmarria
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
proof -
{assume "p | q"
moreover
{assume p
have "p | r" using `p` by (rule disjI1)
}
moreover
{assume q
have r using assms(1) `q` by (rule mp)
have "p | r" using `r` by (rule disjI2)
}
ultimately have "p | r" by (rule disjE)
}
thus "p | q ⟶ p | r" by (rule impI)
qed
lemma ej_28: joslopjim4 marcabcar1
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
proof (rule impI)
assume "p∨q"
show "p∨r"
using `p∨q`
proof
assume "p"
show "p∨r" using `p` by (rule disjI1)
next
assume "q"
have "r" using assms `q` by (rule mp)
show "p∨r" using `r` by (rule disjI2)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar
p ∨ p ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_29: carmarria
assumes "p ∨ p"
shows "p"
proof -
have "p | p" using assms(1) by this
moreover
{assume p
}
moreover
{assume p
}
ultimately show p by (rule disjE)
qed
lemma ej_29: joslopjim4
assumes "p ∨ p"
shows "p"
proof (rule ccontr)
assume "¬p"
show False
using assms
proof
assume "p"
show False using `¬p` `p` by (rule notE)
next
assume "p"
show False using `¬p` `p` by (rule notE)
qed
qed
lemma ejercicio_29: marcabcar1
assumes "p ∨ p"
shows "p"
using `p ∨ p`
proof (rule disjE)
{assume "p"
show "p" using `p` by this}
next
{assume "p"
show "p" using `p` by this}
qed
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar
p ⊢ p ∨ p
------------------------------------------------------------------ *}
lemma ejercicio_30: carmarria
assumes "p"
shows "p ∨ p"
proof -
show "p | p" using assms(1) by (rule disjI1)
qed
lemma ej_30: joslopjim4 marcabcar1
assumes "p"
shows "p ∨ p"
proof (rule disjI1)
show "p" using assms by this
qed
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar
p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r
------------------------------------------------------------------ *}
lemma ejercicio_31: carmarria
assumes 1: "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r"
proof -
have "p | (q | r)" using 1 by this
moreover {assume 2: p
have 3: "p | q" using 2 by (rule disjI1)
have 4: "(p | q) | r" using 3 by (rule disjI1)
}
moreover {assume 5: "q | r"
moreover {assume 6: q
have 7: "p | q" using 6 by (rule disjI2)
have 8: "(p | q) | r " using 7 by (rule disjI1)
}
moreover {assume 9: r
have 10: "(p | q) | r " using 9 by (rule disjI2)
}
ultimately have 11: "(p | q) | r " by (rule disjE)
}
ultimately show "(p | q) | r " by (rule disjE)
qed
lemma ej_31: joslopjim4 marcabcar1
assumes "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r"
using assms
proof
assume "p"
have "p∨q" using `p` by (rule disjI1)
thus "(p ∨ q) ∨ r" by (rule disjI1)
next
assume "q∨r"
show "(p ∨ q) ∨ r"
using `q∨r`
proof
assume "q"
have "p∨q" using `q` by (rule disjI2)
show "(p ∨ q) ∨ r" using `p∨q` by (rule disjI1)
next
assume "r"
show "(p ∨ q) ∨ r" using `r` by (rule disjI2)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_32: carmarria
assumes 1: "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
proof -
have "(p | q) | r" using 1 by this
moreover {assume 2: "p | q"
moreover {assume 3: p
have 4: "p | (q | r)" using 3 by (rule disjI1)
}
moreover {assume 5: q
have 6: "q | r" using 5 by (rule disjI1)
have 7: "p | (q | r)" using 6 by (rule disjI2)
}
ultimately have 8: " p | (q | r)" by (rule disjE)
}
moreover {assume 9: r
have 10: "q | r" using 9 by (rule disjI2)
have 11: "p | (q | r)" using 10 by (rule disjI2)
}
ultimately show "p | (q | r)" by (rule disjE)
qed
lemma ej_32: joslopjim4 marcabcar1
assumes "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
using assms
proof
assume "p∨q"
show "p ∨ (q ∨ r)"
using `p∨q`
proof
assume "p"
show "p ∨ (q ∨ r)" using `p` by (rule disjI1)
next
assume "q"
have "q∨r" using `q` by (rule disjI1)
show "p ∨ (q ∨ r)" using `q∨r` by (rule disjI2)
qed
next
assume "r"
have "q∨r" using `r` by (rule disjI2)
show "p ∨ (q ∨ r)" using `q∨r` by (rule disjI2)
qed
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_33: carmarria
assumes 1: "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
proof -
have 2: p using 1 by (rule conjunct1)
have 3: "q | r" using 1 by (rule conjunct2)
moreover {assume 4: q
have 5: "p & q" using 2 4 by (rule conjI)
have 6: "(p & q) | (p & r)" using 5 by (rule disjI1)
}
moreover {assume 7: r
have 8: "p & r" using 2 7 by (rule conjI)
have 9: "(p & q) | (p & r)" using 8 by (rule disjI2)
}
ultimately show "(p & q) | (p & r)" by (rule disjE)
qed
lemma ej_33: joslopjim4 marcabcar1
assumes "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
proof-
have "p" using assms by (rule conjunct1)
have "q∨r" using assms by (rule conjunct2)
show "(p ∧ q) ∨ (p ∧ r)"
using `q∨r`
proof (rule disjE)
assume "q"
have "p∧q" using `p` `q` by (rule conjI)
show "(p ∧ q) ∨ (p ∧ r)" using `p∧q` by (rule disjI1)
next
assume "r"
have "p∧r" using `p` `r` by (rule conjI)
show "(p ∧ q) ∨ (p ∧ r)" using `p∧r` by (rule disjI2)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_34: carmarria
assumes 1: "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
proof -
have "(p & q) | (p & r)" using 1 by this
moreover {assume 2: "p & q"
have 3: p using 2 by (rule conjunct1)
have 4: q using 2 by (rule conjunct2)
have 5: "q | r" using 4 by (rule disjI1)
have 6: "p & (q | r)" using 3 5 by (rule conjI)
}
moreover {assume 7: "p & r"
have 8: p using 7 by (rule conjunct1)
have 9: r using 7 by (rule conjunct2)
have 10: "q | r" using 9 by (rule disjI2)
have 11: "p & (q | r)" using 8 10 by (rule conjI)
}
ultimately show "p & (q | r)" by (rule disjE)
qed
lemma ej_34: joslopjim4 marcabcar1
assumes "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
using assms
proof
assume "p∧q"
have "p" using `p∧q` by (rule conjunct1)
have "q" using `p∧q` by (rule conjunct2)
have "q∨r" using `q` by (rule disjI1)
show "p∧(q∨r)" using `p` `q∨r` by (rule conjI)
next
assume "p∧r"
have "p" using `p∧r` by (rule conjunct1)
have "r" using `p∧r` by (rule conjunct2)
have "q∨r" using `r` by (rule disjI2)
show "p∧(q∨r)" using `p` `q∨r` by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_35: carmarria
assumes 1: "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
proof -
have "p | (q & r)" using 1 by this
moreover {assume 2: p
have 3: " p | q" using 2 by (rule disjI1)
have 4: " p | r" using 2 by (rule disjI1)
have 5: "(p | q) & (p | r)" using 3 4 by (rule conjI)
}
moreover {assume 6: "q & r"
have 7: q using 6 by (rule conjunct1)
have 8: r using 6 by (rule conjunct2)
have 9: "p | q" using 7 by (rule disjI2)
have 10: "p | r" using 8 by (rule disjI2)
have 11: "(p | q) & (p | r)" using 9 10 by (rule conjI)
}
ultimately show "(p | q) & (p | r)" by (rule disjE)
qed
lemma ej_35: joslopjim4 marcabcar1
assumes "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
using assms
proof (rule disjE)
assume "p"
have "p∨q" using `p` by (rule disjI1)
have "p∨r" using `p` by (rule disjI1)
show "(p ∨ q) ∧ (p ∨ r)" using `p∨q` `p∨r` by (rule conjI)
next
assume "q∧r"
have "q" using `q∧r` by (rule conjunct1)
have "r" using `q∧r` by (rule conjunct2)
have "p∨q" using `q` by (rule disjI2)
have "p∨r" using `r` by (rule disjI2)
show "(p ∨ q) ∧ (p ∨ r)" using `p∨q` `p∨r` by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_36: carmarria
assumes 1: "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
proof -
have 2: "p | q" using 1 by (rule conjunct1)
moreover {assume 3: p
have 4: "p | (q & r)" using 3 by (rule disjI1)
}
moreover {assume 5: q
have 6: "p | r" using 1 by (rule conjunct2)
moreover {assume 7: p
have 8: "p | (q & r)" using 7 by (rule disjI1)
}
moreover {assume 9: r
have 10: "q & r" using 5 9 by (rule conjI)
have 11: "p | (q & r)" using 10 by (rule disjI2)
}
ultimately have 12: "p | (q & r)" by (rule disjE)
}
ultimately show "p | (q & r)" by (rule disjE)
qed
lemma ej_36: joslopjim4 marcabcar1
assumes "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
proof-
have "p∨q" using assms by (rule conjunct1)
have "p∨r" using assms by (rule conjunct2)
show "p∨(q ∧ r)"
using `p∨r`
proof
assume "p"
show "p∨(q ∧ r)" using `p` by (rule disjI1)
next
assume "r"
show "p∨(q ∧ r)"
using `p∨q`
proof
assume "p"
show "p∨(q ∧ r)" using `p` by (rule disjI1)
next
assume "q"
have "q∧r" using `q` `r` by (rule conjI)
show "p∨(q ∧ r)" using `q∧r` by (rule disjI2)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_37: carmarria
assumes 1: "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
proof -
have 2: "p ⟶ r" using 1 by (rule conjunct1)
have 3: "q ⟶ r" using 1 by (rule conjunct2)
{assume 4: "p | q"
moreover {assume 5: p
have 6: r using 2 5 by (rule mp)
}
moreover {assume 7: q
have 8: r using 3 7 by (rule mp)
}
ultimately have r by (rule disjE)
}
thus "p | q ⟶ r" by (rule impI)
qed
lemma ej_37: joslopjim4 marcabcar1
assumes "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
proof (rule impI)
assume "p∨q"
have "p⟶r" using assms by (rule conjunct1)
have "q⟶r" using assms by (rule conjunct2)
show "r"
using `p∨q`
proof
assume "p"
show "r" using `p⟶r` `p` by (rule mp)
next
assume "q"
show "r" using `q⟶r` `q` by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 38. Demostrar
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_38: carmarria
assumes 1: "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
proof -
{assume 2: p
have 3: "p | q" using 2 by (rule disjI1)
have 4: r using 1 3 by (rule mp)
}
hence 5: "p ⟶ r" by (rule impI)
{assume 6: q
have 7: "p | q" using 6 by (rule disjI2)
have 8: r using 1 7 by (rule mp)
}
hence 9: "q ⟶ r" by (rule impI)
show "(p ⟶ r) & (q ⟶ r)" using 5 9 by (rule conjI)
qed
lemma ej_38: joslopjim4 marcabcar1
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
proof-
have "p⟶r"
proof (rule impI)
assume "p"
have "p∨q" using `p` by (rule disjI1)
show "r" using assms `p∨q` by (rule mp)
qed
have "q⟶r"
proof (rule impI)
assume "q"
have "p∨q" using `q` by (rule disjI2)
show "r" using assms `p∨q` by (rule mp)
qed
show "(p ⟶ r) ∧ (q ⟶ r)" using `p⟶r` `q⟶r` by (rule conjI)
qed
section {* Negaciones *}
text {* ---------------------------------------------------------------
Ejercicio 39. Demostrar
p ⊢ ¬¬p
------------------------------------------------------------------ *}
lemma ejercicio_39: carmarria
assumes "p"
shows "¬¬p"
proof -
show "~~p" using assms(1) by (rule notnotI)
qed
lemma ej_39: joslopjim4 marcabcar1
assumes "p"
shows "¬¬p"
proof-
show "¬¬p" using assms by (rule notnotI)
qed
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_40: carmarria
assumes "¬p"
shows "p ⟶ q"
proof -
{assume p
have "~p" using assms(1) by this
have False using `~p` `p` by (rule notE)
have q using `False` by (rule FalseE)
}
thus "p ⟶ q" by (rule impI)
qed
lemma ej_40: joslopjim4 marcabcar1
assumes "¬p"
shows "p ⟶ q"
proof (rule impI)
assume "p"
show "q" using assms `p` by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 41. Demostrar
p ⟶ q ⊢ ¬q ⟶ ¬p
------------------------------------------------------------------ *}
lemma ejercicio_41: carmarria
assumes 1: "p ⟶ q"
shows "¬q ⟶ ¬p"
proof -
{assume 2: "~q"
have 3: "~p" using 1 2 by (rule mt)
}
thus 4: "~q ⟶ ~p" by (rule impI)
qed
lemma ej_41: joslopjim4 marcabcar1
assumes "p ⟶ q"
shows "¬q ⟶ ¬p"
proof (rule impI)
assume "¬q"
show "¬p" using assms `¬q` by (rule mt)
qed
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p∨q, ¬q ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_42: carmarria
assumes 1: "p∨q" and
2: "¬q"
shows "p"
proof -
have " p | q" using 1 by this
moreover {assume 3: p
}
moreover {assume 4: q
have 5: False using 2 4 by (rule notE)
have 6: p using 5 by (rule FalseE)
}
ultimately show p by (rule disjE)
qed
lemma ej_42: joslopjim4 marcabcar1
assumes "p∨q"
"¬q"
shows "p"
using assms(1)
proof
assume "p"
show "p" using `p` by this
next
assume "q"
show "p" using assms(2) `q` by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 43. Demostrar
p ∨ q, ¬p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_43: carmarria
assumes 1: "p ∨ q" and
2: "¬p"
shows "q"
proof -
have " p | q" using 1 by this
moreover {assume 3: p
have 4: False using 2 3 by (rule notE)
have 5: q using 4 by (rule FalseE)
}
moreover {assume 6: q
}
ultimately show q by (rule disjE)
qed
lemma ej_43: joslopjim4 marcabcar1
assumes "p ∨ q"
"¬p"
shows "q"
using assms(1)
proof
assume "p"
show "q" using assms(2) `p` by (rule notE)
next
assume "q"
show "q" using `q` by this
qed
text {* ---------------------------------------------------------------
Ejercicio 44. Demostrar
p ∨ q ⊢ ¬(¬p ∧ ¬q)
------------------------------------------------------------------ *}
lemma ejercicio_44: carmarria
assumes 1: "p ∨ q"
shows "¬(¬p ∧ ¬q)"
proof -
have "p | q" using 1 by this
moreover {assume 2: p
{assume 3:"~p & ~q"
have 4: "~p" using 3 by (rule conjunct1)
have 5: False using 4 2 by (rule notE)
}
hence 6: "~(~p & ~q)" by (rule notI)
}
moreover {assume 7: q
{assume 8: "~p & ~q"
have 9: "~q" using 8 by (rule conjunct2)
have 10: False using 9 7 by (rule notE)
}
hence 11: "~(~p & ~q)" by (rule notI)
}
ultimately show "~(~p & ~q)" by (rule disjE)
qed
lemma ej_44: joslopjim4 marcabcar1
assumes "p∨q"
shows "¬(¬p∧¬q)"
proof (rule notI)
assume "¬p∧¬q"
show False
using assms
proof
assume "p"
have "¬p" using `¬p∧¬q` by (rule conjunct1)
show False using `¬p` `p` by (rule notE)
next
assume "q"
have "¬q" using `¬p∧¬q` by (rule conjunct2)
show False using `¬q` `q` by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 45. Demostrar
p ∧ q ⊢ ¬(¬p ∨ ¬q)
------------------------------------------------------------------ *}
lemma ejercicio_45: carmarria
assumes 1: "p ∧ q"
shows "¬(¬p ∨ ¬q)"
proof -
{assume 2: "~p | ~q"
moreover {assume 3: "~p"
have 4: p using 1 by (rule conjunct1)
have 5: False using 3 4 by (rule notE)
}
moreover {assume 6: "~q"
have 7: q using 1 by (rule conjunct2)
have 8: False using 6 7 by (rule notE)
}
ultimately have False by (rule disjE)
}
thus "~(~p | ~q)" by (rule notI)
qed
lemma ej_45: joslopjim4 marcabcar1
assumes "p∧q"
shows "¬(¬p∨¬q)"
proof (rule notI)
assume "¬p∨¬q"
then show False
proof (rule disjE)
assume "¬p"
have "p" using assms by (rule conjunct1)
show False using `¬p` `p` by (rule notE)
next
assume "¬q"
have "q" using assms by (rule conjunct2)
show False using `¬q` `q` by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 46. Demostrar
¬(p ∨ q) ⊢ ¬p ∧ ¬q
------------------------------------------------------------------ *}
lemma ejercicio_46: carmarria
assumes 1: "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof -
{assume 2: p
have 3: "p | q" using 2 by (rule disjI1)
have 4: False using 1 3 by (rule notE)
}
hence 5: "~p" by (rule notI)
{assume 6: q
have 7: "p | q" using 6 by (rule disjI2)
have 8: False using 1 7 by (rule notE)
}
hence 9: "~q" by (rule notI)
show "~p & ~q" using 5 9 by (rule conjI)
qed
lemma ej_46: joslopjim4
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof (rule conjI)
show "¬p"
proof (rule ccontr)
assume "¬¬p"
have "p" using `¬¬p` by (rule notnotD)
have "p∨q" using `p` by (rule disjI1)
show False using assms `p∨q` by (rule notE)
qed
show "¬q"
proof (rule ccontr)
assume "¬¬q"
have "q" using `¬¬q` by (rule notnotD)
have "p∨q" using `q` by (rule disjI2)
show False using assms `p∨q` by (rule notE)
qed
qed
lemma ejercicio_46: marcabcar1
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof (rule conjI)
show "¬p"
proof (rule disjE)
show "p∨¬p" by (rule excluded_middle)
{assume "p"
have "p ∨ q" using `p` by (rule disjI1)
show "¬p" using `¬(p ∨ q)` and `p ∨ q` by (rule notE)}
next
{assume "¬p"
show "¬p" using `¬p` by this}
qed
show "¬q"
proof (rule disjE)
show "q∨¬q" by (rule excluded_middle)
{assume "q"
have "p ∨ q" using `q` by (rule disjI2)
show "¬q" using `¬(p ∨ q)` and `p ∨ q` by (rule notE)}
next
{assume "¬q"
show "¬q" using `¬q` by this}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 47. Demostrar
¬p ∧ ¬q ⊢ ¬(p ∨ q)
------------------------------------------------------------------ *}
lemma ejercicio_47: carmarria
assumes 1: "¬p ∧ ¬q"
shows "¬(p ∨ q)"
proof -
{assume 2: "p | q"
moreover {assume 3: p
have 4: "~p" using 1 by (rule conjunct1)
have 5: False using 4 3 by (rule notE)
}
moreover {assume 6: q
have 7: "~q" using 1 by (rule conjunct2)
have 8: False using 7 6 by (rule notE)
}
ultimately have 9: False by (rule disjE)
}
thus "~(p | q)" by (rule notI)
qed
lemma ej_47: joslopjim4 marcabcar1
assumes "¬p∧¬q"
shows "¬(p∨q)"
proof (rule notI)
assume "p∨q"
then show False
proof
assume "p"
have "¬p" using assms by (rule conjunct1)
show False using `¬p` `p` by (rule notE)
next
assume "q"
have "¬q" using assms by (rule conjunct2)
show False using `¬q` `q` by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 48. Demostrar
¬p ∨ ¬q ⊢ ¬(p ∧ q)
------------------------------------------------------------------ *}
lemma ejercicio_48: carmarria
assumes 1: "¬p ∨ ¬q"
shows "¬(p ∧ q)"
proof -
have "~p | ~q" using 1 by this
moreover {assume 2: "~p"
{assume 3: "p & q"
have 4: p using 3 by (rule conjunct1)
have 5: False using 2 4 by (rule notE)
}
hence 6: "~(p & q)" by (rule notI)
}
moreover {assume 7: "~q"
{assume 8: "p & q"
have 9: q using 8 by (rule conjunct2)
have 10: False using 7 9 by (rule notE)
}
hence 11: "~(p & q)" by (rule notI)
}
ultimately show "~(p & q)" by (rule disjE)
qed
lemma ej_48: joslopjim4 marcabcar1
assumes "¬p ∨ ¬q"
shows "¬(p ∧ q)"
proof (rule notI)
assume "p∧q"
have "p" using `p∧q` by (rule conjunct1)
have "q" using `p∧q` by (rule conjunct2)
show False
using assms
proof
assume "¬p"
have "p" using `p∧q` by (rule conjunct1)
show False using `¬p` `p` by (rule notE)
next
assume "¬q"
have "q" using `p∧q` by (rule conjunct2)
show False using `¬q` `q` by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 49. Demostrar
⊢ ¬(p ∧ ¬p)
------------------------------------------------------------------ *}
lemma ejercicio_49: carmarria
"¬(p ∧ ¬p)"
proof -
{assume 1: "p & ~p"
have 2: p using 1 by (rule conjunct1)
have 3: "~p" using 1 by (rule conjunct2)
have 4: False using 3 2 by (rule notE)
}
thus "~(p & ~p)" by (rule notI)
qed
lemma ej_49: joslopjim4 marcacar1
shows "¬(p∧¬p)"
proof
assume "p∧¬p"
have "p" using `p∧¬p` by (rule conjunct1)
have "¬p" using `p∧¬p` by (rule conjunct2)
show False using `¬p` `p` by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 50. Demostrar
p ∧ ¬p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_50: carmarria
assumes 1: "p ∧ ¬p"
shows "q"
proof -
have 2: p using 1 by (rule conjunct1)
have 3: "~p" using 1 by (rule conjunct2)
have 4: False using 3 2 by (rule notE)
show q using 4 by (rule FalseE)
qed
lemma ej_50: joslopjim4 marcabcar1
assumes "p∧¬p"
shows "q"
proof-
have "p" using `p∧¬p` by (rule conjunct1)
have "¬p" using `p∧¬p` by (rule conjunct2)
have False using `¬p` `p` by (rule notE)
then show "q" by (rule FalseE)
qed
text {* ---------------------------------------------------------------
Ejercicio 51. Demostrar
¬¬p ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_51: carmarria joslopjim4 marcabcar1
assumes "¬¬p"
shows "p"
proof -
show p using assms by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 52. Demostrar
⊢ p ∨ ¬p
------------------------------------------------------------------ *}
lemma ejercicio_52: carmarria
"p ∨ ¬p"
proof -
{assume 1: "~(p | ~p)"
{assume 2: p
have 3: "p | ~p" using 2 by (rule disjI1)
have 4: False using 1 3 by (rule notE)
}
hence 5: "~p" by (rule notI)
have 6: "p | ~p" using 5 by (rule disjI2)
have 7: False using 1 6 by (rule notE)
}
hence 8: "~~(p | ~p)" by (rule notI)
show "p | ~p" using 8 by (rule notnotD)
qed
lemma ejercicio_52: marcabcar1
"p ∨ ¬p"
proof (rule ccontr)
{assume "¬(p ∨ ¬p)"
have "¬p"
proof (rule notI)
{assume "p"
have "p ∨ ¬p" using `p` by (rule disjI1)
show "False" using `¬(p ∨ ¬p)` and `(p ∨ ¬p)` by (rule notE)}
qed
have "p ∨ ¬p" using `¬p` by (rule disjI2)
show "False" using `¬(p ∨ ¬p)` and `p ∨ ¬p` by (rule notE)}
qed
text {* ---------------------------------------------------------------
Ejercicio 53. Demostrar
⊢ ((p ⟶ q) ⟶ p) ⟶ p
------------------------------------------------------------------ *}
lemma ej_53: joslopjim4
shows "((p ⟶ q) ⟶ p) ⟶ p"
proof (rule impI)
assume "(p ⟶ q) ⟶ p"
show "p"
proof (rule ccontr)
assume "¬p"
have "¬(p⟶q)" using `(p ⟶ q) ⟶ p` `¬p` by (rule mt)
have "p⟶q"
proof (rule impI)
assume "p"
show "q" using `¬p` `p` by (rule notE)
qed
show False using `¬(p⟶q)` `p⟶q` by (rule notE)
qed
qed
lemma ejercicio_53: carmarria
"((p ⟶ q) ⟶ p) ⟶ p"
proof -
{assume 1: "(p ⟶ q) ⟶ p"
{assume 2:"~p"
have 3: "~(p ⟶q)" using 1 2 by (rule mt)
{assume 4: p
have 5: False using 2 4 by (rule notE)
have 6: q using 5 by (rule FalseE)
}
hence 7: "p ⟶q" by (rule impI)
have 8: False using 3 7 by (rule notE)
}
hence 9: "~~p" by (rule notI)
have 10: p using 9 by (rule notnotD)
}
thus "((p ⟶ q)⟶p)⟶p" by (rule impI)
qed
lemma ejercicio_53: marcabcar1
"((p ⟶ q) ⟶ p) ⟶ p"
proof (rule impI)
assume "(p ⟶ q) ⟶ p"
show "p"
proof (rule disjE)
show "p ∨ ¬p" by (rule excluded_middle)
{assume "p"
show "p" using `p` by this}
next
{assume "¬p"
have "¬(p⟶q)" using `(p ⟶ q) ⟶ p` and `¬p` by (rule mt)
have "p⟶q"
proof (rule impI)
{assume "p"
show "q" using `¬p` and `p` by (rule notE)}
qed
show "p" using `¬(p⟶q)` and `p⟶q` by (rule notE)}
qed
text {* ---------------------------------------------------------------
Ejercicio 54. Demostrar
¬q ⟶ ¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ej_54: joslopjim4
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
proof (rule impI)
assume "p"
have "¬¬p" using `p` by (rule notnotI)
have "¬¬q" using assms `¬¬p` by (rule mt)
show "q" using `¬¬q` by (rule notnotD)
qed
lemma ejercicio_54: carmarria
assumes 1: "¬q ⟶ ¬p"
shows "p ⟶ q"
proof -
{assume 2: p
have 3: "~~p" using 2 by (rule notnotI)
have 4: "~~q" using 1 3 by (rule mt)
have 5: q using 4 by (rule notnotD)
}
thus "p ⟶q" by (rule impI)
qed
lemma ejercicio_54: marcabcar1
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
proof (rule impI)
{assume "p"
have "q∨¬q" by (rule excluded_middle)
show "q"
proof (rule disjE)
show "q ∨ ¬q" using `q ∨ ¬q` by this
{assume "q"
show "q" using `q` by this}
next
{assume "¬q"
have "¬p" using `¬q ⟶ ¬p` and `¬q` by (rule mp)
show "q" using `¬p` and `p` by (rule notE)}
qed}
qed
text {* ---------------------------------------------------------------
Ejercicio 55. Demostrar
¬(¬p ∧ ¬q) ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_55: carmarria
assumes 1: "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof -
{assume 2: "~(p | q)"
{assume 3: "~p"
{assume 4: "~q"
have 5: "~p & ~q" using 3 4 by (rule conjI)
have 6: False using 1 5 by (rule notE)
}
hence 7: "~~q" by (rule notI)
have 8: q using 7 by (rule notnotD)
have 9: "p | q" using 8 by (rule disjI2)
have 10: False using 2 9 by (rule notE)
}
hence 11: "~~p" by (rule notI)
have 12: p using 11 by(rule notnotD)
have 13: "p | q" using 12 by (rule disjI1)
have 14: False using 2 13 by (rule notE)
}
hence 15: "~~(p | q)" by (rule notI)
show "p | q" using 15 by (rule notnotD)
qed
lemma ej_55: joslopjim4
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof-
have "¬p∨p" by (rule excluded_middle)
thus "p∨q"
proof (rule disjE)
assume "¬p"
thus "p∨q"
proof-
have "¬q∨q" by (rule excluded_middle)
thus "p∨q"
proof
assume "¬q"
have "¬p∧¬q" using `¬p` `¬q` by (rule conjI)
have False using assms `¬p∧¬q` by (rule notE)
then show "p∨q" by (rule FalseE)
next
assume "q"
show "p∨q" using `q` by (rule disjI2)
qed
qed
next
assume "p"
show "p∨q" using `p` by (rule disjI1)
qed
qed
lemma ejercicio_55:marcabcar1
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof (rule disjE)
show "p ∨ ¬p" by (rule excluded_middle)
{assume "p"
show "p ∨ q" using `p` by (rule disjI1)}
next
{assume "¬p"
show "p ∨ q"
proof (rule disjE)
show "q ∨ ¬q" by (rule excluded_middle)
{assume "q"
show "p ∨ q" using `q` by (rule disjI2)}
next
{assume "¬q"
have "¬p ∧ ¬q" using `¬p` and `¬q` by (rule conjI)
show "p ∨ q" using `¬(¬p ∧ ¬q)` and `(¬p ∧ ¬q)` by (rule notE)}
qed}
qed
text {* ---------------------------------------------------------------
Ejercicio 56. Demostrar
¬(¬p ∨ ¬q) ⊢ p ∧ q
------------------------------------------------------------------ *}
lemma ejercicio_56: carmarria
assumes 1: "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof -
{assume 2: "~p"
have 3: "~p | ~q" using 2 by (rule disjI1)
have 4: False using 1 3 by (rule notE)
}
hence 5: "~~p" by (rule notI)
have 6: p using 5 by (rule notnotD)
{assume 7: "~q"
have 8: "~p | ~q" using 7 by (rule disjI2)
have 9: False using 1 8 by (rule notE)
}
hence 10: "~~q" by (rule notI)
have 11: q using 10 by (rule notnotD)
show 12: " p & q" using 6 11 by (rule conjI)
qed
lemma ej_56: joslopjim4 marcabcar1
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof-
have "¬p∨p" by (rule excluded_middle)
thus "p∧q"
proof
assume "¬p"
have "¬p∨¬q" using `¬p` by (rule disjI1)
have False using assms `¬p∨¬q` by (rule notE)
then show "p∧q" by (rule FalseE)
next
assume "p"
have "¬q∨q" by (rule excluded_middle)
thus "p∧q"
proof
assume "q"
show "p∧q" using `p` `q` by (rule conjI)
next
assume "¬q"
have "¬p∨¬q" using `¬q` by (rule disjI2)
have False using assms `¬p∨¬q` by (rule notE)
then show "p∧q" by (rule FalseE)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 57. Demostrar
¬(p ∧ q) ⊢ ¬p ∨ ¬q
------------------------------------------------------------------ *}
lemma ejercicio_57: carmarria
assumes 1: "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof -
{assume 2: "~(~p | ~q)"
{assume 3: p
{assume 4: q
have 5: "p & q" using 3 4 by (rule conjI)
have 6: False using 1 5 by (rule notE)
}
hence 7: "~q" by (rule notI)
have 8: "~p | ~q" using 7 by (rule disjI2)
have 9: False using 2 8 by (rule notE)
}
hence 10: "~p" by (rule notI)
have 11: "~p | ~q" using 10 by (rule disjI1)
have 12: False using 2 11 by (rule notE)
}
hence 13: "~~(~p | ~q)" by (rule notI)
show "~p | ~q" using 13 by (rule notnotD)
qed
lemma ej_57: joslopjim4 marcabcar1
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof-
have "¬p∨p" by (rule excluded_middle)
thus "¬p∨¬q"
proof (rule disjE)
assume "¬p"
show "¬p∨¬q" using `¬p` by (rule disjI1)
next
assume "p"
have "¬q∨q" by (rule excluded_middle)
thus "¬p∨¬q"
proof (rule disjE)
assume "¬q"
show "¬p∨¬q" using `¬q` by (rule disjI2)
next
assume "q"
have "p∧q" using `p` `q` by (rule conjI)
have False using assms `p∧q` by (rule notE)
then show "¬p∨¬q" by (rule FalseE)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 58. Demostrar
⊢ (p ⟶ q) ∨ (q ⟶ p)
------------------------------------------------------------------ *}
lemma ej_58: joslopjim4 marcabcar1
shows "(p ⟶ q) ∨ (q ⟶ p)"
proof -
have "¬p∨p" by (rule excluded_middle)
thus "(p ⟶ q) ∨ (q ⟶ p)"
proof (rule disjE)
assume "¬p"
show "(p ⟶ q) ∨ (q ⟶ p)"
proof (rule disjI1)
show "p⟶q"
proof
assume "p"
show "q" using `¬p` `p` by (rule notE)
qed
qed
next
assume "p"
show "(p ⟶ q) ∨ (q ⟶ p)"
proof (rule disjI2)
show "q⟶p"
proof (rule impI)
assume "q"
show "p" using `p` by this
qed
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 59 (EXTRA). Demostrar
p∧¬(q⟶r) ⊢ (p∧q)∧¬r
------------------------------------------------------------------ *}
lemma ej_59: joslopjim4 marcabcar1
assumes "p∧¬(q⟶r)"
shows "(p∧q)∧¬r"
proof
show "p∧q"
proof
show "p" using assms by (rule conjunct1)
next
show "q"
proof (rule ccontr)
assume "¬q"
have "¬(q⟶r)" using assms by (rule conjunct2)
have "q⟶r"
proof
assume "q"
show "r" using `¬q` `q` by (rule notE)
qed
show False using `¬(q⟶r)` `q⟶r` by (rule notE)
qed
qed
next
show "¬r"
proof (rule notI)
assume "r"
have "q⟶r"
proof
assume "q"
show "r" using `r` by this
qed
have "¬(q⟶r)" using assms ..
thus False using `q⟶r` ..
qed
qed
end