Diferencia entre revisiones de «Relación 4»
De Lógica matemática y fundamentos (2017-18)
(No se muestran 23 ediciones intermedias de 7 usuarios) | |||
Línea 1: | Línea 1: | ||
− | <source lang = " | + | <source lang = "isabelle"> |
chapter {* R4: Deducción natural proposicional *} | chapter {* R4: Deducción natural proposicional *} | ||
Línea 51: | Línea 51: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_1: josrodjim2 carmarria inmbenber | + | lemma ejercicio_1: josrodjim2 carmarria inmbenber marmedmar3 |
assumes 1: "p ⟶ q" and | assumes 1: "p ⟶ q" and | ||
2: "p" | 2: "p" | ||
Línea 58: | Línea 58: | ||
proof - | proof - | ||
show 1: "q" using 1 2 by (rule mp) | show 1: "q" using 1 2 by (rule mp) | ||
+ | qed | ||
+ | |||
+ | lemma ej_1: joslopjim4 marcabcar1 | ||
+ | assumes "p --> q" | ||
+ | "p" | ||
+ | shows "q" | ||
+ | proof - | ||
+ | show "q" using assms(1) assms(2) by (rule mp) | ||
qed | qed | ||
Línea 65: | Línea 73: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_2: josrodjim2 carmarria inmbenber | + | lemma ejercicio_2: josrodjim2 carmarria inmbenber marmedmar3 |
assumes 1: "p ⟶ q" and | assumes 1: "p ⟶ q" and | ||
2: "q ⟶ r" and | 2: "q ⟶ r" and | ||
3: "p" | 3: "p" | ||
shows "r" | shows "r" | ||
− | |||
proof- | proof- | ||
Línea 77: | Línea 84: | ||
qed | qed | ||
+ | lemma ej_2: joslopjim4 marcabcar1 | ||
+ | assumes "p ⟶ q" | ||
+ | "q ⟶ r" | ||
+ | "p" | ||
+ | shows "r" | ||
+ | proof - | ||
+ | have "q" using `p⟶q` `p` by (rule mp) | ||
+ | show "r" using `q⟶r` `q` by (rule mp) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 83: | Línea 99: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_3: josrodjim2 carmarria | + | lemma ejercicio_3: josrodjim2 carmarria inmbenber marmedmar3 |
assumes 1: "p ⟶ (q ⟶ r)" and | assumes 1: "p ⟶ (q ⟶ r)" and | ||
2: "p ⟶ q" and | 2: "p ⟶ q" and | ||
Línea 94: | Línea 110: | ||
show "r" using 5 4 by (rule mp) | show "r" using 5 4 by (rule mp) | ||
+ | qed | ||
+ | |||
+ | lemma ej_3: joslopjim4 marcabcar1 | ||
+ | assumes "p ⟶ (q ⟶ r)" | ||
+ | "p ⟶ q" | ||
+ | "p" | ||
+ | shows "r" | ||
+ | proof - | ||
+ | have "q" using `p⟶q` `p` by (rule mp) | ||
+ | have "q⟶r" using `p ⟶ (q ⟶ r)` `p` by (rule mp) | ||
+ | show "r" using `q⟶r` `q` by (rule mp) | ||
qed | qed | ||
Línea 126: | Línea 153: | ||
thus "p ⟶ r" by (rule impI) | thus "p ⟶ r" by (rule impI) | ||
qed | qed | ||
+ | lemma ejercicio_4: inmbenber | ||
+ | assumes 1: "p ⟶ q" and | ||
+ | 2: "q ⟶ r" | ||
+ | shows "p ⟶ r" | ||
+ | proof - | ||
+ | { assume 3: "p" | ||
+ | have 4: "q" using 1 3 by (rule mp) | ||
+ | have 5: "r" using 2 4 by (rule mp) } | ||
+ | thus "p ⟶ r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_4:marmedmar3 | ||
+ | assumes "p ⟶ q" | ||
+ | "q ⟶ r" | ||
+ | shows "p ⟶ r" | ||
+ | proof | ||
+ | assume "p" | ||
+ | with assms(1) have "q" by (rule mp) | ||
+ | with assms(2) show "r" by (rule mp) | ||
+ | qed | ||
+ | |||
+ | lemma ej_4: joslopjim4 marcabcar1 | ||
+ | assumes "p ⟶ q" | ||
+ | "q ⟶ r" | ||
+ | shows "p ⟶ r" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | have "q" using assms(1) `p` by (rule mp) | ||
+ | show "r" using assms(2) `q` by (rule mp) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 162: | Línea 219: | ||
thus "q ⟶ (p ⟶ r)" by (rule impI) | thus "q ⟶ (p ⟶ r)" by (rule impI) | ||
qed | qed | ||
+ | |||
+ | lemma ejercicio_5: inmbenber | ||
+ | assumes 1: "p ⟶ (q ⟶ r)" | ||
+ | shows "q ⟶ (p ⟶ r)" | ||
+ | |||
+ | proof - | ||
+ | {assume 2: "q" | ||
+ | {assume 3: "p" | ||
+ | have 4: "q ⟶ r" using 1 3 by (rule mp) | ||
+ | have 5: "r" using 4 2 by (rule mp) } | ||
+ | hence " p ⟶ r" by (rule impI) } | ||
+ | thus "q ⟶ (p ⟶ r)" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_5: marmedmar3 | ||
+ | assumes "p ⟶ (q ⟶ r)" | ||
+ | shows "q ⟶ (p ⟶ r)" | ||
+ | proof | ||
+ | assume "q" | ||
+ | show "(p ⟶ r)" | ||
+ | proof | ||
+ | assume "p" | ||
+ | with assms(1) have "(q ⟶ r)" by (rule mp) | ||
+ | thus "r" using `q` by (rule mp) | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | lemma ej_5: joslopjim4 marcabcar1 | ||
+ | assumes "p ⟶ (q ⟶ r)" | ||
+ | shows "q ⟶ (p ⟶ r)" | ||
+ | proof (rule impI) | ||
+ | assume "q" | ||
+ | show "p⟶r" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | have "q⟶r" using `p ⟶ (q ⟶ r)` `p` by (rule mp) | ||
+ | show "r" using `q⟶r` `q` by (rule mp) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 184: | Línea 280: | ||
oops | oops | ||
− | lemma ejercicio_6: carmarria | + | lemma ejercicio_6: carmarria, inmbenber |
assumes 1: "p ⟶ (q ⟶ r)" | assumes 1: "p ⟶ (q ⟶ r)" | ||
shows "(p ⟶ q) ⟶ (p ⟶ r)" | shows "(p ⟶ q) ⟶ (p ⟶ r)" | ||
Línea 198: | Línea 294: | ||
thus "(p ⟶ q) ⟶ (p ⟶ r)" by (rule impI) | thus "(p ⟶ q) ⟶ (p ⟶ r)" by (rule impI) | ||
qed | qed | ||
+ | |||
+ | lemma ejercicio_6:marmedmar3 | ||
+ | assumes 1: "p ⟶ (q ⟶ r)" | ||
+ | shows "(p ⟶ q) ⟶ (p ⟶ r)" | ||
+ | proof | ||
+ | assume 2: "(p ⟶ q)" | ||
+ | show "(p ⟶ r)" | ||
+ | proof | ||
+ | assume 3: "p" | ||
+ | have 4: "q" using 2 3 by (rule mp) | ||
+ | have 5: "(q ⟶ r)" using 1 3 by (rule mp) | ||
+ | show "r" using 5 4 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | lemma ej_6: joslopjim4 marcabcar1 | ||
+ | assumes "p ⟶ (q ⟶ r)" | ||
+ | shows "(p ⟶ q) ⟶ (p ⟶ r)" | ||
+ | proof (rule impI) | ||
+ | assume "(p⟶q)" | ||
+ | show "p⟶r" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | have "q⟶r" using `p ⟶ (q ⟶ r)` `p` by (rule mp) | ||
+ | have "q" using `p⟶q` `p` by (rule mp) | ||
+ | show "r" using `q⟶r` `q` by (rule mp) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 219: | Línea 343: | ||
oops | oops | ||
− | lemma ejercicio_7: carmarria | + | lemma ejercicio_7: carmarria, inmbenber |
assumes 1: "p" | assumes 1: "p" | ||
shows "q ⟶ p" | shows "q ⟶ p" | ||
proof - | proof - | ||
− | {assume 2: q | + | {assume 2: "q" |
have 3: "p" using 1 by this} | have 3: "p" using 1 by this} | ||
thus "q ⟶ p" by (rule impI) | thus "q ⟶ p" by (rule impI) | ||
qed | qed | ||
− | + | ||
+ | lemma ejercicio_7:marmedmar3 | ||
+ | assumes "p" | ||
+ | shows "q ⟶ p" | ||
+ | proof | ||
+ | assume "q" | ||
+ | show "p" using assms(1) by this | ||
+ | qed | ||
+ | |||
+ | lemma ej_7: joslopjim4 marcabcar1 | ||
+ | assumes "p" | ||
+ | shows "q ⟶ p" | ||
+ | proof (rule impI) | ||
+ | assume "q" | ||
+ | show "p" using assms by this | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 8. Demostrar | Ejercicio 8. Demostrar | ||
Línea 245: | Línea 385: | ||
thus "p ⟶ (q ⟶ p)" by (rule impI) | thus "p ⟶ (q ⟶ p)" by (rule impI) | ||
qed | qed | ||
+ | |||
+ | lemma ejercicio_8: marmedmar3 | ||
+ | "p ⟶ (q ⟶ p)" | ||
+ | proof | ||
+ | assume 1: "p" | ||
+ | show "(q ⟶ p)" | ||
+ | proof | ||
+ | assume 2: "q" | ||
+ | show "p" using 1 by this | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | lemma ej_8: joslopjim4 marcabcar1 | ||
+ | shows "p⟶(q⟶p)" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | show "q⟶p" | ||
+ | proof (rule impI) | ||
+ | assume "q" | ||
+ | show "p" using `p` by this | ||
+ | qed | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 9. Demostrar | Ejercicio 9. Demostrar | ||
Línea 263: | Línea 426: | ||
thus 7: "(q ⟶ r) ⟶ (p ⟶ r)" by (rule impI) | thus 7: "(q ⟶ r) ⟶ (p ⟶ r)" by (rule impI) | ||
qed | qed | ||
+ | |||
+ | lemma ejercicio_9: marmedmar3 | ||
+ | assumes "p ⟶ q" | ||
+ | shows "(q ⟶ r) ⟶ (p ⟶ r)" | ||
+ | proof | ||
+ | assume "(q ⟶ r)" | ||
+ | show "(p ⟶ r)" | ||
+ | proof | ||
+ | assume "p" | ||
+ | with `(p ⟶ q)` have "q" by (rule mp) | ||
+ | with `(q ⟶ r)` show "r" by (rule mp) | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | lemma ej_9: joslopjim4 marcabcar1 | ||
+ | assumes "p ⟶ q" | ||
+ | shows "(q ⟶ r) ⟶ (p ⟶ r)" | ||
+ | proof (rule impI) | ||
+ | assume "q⟶r" | ||
+ | show "p⟶r" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | have "q" using `p⟶q` `p` by (rule mp) | ||
+ | show "r" using `q⟶r` `q` by (rule mp) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 287: | Línea 476: | ||
thus "r ⟶ (q ⟶ (p ⟶ s))" by (rule impI) | thus "r ⟶ (q ⟶ (p ⟶ s))" by (rule impI) | ||
qed | qed | ||
+ | |||
+ | lemma ejercicio_10: marmedmar3 | ||
+ | assumes 1: "p ⟶ (q ⟶ (r ⟶ s))" | ||
+ | shows "r ⟶ (q ⟶ (p ⟶ s))" | ||
+ | proof | ||
+ | assume 2: "r" | ||
+ | show "(q ⟶ (p ⟶ s))" | ||
+ | proof | ||
+ | assume 3: "q" | ||
+ | show "(p ⟶ s)" | ||
+ | proof | ||
+ | assume 4: "p" | ||
+ | have 5: "(q ⟶ (r ⟶ s))" using 1 4 by (rule mp) | ||
+ | have 6: "(r ⟶ s)" using 5 3 by (rule mp) | ||
+ | show "s" using 6 2 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | lemma ej_10: joslopjim4 marcabcar1 | ||
+ | assumes "p ⟶ (q ⟶ (r ⟶ s))" | ||
+ | shows "r ⟶ (q ⟶ (p ⟶ s))" | ||
+ | proof (rule impI) | ||
+ | assume "r" | ||
+ | show "q⟶(p⟶s)" | ||
+ | proof (rule impI) | ||
+ | assume "q" | ||
+ | show "p⟶s" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | have "q ⟶ (r ⟶ s)" using `p ⟶ (q ⟶ (r ⟶ s))` `p` by (rule mp) | ||
+ | have "r⟶s" using `q ⟶ (r ⟶ s)` `q` by (rule mp) | ||
+ | show "s" using `r-->s` `r` by (rule mp) | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 308: | Línea 533: | ||
} | } | ||
thus "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" by (rule impI) | thus "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_11: marmedmar3 | ||
+ | "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | ||
+ | proof | ||
+ | assume 1: "(p ⟶ (q ⟶ r))" | ||
+ | show "((p ⟶ q) ⟶ (p ⟶ r))" | ||
+ | proof | ||
+ | assume 2: "(p ⟶ q)" | ||
+ | show "(p ⟶ r)" | ||
+ | proof | ||
+ | assume 3: "p" | ||
+ | have 4: "(q ⟶ r)" using 1 3 by (rule mp) | ||
+ | have 5: "q" using 2 3 by (rule mp) | ||
+ | show "r" using 4 5 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | lemma ej_11: joslopjim4 marcabcar1 | ||
+ | shows "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | ||
+ | proof (rule impI) | ||
+ | assume "p⟶(q⟶r)" | ||
+ | show "(p⟶q)⟶(p⟶r)" | ||
+ | proof (rule impI) | ||
+ | assume "p⟶q" | ||
+ | show "p⟶r" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | have "q" using `p⟶q` `p` by (rule mp) | ||
+ | have "q⟶r" using `p⟶(q⟶r)` `p` by (rule mp) | ||
+ | show "r" using `q⟶r` `q` by (rule mp) | ||
+ | qed | ||
+ | qed | ||
qed | qed | ||
Línea 330: | Línea 589: | ||
} | } | ||
thus "p ⟶ (q ⟶ r)" by (rule impI) | thus "p ⟶ (q ⟶ r)" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_12: joslopjim4 marcabcar1 | ||
+ | assumes "(p ⟶ q) ⟶ r" | ||
+ | shows "p ⟶ (q ⟶ r)" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | show "q⟶r" | ||
+ | proof (rule impI) | ||
+ | assume "q" | ||
+ | have "p⟶q" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | show "q" using `q` by this | ||
+ | qed | ||
+ | show "r" using `(p ⟶ q) ⟶ r` `p⟶q` by (rule mp) | ||
+ | qed | ||
qed | qed | ||
Línea 339: | Línea 615: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_13: | + | lemma ejercicio_13: carmarria marmedmar3 |
+ | assumes "p" | ||
+ | "q" | ||
+ | shows "p ∧ q" | ||
+ | |||
+ | proof- | ||
+ | show "p \<and> q" using assms(1) assms(2) by (rule conjI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_13: joslopjim4 marcabcar1 | ||
assumes "p" | assumes "p" | ||
"q" | "q" | ||
shows "p ∧ q" | shows "p ∧ q" | ||
− | + | proof- | |
+ | show "p∧q" using `p` `q` by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 350: | Línea 637: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_14: | + | lemma ejercicio_14: carmarria marmedmar3 |
+ | assumes "p ∧ q" | ||
+ | shows "p" | ||
+ | |||
+ | proof - | ||
+ | show "p" using assms by (rule conjunct1) | ||
+ | qed | ||
+ | |||
+ | lemma ej_14: joslopjim4 marcabcar1 | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "p" | shows "p" | ||
− | + | proof - | |
+ | show "p" using assms by (rule conjunct1) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 360: | Línea 657: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_15: | + | lemma ejercicio_15: carmarria marmedmar3 |
+ | assumes "p ∧ q" | ||
+ | shows "q" | ||
+ | |||
+ | proof - | ||
+ | show q using assms(1) by (rule conjunct2) | ||
+ | qed | ||
+ | |||
+ | lemma ej_15: joslopjim4 marcabcar1 | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "q" | shows "q" | ||
− | + | proof- | |
+ | show "q" using assms by (rule conjunct2) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 370: | Línea 678: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_16: | + | lemma ejercicio_16: carmarria marmedmar3 |
+ | assumes 1: "p ∧ (q ∧ r)" | ||
+ | shows "(p ∧ q) ∧ r" | ||
+ | proof - | ||
+ | have 2: "q \<and> r" using 1 by (rule conjunct2) | ||
+ | have 3: p using 1 by (rule conjunct1) | ||
+ | have 4: q using 2 by (rule conjunct1) | ||
+ | have 5: r using 2 by (rule conjunct2) | ||
+ | have 6: "p \<and> q" using 3 4 by (rule conjI) | ||
+ | show "(p \<and> q) \<and> r" using 6 5 by (rule conjI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_16: joslopjim4 marcabcar1 | ||
assumes "p ∧ (q ∧ r)" | assumes "p ∧ (q ∧ r)" | ||
shows "(p ∧ q) ∧ r" | shows "(p ∧ q) ∧ r" | ||
− | + | proof- | |
+ | have "p" using assms by (rule conjunct1) | ||
+ | have "q∧r" using assms by (rule conjunct2) | ||
+ | have "q" using `q∧r` by (rule conjunct1) | ||
+ | have "r" using `q∧r` by (rule conjunct2) | ||
+ | have "p∧q" using `p` `q` by (rule conjI) | ||
+ | show "(p∧q)∧r" using `p∧q` `r` by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 383: | Línea 710: | ||
assumes "(p ∧ q) ∧ r" | assumes "(p ∧ q) ∧ r" | ||
shows "p ∧ (q ∧ r)" | shows "p ∧ (q ∧ r)" | ||
− | + | proof (rule conjI) | |
+ | have "p ∧ q" using assms .. | ||
+ | thus "p" .. | ||
+ | next | ||
+ | show "q ∧ r" | ||
+ | proof (rule conjI) | ||
+ | have "p ∧ q" using assms .. | ||
+ | thus "q" .. | ||
+ | next | ||
+ | show "r" using assms .. | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_17: carmarria marmedmar3 | ||
+ | assumes 1:"(p ∧ q) ∧ r" | ||
+ | shows "p ∧ (q ∧ r)" | ||
+ | proof- | ||
+ | have 2:"p \<and> q" using 1 by (rule conjunct1) | ||
+ | have 3: r using 1 by (rule conjunct2) | ||
+ | have 4: p using 2 by (rule conjunct1) | ||
+ | have 5: q using 2 by (rule conjunct2) | ||
+ | have 6: "q \<and> r" using 5 3 by (rule conjI) | ||
+ | show "p \<and> (q \<and> r)" using 4 6 by (rule conjI) | ||
+ | qed | ||
+ | |||
+ | |||
+ | lemma ej_17: joslopjim4 marcabcar1 | ||
+ | assumes "(p ∧ q) ∧ r" | ||
+ | shows "p ∧ (q ∧ r)" | ||
+ | proof- | ||
+ | have "p∧q" using assms by (rule conjunct1) | ||
+ | have "r" using assms by (rule conjunct2) | ||
+ | have "p" using `p∧q` by (rule conjunct1) | ||
+ | have "q" using `p∧q` by (rule conjunct2) | ||
+ | have "q∧r" using `q` `r` by (rule conjI) | ||
+ | show "p∧(q∧r)" using `p` `q∧r` by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 390: | Línea 753: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_18: | + | lemma ejercicio_18: carmarria |
+ | assumes "p ∧ q" | ||
+ | shows "p ⟶ q" | ||
+ | proof - | ||
+ | {assume p | ||
+ | have q using assms(1) by (rule conjunct2) | ||
+ | } | ||
+ | thus "p ⟶ q" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_18: marmedmar3 | ||
+ | assumes "p ∧ q" | ||
+ | shows "p ⟶ q" | ||
+ | proof | ||
+ | assume "p" | ||
+ | show "q" using assms by (rule conjunct2) | ||
+ | qed | ||
+ | |||
+ | lemma ej_18: joslopjim4 marcabcar1 | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | proof (rule impI) | |
+ | assume "p" | ||
+ | show "q" using assms by (rule conjunct2) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 400: | Línea 784: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_19: | + | lemma ejercicio_19: carmarria |
+ | assumes 1: "(p ⟶ q) ∧ (p ⟶ r)" | ||
+ | shows "p ⟶ q ∧ r" | ||
+ | proof - | ||
+ | {assume 2: p | ||
+ | have 3: "p ⟶ q" using 1 by (rule conjunct1) | ||
+ | have 4: "p ⟶ r" using 1 by (rule conjunct2) | ||
+ | have 5: q using 3 2 by (rule mp) | ||
+ | have 6: r using 4 2 by (rule mp) | ||
+ | have 7: "q \<and> r" using 5 6 by (rule conjI) | ||
+ | } | ||
+ | thus "p ⟶ q \<and> r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_19: marmedmar3 | ||
+ | assumes 1: "(p ⟶ q) ∧ (p ⟶ r)" | ||
+ | shows "p ⟶ q ∧ r" | ||
+ | proof | ||
+ | have 2: "(p ⟶ q)" using assms by (rule conjunct1) | ||
+ | have 3: "(p ⟶ r)" using assms by (rule conjunct2) | ||
+ | assume 4: "p" | ||
+ | with `(p ⟶ q)` have 5: "q" by (rule mp) | ||
+ | have 6: "r" using 3 4 by (rule mp) | ||
+ | show "q ∧ r" using 5 6 by (rule conjI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_19: joslopjim4 marcabcar1 | ||
assumes "(p ⟶ q) ∧ (p ⟶ r)" | assumes "(p ⟶ q) ∧ (p ⟶ r)" | ||
shows "p ⟶ q ∧ r" | shows "p ⟶ q ∧ r" | ||
− | + | proof (rule impI) | |
+ | assume "p" | ||
+ | have "p⟶q" using assms by (rule conjunct1) | ||
+ | have "q" using `p⟶q` `p` by (rule mp) | ||
+ | have "p⟶r" using assms by (rule conjunct2) | ||
+ | have "r" using `p⟶r` `p` by (rule mp) | ||
+ | show "q∧r" using `q` `r` by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 410: | Línea 827: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_20: | + | lemma ejercicio_20: carmarria |
+ | assumes 1: "p ⟶ q ∧ r" | ||
+ | shows "(p ⟶ q) ∧ (p ⟶ r)" | ||
+ | proof - | ||
+ | {assume 2: p | ||
+ | have 3: "q \<and> r" using 1 2 by (rule mp) | ||
+ | have 4: q using 3 by (rule conjunct1) | ||
+ | } | ||
+ | hence 5: "p ⟶ q" by (rule impI) | ||
+ | {assume 6: p | ||
+ | have 7: "q \<and> r" using 1 6 by (rule mp) | ||
+ | have 8: r using 7 by (rule conjunct2) | ||
+ | } | ||
+ | hence 9: "p ⟶ r" by (rule impI) | ||
+ | show "(p ⟶ q) \<and> (p ⟶ r)" using 5 9 by (rule conjI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_20: joslopjim4 marcabcar1 | ||
assumes "p ⟶ q ∧ r" | assumes "p ⟶ q ∧ r" | ||
shows "(p ⟶ q) ∧ (p ⟶ r)" | shows "(p ⟶ q) ∧ (p ⟶ r)" | ||
− | + | proof- | |
+ | have "p⟶q" | ||
+ | proof | ||
+ | assume "p" | ||
+ | have "q∧r" using assms `p` by (rule mp) | ||
+ | show "q" using `q∧r` by (rule conjunct1) | ||
+ | qed | ||
+ | have "p⟶r" | ||
+ | proof | ||
+ | assume "p" | ||
+ | have "q∧r" using assms `p` by (rule mp) | ||
+ | show "r" using `q∧r` by (rule conjunct2) | ||
+ | qed | ||
+ | show "(p⟶q)∧(p⟶r)" using `p⟶q` `p⟶r` by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 420: | Línea 868: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_21: | + | lemma ejercicio_21: carmarria |
+ | assumes 1: "p ⟶ (q ⟶ r)" | ||
+ | shows "p ∧ q ⟶ r" | ||
+ | proof - | ||
+ | {assume 2: "p \<and> q" | ||
+ | have 3: p using 2 by (rule conjunct1) | ||
+ | have 4: q using 2 by (rule conjunct2) | ||
+ | have 5: "q ⟶ r" using 1 3 by (rule mp) | ||
+ | have 6: r using 5 4 by (rule mp) | ||
+ | } | ||
+ | thus "p ∧ q ⟶ r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_21: marmedmar3 | ||
+ | assumes "p ⟶ (q ⟶ r)" | ||
+ | shows "p ∧ q ⟶ r" | ||
+ | proof | ||
+ | assume "p ∧ q" | ||
+ | hence "p" by (rule conjunct1) | ||
+ | with assms have "(q ⟶ r)" by (rule mp) | ||
+ | have "q" using `p ∧ q` by (rule conjunct2) | ||
+ | with `(q ⟶ r)` show "r" by (rule mp) | ||
+ | qed | ||
+ | |||
+ | lemma ej_21: joslopjim4 marcabcar1 | ||
assumes "p ⟶ (q ⟶ r)" | assumes "p ⟶ (q ⟶ r)" | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
− | + | proof (rule impI) | |
+ | assume "p∧q" | ||
+ | have "p" using `p∧q` by (rule conjunct1) | ||
+ | have "q" using `p∧q` by (rule conjunct2) | ||
+ | have "q⟶r" using assms `p` by (rule mp) | ||
+ | show "r" using `q⟶r` `q` by (rule mp) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 430: | Línea 908: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_22: | + | lemma ejercicio_22: carmarria |
+ | assumes "p ∧ q ⟶ r" | ||
+ | shows "p ⟶ (q ⟶ r)" | ||
+ | proof - | ||
+ | {assume p | ||
+ | {assume q | ||
+ | have "p \<and> q" using `p` `q` by (rule conjI) | ||
+ | have r using assms(1) `p \<and> q` by (rule mp) | ||
+ | } | ||
+ | hence "q ⟶ r" by (rule impI) | ||
+ | } | ||
+ | thus "p ⟶ (q ⟶ r)" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_22: marmedmar3 | ||
+ | assumes "p ∧ q ⟶ r" | ||
+ | shows "p ⟶ (q ⟶ r)" | ||
+ | proof | ||
+ | assume "p" | ||
+ | show "(q ⟶ r)" | ||
+ | proof | ||
+ | assume "q" | ||
+ | with `p` have "p ∧ q" by (rule conjI) | ||
+ | with assms show "r" by (rule mp) | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | lemma ej_22: joslopjim4 marcabcar1 | ||
assumes "p ∧ q ⟶ r" | assumes "p ∧ q ⟶ r" | ||
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
− | + | proof (rule impI) | |
+ | assume "p" | ||
+ | show "q⟶r" | ||
+ | proof (rule impI) | ||
+ | assume "q" | ||
+ | have "p∧q" using `p` `q` by (rule conjI) | ||
+ | show "r" using assms `p∧q` by (rule mp) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 440: | Línea 953: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_23: | + | lemma ejercicio_23: carmarria |
+ | assumes "(p ⟶ q) ⟶ r" | ||
+ | shows "p ∧ q ⟶ r" | ||
+ | proof - | ||
+ | {assume "p \<and> q" | ||
+ | {assume p | ||
+ | have q using `p \<and> q` by (rule conjunct2) | ||
+ | } | ||
+ | hence "p ⟶ q" by (rule impI) | ||
+ | have r using assms(1) `p ⟶ q` by (rule mp) | ||
+ | } | ||
+ | thus "p \<and> q ⟶ r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_23: marmedmar3 | ||
+ | assumes "(p ⟶ q) ⟶ r" | ||
+ | shows "p ∧ q ⟶ r" | ||
+ | proof | ||
+ | assume "p ∧ q" | ||
+ | have "p" using `p ∧ q` by (rule conjunct1) | ||
+ | have "q" using `p ∧ q` by (rule conjunct2) | ||
+ | hence "(p ⟶ q)" by (rule impI) | ||
+ | with assms show "r" by (rule mp) | ||
+ | qed | ||
+ | |||
+ | lemma ej_23: joslopjim4 marcabcar1 | ||
assumes "(p ⟶ q) ⟶ r" | assumes "(p ⟶ q) ⟶ r" | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
− | + | proof (rule impI) | |
+ | assume "p∧q" | ||
+ | have "p⟶q" | ||
+ | proof | ||
+ | assume "p" | ||
+ | show "q" using `p∧q` by (rule conjunct2) | ||
+ | qed | ||
+ | show "r" using assms `p⟶q` by (rule mp) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 450: | Línea 996: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_24: | + | lemma ejercicio_24: carmarria |
+ | assumes 1: "p ∧ (q ⟶ r)" | ||
+ | shows "(p ⟶ q) ⟶ r" | ||
+ | proof - | ||
+ | {assume 2: "p ⟶ q" | ||
+ | have 3: p using 1 by (rule conjunct1) | ||
+ | have 4: "q ⟶ r" using 1 by (rule conjunct2) | ||
+ | have 5: q using 2 3 by (rule mp) | ||
+ | have 6: r using 4 5 by (rule mp) | ||
+ | } | ||
+ | thus "(p ⟶ q) ⟶ r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_24: marmedmar3 | ||
+ | assumes "p ∧ (q ⟶ r)" | ||
+ | shows "(p ⟶ q) ⟶ r" | ||
+ | proof | ||
+ | assume "(p ⟶ q)" | ||
+ | have "(q ⟶ r)" using assms by (rule conjunct2) | ||
+ | have "p" using assms by (rule conjunct1) | ||
+ | with `(p ⟶ q)` have "q" by (rule mp) | ||
+ | with `(q ⟶ r)` show "r" by (rule mp) | ||
+ | qed | ||
+ | |||
+ | lemma ej_24: joslopjim4 marcabcar1 | ||
assumes "p ∧ (q ⟶ r)" | assumes "p ∧ (q ⟶ r)" | ||
shows "(p ⟶ q) ⟶ r" | shows "(p ⟶ q) ⟶ r" | ||
− | + | proof (rule impI) | |
+ | assume "p⟶q" | ||
+ | have "p" using assms by (rule conjunct1) | ||
+ | have "q⟶r" using assms by (rule conjunct2) | ||
+ | have "q" using `p⟶q` `p` by (rule mp) | ||
+ | show "r" using `q⟶r` `q` by (rule mp) | ||
+ | qed | ||
section {* Disyunciones *} | section {* Disyunciones *} | ||
Línea 462: | Línea 1038: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_25: | + | lemma ejercicio_25: carmarria |
+ | assumes "p" | ||
+ | shows "p ∨ q" | ||
+ | proof - | ||
+ | show "p | q" using assms(1) by (rule disjI1) | ||
+ | qed | ||
+ | |||
+ | lemma ej_25: joslopjim4 marcabcar1 | ||
assumes "p" | assumes "p" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | proof (rule disjI1) | |
+ | show "p" using assms by this | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 472: | Línea 1057: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_26: | + | lemma ejercicio_26: carmarria |
+ | assumes "q" | ||
+ | shows "p ∨ q" | ||
+ | proof - | ||
+ | show "p | q" using assms(1) by (rule disjI2) | ||
+ | qed | ||
+ | |||
+ | lemma ej_26: joslopjim4 marcabcar1 | ||
assumes "q" | assumes "q" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | proof (rule disjI2) | |
+ | show "q" using assms by this | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 482: | Línea 1076: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_27: | + | lemma ejercicio_27: carmarria |
+ | assumes "p ∨ q" | ||
+ | shows "q ∨ p" | ||
+ | proof - | ||
+ | have "p | q" using assms(1) by this | ||
+ | moreover | ||
+ | {assume p | ||
+ | have "q | p" using `p` by (rule disjI2) | ||
+ | } | ||
+ | moreover | ||
+ | {assume q | ||
+ | have "q | p" using `q` by (rule disjI1) | ||
+ | } | ||
+ | ultimately show "q | p" by (rule disjE) | ||
+ | qed | ||
+ | |||
+ | lemma ej_27: joslopjim4 marcabcar1 | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
shows "q ∨ p" | shows "q ∨ p" | ||
− | + | using assms | |
+ | proof | ||
+ | assume "p" | ||
+ | then show "q∨p" by(rule disjI2) | ||
+ | next | ||
+ | assume "q" | ||
+ | show "q∨p" using `q` by(rule disjI1) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 492: | Línea 1109: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_28: | + | lemma ejercicio_28: carmarria |
+ | assumes "q ⟶ r" | ||
+ | shows "p ∨ q ⟶ p ∨ r" | ||
+ | proof - | ||
+ | {assume "p | q" | ||
+ | moreover | ||
+ | {assume p | ||
+ | have "p | r" using `p` by (rule disjI1) | ||
+ | } | ||
+ | moreover | ||
+ | {assume q | ||
+ | have r using assms(1) `q` by (rule mp) | ||
+ | have "p | r" using `r` by (rule disjI2) | ||
+ | } | ||
+ | ultimately have "p | r" by (rule disjE) | ||
+ | } | ||
+ | thus "p | q ⟶ p | r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_28: joslopjim4 marcabcar1 | ||
assumes "q ⟶ r" | assumes "q ⟶ r" | ||
shows "p ∨ q ⟶ p ∨ r" | shows "p ∨ q ⟶ p ∨ r" | ||
− | + | proof (rule impI) | |
+ | assume "p∨q" | ||
+ | show "p∨r" | ||
+ | using `p∨q` | ||
+ | proof | ||
+ | assume "p" | ||
+ | show "p∨r" using `p` by (rule disjI1) | ||
+ | next | ||
+ | assume "q" | ||
+ | have "r" using assms `q` by (rule mp) | ||
+ | show "p∨r" using `r` by (rule disjI2) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 502: | Línea 1150: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_29: | + | lemma ejercicio_29: carmarria |
+ | assumes "p ∨ p" | ||
+ | shows "p" | ||
+ | proof - | ||
+ | have "p | p" using assms(1) by this | ||
+ | moreover | ||
+ | {assume p | ||
+ | } | ||
+ | moreover | ||
+ | {assume p | ||
+ | } | ||
+ | ultimately show p by (rule disjE) | ||
+ | qed | ||
+ | |||
+ | lemma ej_29: joslopjim4 | ||
+ | assumes "p ∨ p" | ||
+ | shows "p" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬p" | ||
+ | show False | ||
+ | using assms | ||
+ | proof | ||
+ | assume "p" | ||
+ | show False using `¬p` `p` by (rule notE) | ||
+ | next | ||
+ | assume "p" | ||
+ | show False using `¬p` `p` by (rule notE) | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_29: marcabcar1 | ||
assumes "p ∨ p" | assumes "p ∨ p" | ||
shows "p" | shows "p" | ||
− | + | using `p ∨ p` | |
+ | proof (rule disjE) | ||
+ | {assume "p" | ||
+ | show "p" using `p` by this} | ||
+ | next | ||
+ | {assume "p" | ||
+ | show "p" using `p` by this} | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 512: | Línea 1197: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_30: | + | lemma ejercicio_30: carmarria |
assumes "p" | assumes "p" | ||
shows "p ∨ p" | shows "p ∨ p" | ||
− | + | proof - | |
+ | show "p | p" using assms(1) by (rule disjI1) | ||
+ | qed | ||
+ | |||
+ | lemma ej_30: joslopjim4 marcabcar1 | ||
+ | assumes "p" | ||
+ | shows "p ∨ p" | ||
+ | proof (rule disjI1) | ||
+ | show "p" using assms by this | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 522: | Línea 1216: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_31: | + | lemma ejercicio_31: carmarria |
+ | assumes 1: "p ∨ (q ∨ r)" | ||
+ | shows "(p ∨ q) ∨ r" | ||
+ | proof - | ||
+ | have "p | (q | r)" using 1 by this | ||
+ | moreover {assume 2: p | ||
+ | have 3: "p | q" using 2 by (rule disjI1) | ||
+ | have 4: "(p | q) | r" using 3 by (rule disjI1) | ||
+ | } | ||
+ | moreover {assume 5: "q | r" | ||
+ | moreover {assume 6: q | ||
+ | have 7: "p | q" using 6 by (rule disjI2) | ||
+ | have 8: "(p | q) | r " using 7 by (rule disjI1) | ||
+ | } | ||
+ | moreover {assume 9: r | ||
+ | have 10: "(p | q) | r " using 9 by (rule disjI2) | ||
+ | } | ||
+ | ultimately have 11: "(p | q) | r " by (rule disjE) | ||
+ | } | ||
+ | ultimately show "(p | q) | r " by (rule disjE) | ||
+ | qed | ||
+ | |||
+ | lemma ej_31: joslopjim4 marcabcar1 | ||
assumes "p ∨ (q ∨ r)" | assumes "p ∨ (q ∨ r)" | ||
shows "(p ∨ q) ∨ r" | shows "(p ∨ q) ∨ r" | ||
− | + | using assms | |
+ | proof | ||
+ | assume "p" | ||
+ | have "p∨q" using `p` by (rule disjI1) | ||
+ | thus "(p ∨ q) ∨ r" by (rule disjI1) | ||
+ | next | ||
+ | assume "q∨r" | ||
+ | show "(p ∨ q) ∨ r" | ||
+ | using `q∨r` | ||
+ | proof | ||
+ | assume "q" | ||
+ | have "p∨q" using `q` by (rule disjI2) | ||
+ | show "(p ∨ q) ∨ r" using `p∨q` by (rule disjI1) | ||
+ | next | ||
+ | assume "r" | ||
+ | show "(p ∨ q) ∨ r" using `r` by (rule disjI2) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 532: | Línea 1265: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_32: | + | lemma ejercicio_32: carmarria |
+ | assumes 1: "(p ∨ q) ∨ r" | ||
+ | shows "p ∨ (q ∨ r)" | ||
+ | proof - | ||
+ | have "(p | q) | r" using 1 by this | ||
+ | moreover {assume 2: "p | q" | ||
+ | moreover {assume 3: p | ||
+ | have 4: "p | (q | r)" using 3 by (rule disjI1) | ||
+ | } | ||
+ | moreover {assume 5: q | ||
+ | have 6: "q | r" using 5 by (rule disjI1) | ||
+ | have 7: "p | (q | r)" using 6 by (rule disjI2) | ||
+ | } | ||
+ | ultimately have 8: " p | (q | r)" by (rule disjE) | ||
+ | } | ||
+ | moreover {assume 9: r | ||
+ | have 10: "q | r" using 9 by (rule disjI2) | ||
+ | have 11: "p | (q | r)" using 10 by (rule disjI2) | ||
+ | } | ||
+ | ultimately show "p | (q | r)" by (rule disjE) | ||
+ | qed | ||
+ | |||
+ | lemma ej_32: joslopjim4 marcabcar1 | ||
assumes "(p ∨ q) ∨ r" | assumes "(p ∨ q) ∨ r" | ||
shows "p ∨ (q ∨ r)" | shows "p ∨ (q ∨ r)" | ||
− | + | using assms | |
+ | proof | ||
+ | assume "p∨q" | ||
+ | show "p ∨ (q ∨ r)" | ||
+ | using `p∨q` | ||
+ | proof | ||
+ | assume "p" | ||
+ | show "p ∨ (q ∨ r)" using `p` by (rule disjI1) | ||
+ | next | ||
+ | assume "q" | ||
+ | have "q∨r" using `q` by (rule disjI1) | ||
+ | show "p ∨ (q ∨ r)" using `q∨r` by (rule disjI2) | ||
+ | qed | ||
+ | next | ||
+ | assume "r" | ||
+ | have "q∨r" using `r` by (rule disjI2) | ||
+ | show "p ∨ (q ∨ r)" using `q∨r` by (rule disjI2) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 542: | Línea 1314: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_33: | + | lemma ejercicio_33: carmarria |
+ | assumes 1: "p ∧ (q ∨ r)" | ||
+ | shows "(p ∧ q) ∨ (p ∧ r)" | ||
+ | proof - | ||
+ | have 2: p using 1 by (rule conjunct1) | ||
+ | have 3: "q | r" using 1 by (rule conjunct2) | ||
+ | moreover {assume 4: q | ||
+ | have 5: "p & q" using 2 4 by (rule conjI) | ||
+ | have 6: "(p & q) | (p & r)" using 5 by (rule disjI1) | ||
+ | } | ||
+ | moreover {assume 7: r | ||
+ | have 8: "p & r" using 2 7 by (rule conjI) | ||
+ | have 9: "(p & q) | (p & r)" using 8 by (rule disjI2) | ||
+ | } | ||
+ | ultimately show "(p & q) | (p & r)" by (rule disjE) | ||
+ | qed | ||
+ | |||
+ | lemma ej_33: joslopjim4 marcabcar1 | ||
assumes "p ∧ (q ∨ r)" | assumes "p ∧ (q ∨ r)" | ||
shows "(p ∧ q) ∨ (p ∧ r)" | shows "(p ∧ q) ∨ (p ∧ r)" | ||
− | + | proof- | |
+ | have "p" using assms by (rule conjunct1) | ||
+ | have "q∨r" using assms by (rule conjunct2) | ||
+ | show "(p ∧ q) ∨ (p ∧ r)" | ||
+ | using `q∨r` | ||
+ | proof (rule disjE) | ||
+ | assume "q" | ||
+ | have "p∧q" using `p` `q` by (rule conjI) | ||
+ | show "(p ∧ q) ∨ (p ∧ r)" using `p∧q` by (rule disjI1) | ||
+ | next | ||
+ | assume "r" | ||
+ | have "p∧r" using `p` `r` by (rule conjI) | ||
+ | show "(p ∧ q) ∨ (p ∧ r)" using `p∧r` by (rule disjI2) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 552: | Línea 1355: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_34: | + | lemma ejercicio_34: carmarria |
+ | assumes 1: "(p ∧ q) ∨ (p ∧ r)" | ||
+ | shows "p ∧ (q ∨ r)" | ||
+ | proof - | ||
+ | have "(p & q) | (p & r)" using 1 by this | ||
+ | moreover {assume 2: "p & q" | ||
+ | have 3: p using 2 by (rule conjunct1) | ||
+ | have 4: q using 2 by (rule conjunct2) | ||
+ | have 5: "q | r" using 4 by (rule disjI1) | ||
+ | have 6: "p & (q | r)" using 3 5 by (rule conjI) | ||
+ | } | ||
+ | moreover {assume 7: "p & r" | ||
+ | have 8: p using 7 by (rule conjunct1) | ||
+ | have 9: r using 7 by (rule conjunct2) | ||
+ | have 10: "q | r" using 9 by (rule disjI2) | ||
+ | have 11: "p & (q | r)" using 8 10 by (rule conjI) | ||
+ | } | ||
+ | ultimately show "p & (q | r)" by (rule disjE) | ||
+ | qed | ||
+ | |||
+ | lemma ej_34: joslopjim4 marcabcar1 | ||
assumes "(p ∧ q) ∨ (p ∧ r)" | assumes "(p ∧ q) ∨ (p ∧ r)" | ||
shows "p ∧ (q ∨ r)" | shows "p ∧ (q ∨ r)" | ||
− | + | using assms | |
+ | proof | ||
+ | assume "p∧q" | ||
+ | have "p" using `p∧q` by (rule conjunct1) | ||
+ | have "q" using `p∧q` by (rule conjunct2) | ||
+ | have "q∨r" using `q` by (rule disjI1) | ||
+ | show "p∧(q∨r)" using `p` `q∨r` by (rule conjI) | ||
+ | next | ||
+ | assume "p∧r" | ||
+ | have "p" using `p∧r` by (rule conjunct1) | ||
+ | have "r" using `p∧r` by (rule conjunct2) | ||
+ | have "q∨r" using `r` by (rule disjI2) | ||
+ | show "p∧(q∨r)" using `p` `q∨r` by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 562: | Línea 1398: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_35: | + | lemma ejercicio_35: carmarria |
+ | assumes 1: "p ∨ (q ∧ r)" | ||
+ | shows "(p ∨ q) ∧ (p ∨ r)" | ||
+ | proof - | ||
+ | have "p | (q & r)" using 1 by this | ||
+ | moreover {assume 2: p | ||
+ | have 3: " p | q" using 2 by (rule disjI1) | ||
+ | have 4: " p | r" using 2 by (rule disjI1) | ||
+ | have 5: "(p | q) & (p | r)" using 3 4 by (rule conjI) | ||
+ | } | ||
+ | moreover {assume 6: "q & r" | ||
+ | have 7: q using 6 by (rule conjunct1) | ||
+ | have 8: r using 6 by (rule conjunct2) | ||
+ | have 9: "p | q" using 7 by (rule disjI2) | ||
+ | have 10: "p | r" using 8 by (rule disjI2) | ||
+ | have 11: "(p | q) & (p | r)" using 9 10 by (rule conjI) | ||
+ | } | ||
+ | ultimately show "(p | q) & (p | r)" by (rule disjE) | ||
+ | qed | ||
+ | |||
+ | lemma ej_35: joslopjim4 marcabcar1 | ||
assumes "p ∨ (q ∧ r)" | assumes "p ∨ (q ∧ r)" | ||
shows "(p ∨ q) ∧ (p ∨ r)" | shows "(p ∨ q) ∧ (p ∨ r)" | ||
− | + | using assms | |
+ | proof (rule disjE) | ||
+ | assume "p" | ||
+ | have "p∨q" using `p` by (rule disjI1) | ||
+ | have "p∨r" using `p` by (rule disjI1) | ||
+ | show "(p ∨ q) ∧ (p ∨ r)" using `p∨q` `p∨r` by (rule conjI) | ||
+ | next | ||
+ | assume "q∧r" | ||
+ | have "q" using `q∧r` by (rule conjunct1) | ||
+ | have "r" using `q∧r` by (rule conjunct2) | ||
+ | have "p∨q" using `q` by (rule disjI2) | ||
+ | have "p∨r" using `r` by (rule disjI2) | ||
+ | show "(p ∨ q) ∧ (p ∨ r)" using `p∨q` `p∨r` by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 572: | Línea 1441: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_36: | + | lemma ejercicio_36: carmarria |
+ | assumes 1: "(p ∨ q) ∧ (p ∨ r)" | ||
+ | shows "p ∨ (q ∧ r)" | ||
+ | proof - | ||
+ | have 2: "p | q" using 1 by (rule conjunct1) | ||
+ | moreover {assume 3: p | ||
+ | have 4: "p | (q & r)" using 3 by (rule disjI1) | ||
+ | } | ||
+ | moreover {assume 5: q | ||
+ | have 6: "p | r" using 1 by (rule conjunct2) | ||
+ | moreover {assume 7: p | ||
+ | have 8: "p | (q & r)" using 7 by (rule disjI1) | ||
+ | } | ||
+ | moreover {assume 9: r | ||
+ | have 10: "q & r" using 5 9 by (rule conjI) | ||
+ | have 11: "p | (q & r)" using 10 by (rule disjI2) | ||
+ | } | ||
+ | ultimately have 12: "p | (q & r)" by (rule disjE) | ||
+ | } | ||
+ | ultimately show "p | (q & r)" by (rule disjE) | ||
+ | qed | ||
+ | |||
+ | lemma ej_36: joslopjim4 marcabcar1 | ||
assumes "(p ∨ q) ∧ (p ∨ r)" | assumes "(p ∨ q) ∧ (p ∨ r)" | ||
shows "p ∨ (q ∧ r)" | shows "p ∨ (q ∧ r)" | ||
− | + | proof- | |
+ | have "p∨q" using assms by (rule conjunct1) | ||
+ | have "p∨r" using assms by (rule conjunct2) | ||
+ | show "p∨(q ∧ r)" | ||
+ | using `p∨r` | ||
+ | proof | ||
+ | assume "p" | ||
+ | show "p∨(q ∧ r)" using `p` by (rule disjI1) | ||
+ | next | ||
+ | assume "r" | ||
+ | show "p∨(q ∧ r)" | ||
+ | using `p∨q` | ||
+ | proof | ||
+ | assume "p" | ||
+ | show "p∨(q ∧ r)" using `p` by (rule disjI1) | ||
+ | next | ||
+ | assume "q" | ||
+ | have "q∧r" using `q` `r` by (rule conjI) | ||
+ | show "p∨(q ∧ r)" using `q∧r` by (rule disjI2) | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 582: | Línea 1494: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_37: | + | lemma ejercicio_37: carmarria |
+ | assumes 1: "(p ⟶ r) ∧ (q ⟶ r)" | ||
+ | shows "p ∨ q ⟶ r" | ||
+ | proof - | ||
+ | have 2: "p ⟶ r" using 1 by (rule conjunct1) | ||
+ | have 3: "q ⟶ r" using 1 by (rule conjunct2) | ||
+ | {assume 4: "p | q" | ||
+ | moreover {assume 5: p | ||
+ | have 6: r using 2 5 by (rule mp) | ||
+ | } | ||
+ | moreover {assume 7: q | ||
+ | have 8: r using 3 7 by (rule mp) | ||
+ | } | ||
+ | ultimately have r by (rule disjE) | ||
+ | } | ||
+ | thus "p | q ⟶ r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_37: joslopjim4 marcabcar1 | ||
assumes "(p ⟶ r) ∧ (q ⟶ r)" | assumes "(p ⟶ r) ∧ (q ⟶ r)" | ||
shows "p ∨ q ⟶ r" | shows "p ∨ q ⟶ r" | ||
− | + | proof (rule impI) | |
+ | assume "p∨q" | ||
+ | have "p⟶r" using assms by (rule conjunct1) | ||
+ | have "q⟶r" using assms by (rule conjunct2) | ||
+ | show "r" | ||
+ | using `p∨q` | ||
+ | proof | ||
+ | assume "p" | ||
+ | show "r" using `p⟶r` `p` by (rule mp) | ||
+ | next | ||
+ | assume "q" | ||
+ | show "r" using `q⟶r` `q` by (rule mp) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 592: | Línea 1535: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_38: | + | lemma ejercicio_38: carmarria |
+ | assumes 1: "p ∨ q ⟶ r" | ||
+ | shows "(p ⟶ r) ∧ (q ⟶ r)" | ||
+ | proof - | ||
+ | {assume 2: p | ||
+ | have 3: "p | q" using 2 by (rule disjI1) | ||
+ | have 4: r using 1 3 by (rule mp) | ||
+ | } | ||
+ | hence 5: "p ⟶ r" by (rule impI) | ||
+ | {assume 6: q | ||
+ | have 7: "p | q" using 6 by (rule disjI2) | ||
+ | have 8: r using 1 7 by (rule mp) | ||
+ | } | ||
+ | hence 9: "q ⟶ r" by (rule impI) | ||
+ | show "(p ⟶ r) & (q ⟶ r)" using 5 9 by (rule conjI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_38: joslopjim4 marcabcar1 | ||
assumes "p ∨ q ⟶ r" | assumes "p ∨ q ⟶ r" | ||
shows "(p ⟶ r) ∧ (q ⟶ r)" | shows "(p ⟶ r) ∧ (q ⟶ r)" | ||
− | + | proof- | |
+ | have "p⟶r" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | have "p∨q" using `p` by (rule disjI1) | ||
+ | show "r" using assms `p∨q` by (rule mp) | ||
+ | qed | ||
+ | have "q⟶r" | ||
+ | proof (rule impI) | ||
+ | assume "q" | ||
+ | have "p∨q" using `q` by (rule disjI2) | ||
+ | show "r" using assms `p∨q` by (rule mp) | ||
+ | qed | ||
+ | show "(p ⟶ r) ∧ (q ⟶ r)" using `p⟶r` `q⟶r` by (rule conjI) | ||
+ | qed | ||
section {* Negaciones *} | section {* Negaciones *} | ||
Línea 604: | Línea 1578: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_39: | + | lemma ejercicio_39: carmarria |
+ | assumes "p" | ||
+ | shows "¬¬p" | ||
+ | proof - | ||
+ | show "~~p" using assms(1) by (rule notnotI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_39: joslopjim4 marcabcar1 | ||
assumes "p" | assumes "p" | ||
shows "¬¬p" | shows "¬¬p" | ||
− | + | proof- | |
+ | show "¬¬p" using assms by (rule notnotI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 614: | Línea 1597: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_40: | + | lemma ejercicio_40: carmarria |
+ | assumes "¬p" | ||
+ | shows "p ⟶ q" | ||
+ | proof - | ||
+ | {assume p | ||
+ | have "~p" using assms(1) by this | ||
+ | have False using `~p` `p` by (rule notE) | ||
+ | have q using `False` by (rule FalseE) | ||
+ | } | ||
+ | thus "p ⟶ q" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_40: joslopjim4 marcabcar1 | ||
assumes "¬p" | assumes "¬p" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | proof (rule impI) | |
+ | assume "p" | ||
+ | show "q" using assms `p` by (rule notE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 624: | Línea 1622: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_41: | + | lemma ejercicio_41: carmarria |
+ | assumes 1: "p ⟶ q" | ||
+ | shows "¬q ⟶ ¬p" | ||
+ | proof - | ||
+ | {assume 2: "~q" | ||
+ | have 3: "~p" using 1 2 by (rule mt) | ||
+ | } | ||
+ | thus 4: "~q ⟶ ~p" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_41: joslopjim4 marcabcar1 | ||
assumes "p ⟶ q" | assumes "p ⟶ q" | ||
shows "¬q ⟶ ¬p" | shows "¬q ⟶ ¬p" | ||
− | + | proof (rule impI) | |
+ | assume "¬q" | ||
+ | show "¬p" using assms `¬q` by (rule mt) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 634: | Línea 1645: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_42: | + | lemma ejercicio_42: carmarria |
+ | assumes 1: "p∨q" and | ||
+ | 2: "¬q" | ||
+ | shows "p" | ||
+ | proof - | ||
+ | have " p | q" using 1 by this | ||
+ | moreover {assume 3: p | ||
+ | } | ||
+ | moreover {assume 4: q | ||
+ | have 5: False using 2 4 by (rule notE) | ||
+ | have 6: p using 5 by (rule FalseE) | ||
+ | } | ||
+ | ultimately show p by (rule disjE) | ||
+ | qed | ||
+ | |||
+ | lemma ej_42: joslopjim4 marcabcar1 | ||
assumes "p∨q" | assumes "p∨q" | ||
"¬q" | "¬q" | ||
shows "p" | shows "p" | ||
− | + | using assms(1) | |
+ | proof | ||
+ | assume "p" | ||
+ | show "p" using `p` by this | ||
+ | next | ||
+ | assume "q" | ||
+ | show "p" using assms(2) `q` by (rule notE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
− | Ejercicio | + | Ejercicio 43. Demostrar |
p ∨ q, ¬p ⊢ q | p ∨ q, ¬p ⊢ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_43: | + | lemma ejercicio_43: carmarria |
+ | assumes 1: "p ∨ q" and | ||
+ | 2: "¬p" | ||
+ | shows "q" | ||
+ | proof - | ||
+ | have " p | q" using 1 by this | ||
+ | moreover {assume 3: p | ||
+ | have 4: False using 2 3 by (rule notE) | ||
+ | have 5: q using 4 by (rule FalseE) | ||
+ | } | ||
+ | moreover {assume 6: q | ||
+ | } | ||
+ | ultimately show q by (rule disjE) | ||
+ | qed | ||
+ | |||
+ | lemma ej_43: joslopjim4 marcabcar1 | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
"¬p" | "¬p" | ||
shows "q" | shows "q" | ||
− | + | using assms(1) | |
+ | proof | ||
+ | assume "p" | ||
+ | show "q" using assms(2) `p` by (rule notE) | ||
+ | next | ||
+ | assume "q" | ||
+ | show "q" using `q` by this | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
− | Ejercicio | + | Ejercicio 44. Demostrar |
p ∨ q ⊢ ¬(¬p ∧ ¬q) | p ∨ q ⊢ ¬(¬p ∧ ¬q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_44: | + | lemma ejercicio_44: carmarria |
− | assumes "p ∨ q" | + | assumes 1: "p ∨ q" |
shows "¬(¬p ∧ ¬q)" | shows "¬(¬p ∧ ¬q)" | ||
− | + | proof - | |
+ | have "p | q" using 1 by this | ||
+ | moreover {assume 2: p | ||
+ | {assume 3:"~p & ~q" | ||
+ | have 4: "~p" using 3 by (rule conjunct1) | ||
+ | have 5: False using 4 2 by (rule notE) | ||
+ | } | ||
+ | hence 6: "~(~p & ~q)" by (rule notI) | ||
+ | } | ||
+ | moreover {assume 7: q | ||
+ | {assume 8: "~p & ~q" | ||
+ | have 9: "~q" using 8 by (rule conjunct2) | ||
+ | have 10: False using 9 7 by (rule notE) | ||
+ | } | ||
+ | hence 11: "~(~p & ~q)" by (rule notI) | ||
+ | } | ||
+ | ultimately show "~(~p & ~q)" by (rule disjE) | ||
+ | qed | ||
+ | |||
+ | lemma ej_44: joslopjim4 marcabcar1 | ||
+ | assumes "p∨q" | ||
+ | shows "¬(¬p∧¬q)" | ||
+ | proof (rule notI) | ||
+ | assume "¬p∧¬q" | ||
+ | show False | ||
+ | using assms | ||
+ | proof | ||
+ | assume "p" | ||
+ | have "¬p" using `¬p∧¬q` by (rule conjunct1) | ||
+ | show False using `¬p` `p` by (rule notE) | ||
+ | next | ||
+ | assume "q" | ||
+ | have "¬q" using `¬p∧¬q` by (rule conjunct2) | ||
+ | show False using `¬q` `q` by (rule notE) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 666: | Línea 1756: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_45: | + | lemma ejercicio_45: carmarria |
− | assumes "p ∧ q" | + | assumes 1: "p ∧ q" |
shows "¬(¬p ∨ ¬q)" | shows "¬(¬p ∨ ¬q)" | ||
− | + | proof - | |
+ | {assume 2: "~p | ~q" | ||
+ | moreover {assume 3: "~p" | ||
+ | have 4: p using 1 by (rule conjunct1) | ||
+ | have 5: False using 3 4 by (rule notE) | ||
+ | } | ||
+ | moreover {assume 6: "~q" | ||
+ | have 7: q using 1 by (rule conjunct2) | ||
+ | have 8: False using 6 7 by (rule notE) | ||
+ | } | ||
+ | ultimately have False by (rule disjE) | ||
+ | } | ||
+ | thus "~(~p | ~q)" by (rule notI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_45: joslopjim4 marcabcar1 | ||
+ | assumes "p∧q" | ||
+ | shows "¬(¬p∨¬q)" | ||
+ | proof (rule notI) | ||
+ | assume "¬p∨¬q" | ||
+ | then show False | ||
+ | proof (rule disjE) | ||
+ | assume "¬p" | ||
+ | have "p" using assms by (rule conjunct1) | ||
+ | show False using `¬p` `p` by (rule notE) | ||
+ | next | ||
+ | assume "¬q" | ||
+ | have "q" using assms by (rule conjunct2) | ||
+ | show False using `¬q` `q` by (rule notE) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 676: | Línea 1796: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_46: | + | lemma ejercicio_46: carmarria |
+ | assumes 1: "¬(p ∨ q)" | ||
+ | shows "¬p ∧ ¬q" | ||
+ | proof - | ||
+ | {assume 2: p | ||
+ | have 3: "p | q" using 2 by (rule disjI1) | ||
+ | have 4: False using 1 3 by (rule notE) | ||
+ | } | ||
+ | hence 5: "~p" by (rule notI) | ||
+ | {assume 6: q | ||
+ | have 7: "p | q" using 6 by (rule disjI2) | ||
+ | have 8: False using 1 7 by (rule notE) | ||
+ | } | ||
+ | hence 9: "~q" by (rule notI) | ||
+ | show "~p & ~q" using 5 9 by (rule conjI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_46: joslopjim4 | ||
+ | assumes "¬(p ∨ q)" | ||
+ | shows "¬p ∧ ¬q" | ||
+ | proof (rule conjI) | ||
+ | show "¬p" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬¬p" | ||
+ | have "p" using `¬¬p` by (rule notnotD) | ||
+ | have "p∨q" using `p` by (rule disjI1) | ||
+ | show False using assms `p∨q` by (rule notE) | ||
+ | qed | ||
+ | show "¬q" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬¬q" | ||
+ | have "q" using `¬¬q` by (rule notnotD) | ||
+ | have "p∨q" using `q` by (rule disjI2) | ||
+ | show False using assms `p∨q` by (rule notE) | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_46: marcabcar1 | ||
assumes "¬(p ∨ q)" | assumes "¬(p ∨ q)" | ||
shows "¬p ∧ ¬q" | shows "¬p ∧ ¬q" | ||
− | + | proof (rule conjI) | |
+ | show "¬p" | ||
+ | proof (rule disjE) | ||
+ | show "p∨¬p" by (rule excluded_middle) | ||
+ | {assume "p" | ||
+ | have "p ∨ q" using `p` by (rule disjI1) | ||
+ | show "¬p" using `¬(p ∨ q)` and `p ∨ q` by (rule notE)} | ||
+ | next | ||
+ | {assume "¬p" | ||
+ | show "¬p" using `¬p` by this} | ||
+ | qed | ||
+ | show "¬q" | ||
+ | proof (rule disjE) | ||
+ | show "q∨¬q" by (rule excluded_middle) | ||
+ | {assume "q" | ||
+ | have "p ∨ q" using `q` by (rule disjI2) | ||
+ | show "¬q" using `¬(p ∨ q)` and `p ∨ q` by (rule notE)} | ||
+ | next | ||
+ | {assume "¬q" | ||
+ | show "¬q" using `¬q` by this} | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 686: | Línea 1864: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_47: | + | lemma ejercicio_47: carmarria |
− | assumes "¬p ∧ ¬q" | + | assumes 1: "¬p ∧ ¬q" |
shows "¬(p ∨ q)" | shows "¬(p ∨ q)" | ||
− | + | proof - | |
+ | {assume 2: "p | q" | ||
+ | moreover {assume 3: p | ||
+ | have 4: "~p" using 1 by (rule conjunct1) | ||
+ | have 5: False using 4 3 by (rule notE) | ||
+ | } | ||
+ | moreover {assume 6: q | ||
+ | have 7: "~q" using 1 by (rule conjunct2) | ||
+ | have 8: False using 7 6 by (rule notE) | ||
+ | } | ||
+ | ultimately have 9: False by (rule disjE) | ||
+ | } | ||
+ | thus "~(p | q)" by (rule notI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_47: joslopjim4 marcabcar1 | ||
+ | assumes "¬p∧¬q" | ||
+ | shows "¬(p∨q)" | ||
+ | proof (rule notI) | ||
+ | assume "p∨q" | ||
+ | then show False | ||
+ | proof | ||
+ | assume "p" | ||
+ | have "¬p" using assms by (rule conjunct1) | ||
+ | show False using `¬p` `p` by (rule notE) | ||
+ | next | ||
+ | assume "q" | ||
+ | have "¬q" using assms by (rule conjunct2) | ||
+ | show False using `¬q` `q` by (rule notE) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 696: | Línea 1904: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_48: | + | lemma ejercicio_48: carmarria |
+ | assumes 1: "¬p ∨ ¬q" | ||
+ | shows "¬(p ∧ q)" | ||
+ | proof - | ||
+ | have "~p | ~q" using 1 by this | ||
+ | moreover {assume 2: "~p" | ||
+ | {assume 3: "p & q" | ||
+ | have 4: p using 3 by (rule conjunct1) | ||
+ | have 5: False using 2 4 by (rule notE) | ||
+ | } | ||
+ | hence 6: "~(p & q)" by (rule notI) | ||
+ | } | ||
+ | moreover {assume 7: "~q" | ||
+ | {assume 8: "p & q" | ||
+ | have 9: q using 8 by (rule conjunct2) | ||
+ | have 10: False using 7 9 by (rule notE) | ||
+ | } | ||
+ | hence 11: "~(p & q)" by (rule notI) | ||
+ | } | ||
+ | ultimately show "~(p & q)" by (rule disjE) | ||
+ | qed | ||
+ | |||
+ | lemma ej_48: joslopjim4 marcabcar1 | ||
assumes "¬p ∨ ¬q" | assumes "¬p ∨ ¬q" | ||
shows "¬(p ∧ q)" | shows "¬(p ∧ q)" | ||
− | + | proof (rule notI) | |
+ | assume "p∧q" | ||
+ | have "p" using `p∧q` by (rule conjunct1) | ||
+ | have "q" using `p∧q` by (rule conjunct2) | ||
+ | show False | ||
+ | using assms | ||
+ | proof | ||
+ | assume "¬p" | ||
+ | have "p" using `p∧q` by (rule conjunct1) | ||
+ | show False using `¬p` `p` by (rule notE) | ||
+ | next | ||
+ | assume "¬q" | ||
+ | have "q" using `p∧q` by (rule conjunct2) | ||
+ | show False using `¬q` `q` by (rule notE) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 706: | Línea 1951: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_49: | + | lemma ejercicio_49: carmarria |
"¬(p ∧ ¬p)" | "¬(p ∧ ¬p)" | ||
− | + | proof - | |
+ | {assume 1: "p & ~p" | ||
+ | have 2: p using 1 by (rule conjunct1) | ||
+ | have 3: "~p" using 1 by (rule conjunct2) | ||
+ | have 4: False using 3 2 by (rule notE) | ||
+ | } | ||
+ | thus "~(p & ~p)" by (rule notI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_49: joslopjim4 marcacar1 | ||
+ | shows "¬(p∧¬p)" | ||
+ | proof | ||
+ | assume "p∧¬p" | ||
+ | have "p" using `p∧¬p` by (rule conjunct1) | ||
+ | have "¬p" using `p∧¬p` by (rule conjunct2) | ||
+ | show False using `¬p` `p` by (rule notE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 715: | Línea 1976: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_50: | + | lemma ejercicio_50: carmarria |
− | assumes "p ∧ ¬p" | + | assumes 1: "p ∧ ¬p" |
shows "q" | shows "q" | ||
− | + | proof - | |
+ | have 2: p using 1 by (rule conjunct1) | ||
+ | have 3: "~p" using 1 by (rule conjunct2) | ||
+ | have 4: False using 3 2 by (rule notE) | ||
+ | show q using 4 by (rule FalseE) | ||
+ | qed | ||
+ | |||
+ | lemma ej_50: joslopjim4 marcabcar1 | ||
+ | assumes "p∧¬p" | ||
+ | shows "q" | ||
+ | proof- | ||
+ | have "p" using `p∧¬p` by (rule conjunct1) | ||
+ | have "¬p" using `p∧¬p` by (rule conjunct2) | ||
+ | have False using `¬p` `p` by (rule notE) | ||
+ | then show "q" by (rule FalseE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 725: | Línea 2001: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_51: | + | lemma ejercicio_51: carmarria joslopjim4 marcabcar1 |
assumes "¬¬p" | assumes "¬¬p" | ||
shows "p" | shows "p" | ||
− | + | proof - | |
+ | show p using assms by (rule notnotD) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 735: | Línea 2013: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_52: | + | lemma ejercicio_52: carmarria |
+ | "p ∨ ¬p" | ||
+ | proof - | ||
+ | {assume 1: "~(p | ~p)" | ||
+ | {assume 2: p | ||
+ | have 3: "p | ~p" using 2 by (rule disjI1) | ||
+ | have 4: False using 1 3 by (rule notE) | ||
+ | } | ||
+ | hence 5: "~p" by (rule notI) | ||
+ | have 6: "p | ~p" using 5 by (rule disjI2) | ||
+ | have 7: False using 1 6 by (rule notE) | ||
+ | } | ||
+ | hence 8: "~~(p | ~p)" by (rule notI) | ||
+ | show "p | ~p" using 8 by (rule notnotD) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_52: marcabcar1 | ||
"p ∨ ¬p" | "p ∨ ¬p" | ||
− | + | proof (rule ccontr) | |
+ | {assume "¬(p ∨ ¬p)" | ||
+ | have "¬p" | ||
+ | proof (rule notI) | ||
+ | {assume "p" | ||
+ | have "p ∨ ¬p" using `p` by (rule disjI1) | ||
+ | show "False" using `¬(p ∨ ¬p)` and `(p ∨ ¬p)` by (rule notE)} | ||
+ | qed | ||
+ | have "p ∨ ¬p" using `¬p` by (rule disjI2) | ||
+ | show "False" using `¬(p ∨ ¬p)` and `p ∨ ¬p` by (rule notE)} | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 744: | Línea 2048: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_53: | + | lemma ej_53: joslopjim4 |
+ | shows "((p ⟶ q) ⟶ p) ⟶ p" | ||
+ | proof (rule impI) | ||
+ | assume "(p ⟶ q) ⟶ p" | ||
+ | show "p" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬p" | ||
+ | have "¬(p⟶q)" using `(p ⟶ q) ⟶ p` `¬p` by (rule mt) | ||
+ | have "p⟶q" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | show "q" using `¬p` `p` by (rule notE) | ||
+ | qed | ||
+ | show False using `¬(p⟶q)` `p⟶q` by (rule notE) | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_53: carmarria | ||
+ | "((p ⟶ q) ⟶ p) ⟶ p" | ||
+ | proof - | ||
+ | {assume 1: "(p ⟶ q) ⟶ p" | ||
+ | {assume 2:"~p" | ||
+ | have 3: "~(p ⟶q)" using 1 2 by (rule mt) | ||
+ | {assume 4: p | ||
+ | have 5: False using 2 4 by (rule notE) | ||
+ | have 6: q using 5 by (rule FalseE) | ||
+ | } | ||
+ | hence 7: "p ⟶q" by (rule impI) | ||
+ | have 8: False using 3 7 by (rule notE) | ||
+ | } | ||
+ | hence 9: "~~p" by (rule notI) | ||
+ | have 10: p using 9 by (rule notnotD) | ||
+ | } | ||
+ | thus "((p ⟶ q)⟶p)⟶p" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_53: marcabcar1 | ||
"((p ⟶ q) ⟶ p) ⟶ p" | "((p ⟶ q) ⟶ p) ⟶ p" | ||
− | + | proof (rule impI) | |
+ | assume "(p ⟶ q) ⟶ p" | ||
+ | show "p" | ||
+ | proof (rule disjE) | ||
+ | show "p ∨ ¬p" by (rule excluded_middle) | ||
+ | {assume "p" | ||
+ | show "p" using `p` by this} | ||
+ | next | ||
+ | {assume "¬p" | ||
+ | have "¬(p⟶q)" using `(p ⟶ q) ⟶ p` and `¬p` by (rule mt) | ||
+ | have "p⟶q" | ||
+ | proof (rule impI) | ||
+ | {assume "p" | ||
+ | show "q" using `¬p` and `p` by (rule notE)} | ||
+ | qed | ||
+ | show "p" using `¬(p⟶q)` and `p⟶q` by (rule notE)} | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 753: | Línea 2110: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_54: | + | lemma ej_54: joslopjim4 |
+ | assumes "¬q ⟶ ¬p" | ||
+ | shows "p ⟶ q" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | have "¬¬p" using `p` by (rule notnotI) | ||
+ | have "¬¬q" using assms `¬¬p` by (rule mt) | ||
+ | show "q" using `¬¬q` by (rule notnotD) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_54: carmarria | ||
+ | assumes 1: "¬q ⟶ ¬p" | ||
+ | shows "p ⟶ q" | ||
+ | proof - | ||
+ | {assume 2: p | ||
+ | have 3: "~~p" using 2 by (rule notnotI) | ||
+ | have 4: "~~q" using 1 3 by (rule mt) | ||
+ | have 5: q using 4 by (rule notnotD) | ||
+ | } | ||
+ | thus "p ⟶q" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_54: marcabcar1 | ||
assumes "¬q ⟶ ¬p" | assumes "¬q ⟶ ¬p" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | proof (rule impI) | |
+ | {assume "p" | ||
+ | have "q∨¬q" by (rule excluded_middle) | ||
+ | show "q" | ||
+ | proof (rule disjE) | ||
+ | show "q ∨ ¬q" using `q ∨ ¬q` by this | ||
+ | {assume "q" | ||
+ | show "q" using `q` by this} | ||
+ | next | ||
+ | {assume "¬q" | ||
+ | have "¬p" using `¬q ⟶ ¬p` and `¬q` by (rule mp) | ||
+ | show "q" using `¬p` and `p` by (rule notE)} | ||
+ | qed} | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 763: | Línea 2155: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_55: | + | lemma ejercicio_55: carmarria |
+ | assumes 1: "¬(¬p ∧ ¬q)" | ||
+ | shows "p ∨ q" | ||
+ | proof - | ||
+ | {assume 2: "~(p | q)" | ||
+ | {assume 3: "~p" | ||
+ | {assume 4: "~q" | ||
+ | have 5: "~p & ~q" using 3 4 by (rule conjI) | ||
+ | have 6: False using 1 5 by (rule notE) | ||
+ | } | ||
+ | hence 7: "~~q" by (rule notI) | ||
+ | have 8: q using 7 by (rule notnotD) | ||
+ | have 9: "p | q" using 8 by (rule disjI2) | ||
+ | have 10: False using 2 9 by (rule notE) | ||
+ | } | ||
+ | hence 11: "~~p" by (rule notI) | ||
+ | have 12: p using 11 by(rule notnotD) | ||
+ | have 13: "p | q" using 12 by (rule disjI1) | ||
+ | have 14: False using 2 13 by (rule notE) | ||
+ | } | ||
+ | hence 15: "~~(p | q)" by (rule notI) | ||
+ | show "p | q" using 15 by (rule notnotD) | ||
+ | qed | ||
+ | |||
+ | lemma ej_55: joslopjim4 | ||
+ | assumes "¬(¬p ∧ ¬q)" | ||
+ | shows "p ∨ q" | ||
+ | proof- | ||
+ | have "¬p∨p" by (rule excluded_middle) | ||
+ | thus "p∨q" | ||
+ | proof (rule disjE) | ||
+ | assume "¬p" | ||
+ | thus "p∨q" | ||
+ | proof- | ||
+ | have "¬q∨q" by (rule excluded_middle) | ||
+ | thus "p∨q" | ||
+ | proof | ||
+ | assume "¬q" | ||
+ | have "¬p∧¬q" using `¬p` `¬q` by (rule conjI) | ||
+ | have False using assms `¬p∧¬q` by (rule notE) | ||
+ | then show "p∨q" by (rule FalseE) | ||
+ | next | ||
+ | assume "q" | ||
+ | show "p∨q" using `q` by (rule disjI2) | ||
+ | qed | ||
+ | qed | ||
+ | next | ||
+ | assume "p" | ||
+ | show "p∨q" using `p` by (rule disjI1) | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | |||
+ | lemma ejercicio_55:marcabcar1 | ||
assumes "¬(¬p ∧ ¬q)" | assumes "¬(¬p ∧ ¬q)" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | proof (rule disjE) | |
+ | show "p ∨ ¬p" by (rule excluded_middle) | ||
+ | {assume "p" | ||
+ | show "p ∨ q" using `p` by (rule disjI1)} | ||
+ | next | ||
+ | {assume "¬p" | ||
+ | show "p ∨ q" | ||
+ | proof (rule disjE) | ||
+ | show "q ∨ ¬q" by (rule excluded_middle) | ||
+ | {assume "q" | ||
+ | show "p ∨ q" using `q` by (rule disjI2)} | ||
+ | next | ||
+ | {assume "¬q" | ||
+ | have "¬p ∧ ¬q" using `¬p` and `¬q` by (rule conjI) | ||
+ | show "p ∨ q" using `¬(¬p ∧ ¬q)` and `(¬p ∧ ¬q)` by (rule notE)} | ||
+ | qed} | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 773: | Línea 2234: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_56: | + | lemma ejercicio_56: carmarria |
+ | assumes 1: "¬(¬p ∨ ¬q)" | ||
+ | shows "p ∧ q" | ||
+ | proof - | ||
+ | {assume 2: "~p" | ||
+ | have 3: "~p | ~q" using 2 by (rule disjI1) | ||
+ | have 4: False using 1 3 by (rule notE) | ||
+ | } | ||
+ | hence 5: "~~p" by (rule notI) | ||
+ | have 6: p using 5 by (rule notnotD) | ||
+ | {assume 7: "~q" | ||
+ | have 8: "~p | ~q" using 7 by (rule disjI2) | ||
+ | have 9: False using 1 8 by (rule notE) | ||
+ | } | ||
+ | hence 10: "~~q" by (rule notI) | ||
+ | have 11: q using 10 by (rule notnotD) | ||
+ | show 12: " p & q" using 6 11 by (rule conjI) | ||
+ | qed | ||
+ | |||
+ | lemma ej_56: joslopjim4 marcabcar1 | ||
assumes "¬(¬p ∨ ¬q)" | assumes "¬(¬p ∨ ¬q)" | ||
shows "p ∧ q" | shows "p ∧ q" | ||
− | + | proof- | |
+ | have "¬p∨p" by (rule excluded_middle) | ||
+ | thus "p∧q" | ||
+ | proof | ||
+ | assume "¬p" | ||
+ | have "¬p∨¬q" using `¬p` by (rule disjI1) | ||
+ | have False using assms `¬p∨¬q` by (rule notE) | ||
+ | then show "p∧q" by (rule FalseE) | ||
+ | next | ||
+ | assume "p" | ||
+ | have "¬q∨q" by (rule excluded_middle) | ||
+ | thus "p∧q" | ||
+ | proof | ||
+ | assume "q" | ||
+ | show "p∧q" using `p` `q` by (rule conjI) | ||
+ | next | ||
+ | assume "¬q" | ||
+ | have "¬p∨¬q" using `¬q` by (rule disjI2) | ||
+ | have False using assms `¬p∨¬q` by (rule notE) | ||
+ | then show "p∧q" by (rule FalseE) | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 783: | Línea 2285: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_57: | + | lemma ejercicio_57: carmarria |
+ | assumes 1: "¬(p ∧ q)" | ||
+ | shows "¬p ∨ ¬q" | ||
+ | proof - | ||
+ | {assume 2: "~(~p | ~q)" | ||
+ | {assume 3: p | ||
+ | {assume 4: q | ||
+ | have 5: "p & q" using 3 4 by (rule conjI) | ||
+ | have 6: False using 1 5 by (rule notE) | ||
+ | } | ||
+ | hence 7: "~q" by (rule notI) | ||
+ | have 8: "~p | ~q" using 7 by (rule disjI2) | ||
+ | have 9: False using 2 8 by (rule notE) | ||
+ | } | ||
+ | hence 10: "~p" by (rule notI) | ||
+ | have 11: "~p | ~q" using 10 by (rule disjI1) | ||
+ | have 12: False using 2 11 by (rule notE) | ||
+ | } | ||
+ | hence 13: "~~(~p | ~q)" by (rule notI) | ||
+ | show "~p | ~q" using 13 by (rule notnotD) | ||
+ | qed | ||
+ | |||
+ | lemma ej_57: joslopjim4 marcabcar1 | ||
assumes "¬(p ∧ q)" | assumes "¬(p ∧ q)" | ||
shows "¬p ∨ ¬q" | shows "¬p ∨ ¬q" | ||
− | + | proof- | |
+ | have "¬p∨p" by (rule excluded_middle) | ||
+ | thus "¬p∨¬q" | ||
+ | proof (rule disjE) | ||
+ | assume "¬p" | ||
+ | show "¬p∨¬q" using `¬p` by (rule disjI1) | ||
+ | next | ||
+ | assume "p" | ||
+ | have "¬q∨q" by (rule excluded_middle) | ||
+ | thus "¬p∨¬q" | ||
+ | proof (rule disjE) | ||
+ | assume "¬q" | ||
+ | show "¬p∨¬q" using `¬q` by (rule disjI2) | ||
+ | next | ||
+ | assume "q" | ||
+ | have "p∧q" using `p` `q` by (rule conjI) | ||
+ | have False using assms `p∧q` by (rule notE) | ||
+ | then show "¬p∨¬q" by (rule FalseE) | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 793: | Línea 2337: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma | + | lemma ej_58: joslopjim4 marcabcar1 |
− | "(p ⟶ q) ∨ (q ⟶ p)" | + | shows "(p ⟶ q) ∨ (q ⟶ p)" |
− | + | proof - | |
+ | have "¬p∨p" by (rule excluded_middle) | ||
+ | thus "(p ⟶ q) ∨ (q ⟶ p)" | ||
+ | proof (rule disjE) | ||
+ | assume "¬p" | ||
+ | show "(p ⟶ q) ∨ (q ⟶ p)" | ||
+ | proof (rule disjI1) | ||
+ | show "p⟶q" | ||
+ | proof | ||
+ | assume "p" | ||
+ | show "q" using `¬p` `p` by (rule notE) | ||
+ | qed | ||
+ | qed | ||
+ | next | ||
+ | assume "p" | ||
+ | show "(p ⟶ q) ∨ (q ⟶ p)" | ||
+ | proof (rule disjI2) | ||
+ | show "q⟶p" | ||
+ | proof (rule impI) | ||
+ | assume "q" | ||
+ | show "p" using `p` by this | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | text {* --------------------------------------------------------------- | ||
+ | Ejercicio 59 (EXTRA). Demostrar | ||
+ | p∧¬(q⟶r) ⊢ (p∧q)∧¬r | ||
+ | ------------------------------------------------------------------ *} | ||
+ | |||
+ | lemma ej_59: joslopjim4 marcabcar1 | ||
+ | assumes "p∧¬(q⟶r)" | ||
+ | shows "(p∧q)∧¬r" | ||
+ | proof | ||
+ | show "p∧q" | ||
+ | proof | ||
+ | show "p" using assms by (rule conjunct1) | ||
+ | next | ||
+ | show "q" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬q" | ||
+ | have "¬(q⟶r)" using assms by (rule conjunct2) | ||
+ | have "q⟶r" | ||
+ | proof | ||
+ | assume "q" | ||
+ | show "r" using `¬q` `q` by (rule notE) | ||
+ | qed | ||
+ | show False using `¬(q⟶r)` `q⟶r` by (rule notE) | ||
+ | qed | ||
+ | qed | ||
+ | next | ||
+ | show "¬r" | ||
+ | proof (rule notI) | ||
+ | assume "r" | ||
+ | have "q⟶r" | ||
+ | proof | ||
+ | assume "q" | ||
+ | show "r" using `r` by this | ||
+ | qed | ||
+ | have "¬(q⟶r)" using assms .. | ||
+ | thus False using `q⟶r` .. | ||
+ | qed | ||
+ | qed | ||
end | end | ||
</source> | </source> |
Revisión actual del 20:47 14 jul 2018
chapter {* R4: Deducción natural proposicional *}
theory R4
imports Main
begin
text {*
---------------------------------------------------------------------
El objetivo de esta relación es demostrar cada uno de los ejercicios
usando sólo las reglas básicas de deducción natural de la lógica
proposicional (sin usar el método auto).
Las reglas básicas de la deducción natural son las siguientes:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· notnotI: P ⟹ ¬¬ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· mt: ⟦F ⟶ G; ¬G⟧ ⟹ ¬F
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
---------------------------------------------------------------------
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación. *}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
section {* Implicaciones *}
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
p ⟶ q, p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_1: josrodjim2 carmarria inmbenber marmedmar3
assumes 1: "p ⟶ q" and
2: "p"
shows "q"
proof -
show 1: "q" using 1 2 by (rule mp)
qed
lemma ej_1: joslopjim4 marcabcar1
assumes "p --> q"
"p"
shows "q"
proof -
show "q" using assms(1) assms(2) by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
p ⟶ q, q ⟶ r, p ⊢ r
------------------------------------------------------------------ *}
lemma ejercicio_2: josrodjim2 carmarria inmbenber marmedmar3
assumes 1: "p ⟶ q" and
2: "q ⟶ r" and
3: "p"
shows "r"
proof-
have 4: "q" using 1 3 by (rule mp)
show "r" using 2 4 by (rule mp)
qed
lemma ej_2: joslopjim4 marcabcar1
assumes "p ⟶ q"
"q ⟶ r"
"p"
shows "r"
proof -
have "q" using `p⟶q` `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
------------------------------------------------------------------ *}
lemma ejercicio_3: josrodjim2 carmarria inmbenber marmedmar3
assumes 1: "p ⟶ (q ⟶ r)" and
2: "p ⟶ q" and
3: "p"
shows "r"
proof-
have 4: "q" using 2 3 by (rule mp)
have 5: "(q ⟶ r)" using 1 3 by (rule mp)
show "r" using 5 4 by (rule mp)
qed
lemma ej_3: joslopjim4 marcabcar1
assumes "p ⟶ (q ⟶ r)"
"p ⟶ q"
"p"
shows "r"
proof -
have "q" using `p⟶q` `p` by (rule mp)
have "q⟶r" using `p ⟶ (q ⟶ r)` `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
p ⟶ q, q ⟶ r ⊢ p ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_4: josrodjim2
assumes 1: "p ⟶ q" and
2: "q ⟶ r"
shows "p ⟶ r"
proof-
{ assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
have 5: "r" using 2 4 by (rule mp)}
hence 6: "p ⟶ r" using 3 5 by (rule impI)
show "p⟶r" using 6 by this
oops
lemma ejercicio_4: carmarria
assumes 1: "p ⟶ q" and
2: "q ⟶ r"
shows "p ⟶ r"
proof -
{ assume 3: p
have 4: "q" using 1 3 by (rule mp)
have 5: "r" using 2 4 by (rule mp)
}
thus "p ⟶ r" by (rule impI)
qed
lemma ejercicio_4: inmbenber
assumes 1: "p ⟶ q" and
2: "q ⟶ r"
shows "p ⟶ r"
proof -
{ assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
have 5: "r" using 2 4 by (rule mp) }
thus "p ⟶ r" by (rule impI)
qed
lemma ejercicio_4:marmedmar3
assumes "p ⟶ q"
"q ⟶ r"
shows "p ⟶ r"
proof
assume "p"
with assms(1) have "q" by (rule mp)
with assms(2) show "r" by (rule mp)
qed
lemma ej_4: joslopjim4 marcabcar1
assumes "p ⟶ q"
"q ⟶ r"
shows "p ⟶ r"
proof (rule impI)
assume "p"
have "q" using assms(1) `p` by (rule mp)
show "r" using assms(2) `q` by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_5: josrodjim2 (NO DA ERROR, PERO SI ALERTA)
assumes "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof -
{ assume 2: "q"
{assume 3: "p"
have 4: "q ⟶r" using 1 3 by (rule mp)
have 5: "r" using 4 2 by (rule mp)}
hence 6: "p⟶r" using 3 5 by (rule impI)}
hence 7: "q ⟶ (p ⟶ r)" using 2 6 by (rule impI)
show "q ⟶ (p ⟶ r)" using 7 by this
oops
lemma ejercicio_5: carmarria
assumes 1: "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof -
{assume 2: q
{assume 3: p
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "r" using 4 2 by (rule mp)
}
hence " p ⟶ r" by (rule impI)
}
thus "q ⟶ (p ⟶ r)" by (rule impI)
qed
lemma ejercicio_5: inmbenber
assumes 1: "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof -
{assume 2: "q"
{assume 3: "p"
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "r" using 4 2 by (rule mp) }
hence " p ⟶ r" by (rule impI) }
thus "q ⟶ (p ⟶ r)" by (rule impI)
qed
lemma ejercicio_5: marmedmar3
assumes "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof
assume "q"
show "(p ⟶ r)"
proof
assume "p"
with assms(1) have "(q ⟶ r)" by (rule mp)
thus "r" using `q` by (rule mp)
qed
qed
lemma ej_5: joslopjim4 marcabcar1
assumes "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof (rule impI)
assume "q"
show "p⟶r"
proof (rule impI)
assume "p"
have "q⟶r" using `p ⟶ (q ⟶ r)` `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_6:josrodjim2
assumes 1: "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof-
{assume 2: "p⟶q"
{assume 3: "p"
have 4: "q⟶r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
have 6: "r" using 4 5 by (rule mp)}
hence 7: "p⟶r" using 3 6 by (rule impI)}
hence 8: "(p ⟶ q) ⟶ (p ⟶ r)" using 2 7 by (rule impI)
show "(p ⟶ q) ⟶ (p ⟶ r)" using 8 by this
oops
lemma ejercicio_6: carmarria, inmbenber
assumes 1: "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof -
{assume 2: "p ⟶ q"
{assume 3: "p"
have 4: "q" using 2 3 by (rule mp)
have 5: "q ⟶ r" using 1 3 by (rule mp)
have 6: "r" using 5 4 by (rule mp)
}
hence 7: "p ⟶ r" by (rule impI)
}
thus "(p ⟶ q) ⟶ (p ⟶ r)" by (rule impI)
qed
lemma ejercicio_6:marmedmar3
assumes 1: "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof
assume 2: "(p ⟶ q)"
show "(p ⟶ r)"
proof
assume 3: "p"
have 4: "q" using 2 3 by (rule mp)
have 5: "(q ⟶ r)" using 1 3 by (rule mp)
show "r" using 5 4 by (rule mp)
qed
qed
lemma ej_6: joslopjim4 marcabcar1
assumes "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof (rule impI)
assume "(p⟶q)"
show "p⟶r"
proof (rule impI)
assume "p"
have "q⟶r" using `p ⟶ (q ⟶ r)` `p` by (rule mp)
have "q" using `p⟶q` `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
p ⊢ q ⟶ p
------------------------------------------------------------------ *}
lemma ejercicio_7: (NO SE QUE ESTA MAL)
assumes "p"
shows "q ⟶ p"
proof -
{ assume 2: "q"
have 3: "p" using 1
}
hence 4: "q⟶p" using 2 3 by (rule impI)
show "q⟶p" using 4 by this
oops
lemma ejercicio_7: carmarria, inmbenber
assumes 1: "p"
shows "q ⟶ p"
proof -
{assume 2: "q"
have 3: "p" using 1 by this}
thus "q ⟶ p" by (rule impI)
qed
lemma ejercicio_7:marmedmar3
assumes "p"
shows "q ⟶ p"
proof
assume "q"
show "p" using assms(1) by this
qed
lemma ej_7: joslopjim4 marcabcar1
assumes "p"
shows "q ⟶ p"
proof (rule impI)
assume "q"
show "p" using assms by this
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
⊢ p ⟶ (q ⟶ p)
------------------------------------------------------------------ *}
lemma ejercicio_8: carmarria
"p ⟶ (q ⟶ p)"
proof -
{assume 1: p
{assume 2: q
have 3: p using 1 by this
}
hence 4: "q ⟶ p" by (rule impI)
}
thus "p ⟶ (q ⟶ p)" by (rule impI)
qed
lemma ejercicio_8: marmedmar3
"p ⟶ (q ⟶ p)"
proof
assume 1: "p"
show "(q ⟶ p)"
proof
assume 2: "q"
show "p" using 1 by this
qed
qed
lemma ej_8: joslopjim4 marcabcar1
shows "p⟶(q⟶p)"
proof (rule impI)
assume "p"
show "q⟶p"
proof (rule impI)
assume "q"
show "p" using `p` by this
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_9: carmarria
assumes 1: "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof -
{assume 2: "q ⟶ r"
{assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
have 5: "r" using 2 4 by (rule mp)
}
hence 6: "p ⟶ r" by (rule impI)
}
thus 7: "(q ⟶ r) ⟶ (p ⟶ r)" by (rule impI)
qed
lemma ejercicio_9: marmedmar3
assumes "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof
assume "(q ⟶ r)"
show "(p ⟶ r)"
proof
assume "p"
with `(p ⟶ q)` have "q" by (rule mp)
with `(q ⟶ r)` show "r" by (rule mp)
qed
qed
lemma ej_9: joslopjim4 marcabcar1
assumes "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof (rule impI)
assume "q⟶r"
show "p⟶r"
proof (rule impI)
assume "p"
have "q" using `p⟶q` `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s))
------------------------------------------------------------------ *}
lemma ejercicio_10: carmarria
assumes 1: "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof-
{assume 2: r
{assume 3: q
{assume 4: p
have 5: "q ⟶ (r ⟶ s)" using 1 4 by (rule mp)
have 6: "r ⟶ s" using 5 3 by (rule mp)
have 7: s using 6 2 by (rule mp)
}
hence 8: "p ⟶ s" by (rule impI)
}
hence 9: "q ⟶ (p ⟶ s)" by (rule impI)
}
thus "r ⟶ (q ⟶ (p ⟶ s))" by (rule impI)
qed
lemma ejercicio_10: marmedmar3
assumes 1: "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof
assume 2: "r"
show "(q ⟶ (p ⟶ s))"
proof
assume 3: "q"
show "(p ⟶ s)"
proof
assume 4: "p"
have 5: "(q ⟶ (r ⟶ s))" using 1 4 by (rule mp)
have 6: "(r ⟶ s)" using 5 3 by (rule mp)
show "s" using 6 2 by (rule mp)
qed
qed
qed
lemma ej_10: joslopjim4 marcabcar1
assumes "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof (rule impI)
assume "r"
show "q⟶(p⟶s)"
proof (rule impI)
assume "q"
show "p⟶s"
proof (rule impI)
assume "p"
have "q ⟶ (r ⟶ s)" using `p ⟶ (q ⟶ (r ⟶ s))` `p` by (rule mp)
have "r⟶s" using `q ⟶ (r ⟶ s)` `q` by (rule mp)
show "s" using `r-->s` `r` by (rule mp)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
------------------------------------------------------------------ *}
lemma ejercicio_11: carmarria
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof -
{assume 1: "p ⟶ (q ⟶ r)"
{assume 2: "p ⟶ q"
{assume 3: p
have 4: q using 2 3 by (rule mp)
have 5: "q ⟶ r" using 1 3 by (rule mp)
have 6: r using 5 4 by (rule mp)
}
hence 7: "p ⟶ r" by (rule impI)
}
hence 8: "(p ⟶ q) ⟶ (p ⟶ r)" by (rule impI)
}
thus "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" by (rule impI)
qed
lemma ejercicio_11: marmedmar3
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof
assume 1: "(p ⟶ (q ⟶ r))"
show "((p ⟶ q) ⟶ (p ⟶ r))"
proof
assume 2: "(p ⟶ q)"
show "(p ⟶ r)"
proof
assume 3: "p"
have 4: "(q ⟶ r)" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show "r" using 4 5 by (rule mp)
qed
qed
qed
lemma ej_11: joslopjim4 marcabcar1
shows "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof (rule impI)
assume "p⟶(q⟶r)"
show "(p⟶q)⟶(p⟶r)"
proof (rule impI)
assume "p⟶q"
show "p⟶r"
proof (rule impI)
assume "p"
have "q" using `p⟶q` `p` by (rule mp)
have "q⟶r" using `p⟶(q⟶r)` `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_12: carmarria
assumes 1: "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof -
{assume 2: p
{assume 3: q
{assume 4: p
have 5: q using 3 by this
}
hence 6: "p ⟶ q" by (rule impI)
have 7: r using 1 6 by (rule mp)
}
hence 8: "q ⟶ r" by (rule impI)
}
thus "p ⟶ (q ⟶ r)" by (rule impI)
qed
lemma ej_12: joslopjim4 marcabcar1
assumes "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof (rule impI)
assume "p"
show "q⟶r"
proof (rule impI)
assume "q"
have "p⟶q"
proof (rule impI)
assume "p"
show "q" using `q` by this
qed
show "r" using `(p ⟶ q) ⟶ r` `p⟶q` by (rule mp)
qed
qed
section {* Conjunciones *}
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
p, q ⊢ p ∧ q
------------------------------------------------------------------ *}
lemma ejercicio_13: carmarria marmedmar3
assumes "p"
"q"
shows "p ∧ q"
proof-
show "p \<and> q" using assms(1) assms(2) by (rule conjI)
qed
lemma ej_13: joslopjim4 marcabcar1
assumes "p"
"q"
shows "p ∧ q"
proof-
show "p∧q" using `p` `q` by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
p ∧ q ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_14: carmarria marmedmar3
assumes "p ∧ q"
shows "p"
proof -
show "p" using assms by (rule conjunct1)
qed
lemma ej_14: joslopjim4 marcabcar1
assumes "p ∧ q"
shows "p"
proof -
show "p" using assms by (rule conjunct1)
qed
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
p ∧ q ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_15: carmarria marmedmar3
assumes "p ∧ q"
shows "q"
proof -
show q using assms(1) by (rule conjunct2)
qed
lemma ej_15: joslopjim4 marcabcar1
assumes "p ∧ q"
shows "q"
proof-
show "q" using assms by (rule conjunct2)
qed
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r
------------------------------------------------------------------ *}
lemma ejercicio_16: carmarria marmedmar3
assumes 1: "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
proof -
have 2: "q \<and> r" using 1 by (rule conjunct2)
have 3: p using 1 by (rule conjunct1)
have 4: q using 2 by (rule conjunct1)
have 5: r using 2 by (rule conjunct2)
have 6: "p \<and> q" using 3 4 by (rule conjI)
show "(p \<and> q) \<and> r" using 6 5 by (rule conjI)
qed
lemma ej_16: joslopjim4 marcabcar1
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
proof-
have "p" using assms by (rule conjunct1)
have "q∧r" using assms by (rule conjunct2)
have "q" using `q∧r` by (rule conjunct1)
have "r" using `q∧r` by (rule conjunct2)
have "p∧q" using `p` `q` by (rule conjI)
show "(p∧q)∧r" using `p∧q` `r` by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
(p ∧ q) ∧ r ⊢ p ∧ (q ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_17:
assumes "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof (rule conjI)
have "p ∧ q" using assms ..
thus "p" ..
next
show "q ∧ r"
proof (rule conjI)
have "p ∧ q" using assms ..
thus "q" ..
next
show "r" using assms ..
qed
qed
lemma ejercicio_17: carmarria marmedmar3
assumes 1:"(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof-
have 2:"p \<and> q" using 1 by (rule conjunct1)
have 3: r using 1 by (rule conjunct2)
have 4: p using 2 by (rule conjunct1)
have 5: q using 2 by (rule conjunct2)
have 6: "q \<and> r" using 5 3 by (rule conjI)
show "p \<and> (q \<and> r)" using 4 6 by (rule conjI)
qed
lemma ej_17: joslopjim4 marcabcar1
assumes "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof-
have "p∧q" using assms by (rule conjunct1)
have "r" using assms by (rule conjunct2)
have "p" using `p∧q` by (rule conjunct1)
have "q" using `p∧q` by (rule conjunct2)
have "q∧r" using `q` `r` by (rule conjI)
show "p∧(q∧r)" using `p` `q∧r` by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
p ∧ q ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_18: carmarria
assumes "p ∧ q"
shows "p ⟶ q"
proof -
{assume p
have q using assms(1) by (rule conjunct2)
}
thus "p ⟶ q" by (rule impI)
qed
lemma ejercicio_18: marmedmar3
assumes "p ∧ q"
shows "p ⟶ q"
proof
assume "p"
show "q" using assms by (rule conjunct2)
qed
lemma ej_18: joslopjim4 marcabcar1
assumes "p ∧ q"
shows "p ⟶ q"
proof (rule impI)
assume "p"
show "q" using assms by (rule conjunct2)
qed
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r
------------------------------------------------------------------ *}
lemma ejercicio_19: carmarria
assumes 1: "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof -
{assume 2: p
have 3: "p ⟶ q" using 1 by (rule conjunct1)
have 4: "p ⟶ r" using 1 by (rule conjunct2)
have 5: q using 3 2 by (rule mp)
have 6: r using 4 2 by (rule mp)
have 7: "q \<and> r" using 5 6 by (rule conjI)
}
thus "p ⟶ q \<and> r" by (rule impI)
qed
lemma ejercicio_19: marmedmar3
assumes 1: "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof
have 2: "(p ⟶ q)" using assms by (rule conjunct1)
have 3: "(p ⟶ r)" using assms by (rule conjunct2)
assume 4: "p"
with `(p ⟶ q)` have 5: "q" by (rule mp)
have 6: "r" using 3 4 by (rule mp)
show "q ∧ r" using 5 6 by (rule conjI)
qed
lemma ej_19: joslopjim4 marcabcar1
assumes "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof (rule impI)
assume "p"
have "p⟶q" using assms by (rule conjunct1)
have "q" using `p⟶q` `p` by (rule mp)
have "p⟶r" using assms by (rule conjunct2)
have "r" using `p⟶r` `p` by (rule mp)
show "q∧r" using `q` `r` by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_20: carmarria
assumes 1: "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof -
{assume 2: p
have 3: "q \<and> r" using 1 2 by (rule mp)
have 4: q using 3 by (rule conjunct1)
}
hence 5: "p ⟶ q" by (rule impI)
{assume 6: p
have 7: "q \<and> r" using 1 6 by (rule mp)
have 8: r using 7 by (rule conjunct2)
}
hence 9: "p ⟶ r" by (rule impI)
show "(p ⟶ q) \<and> (p ⟶ r)" using 5 9 by (rule conjI)
qed
lemma ej_20: joslopjim4 marcabcar1
assumes "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof-
have "p⟶q"
proof
assume "p"
have "q∧r" using assms `p` by (rule mp)
show "q" using `q∧r` by (rule conjunct1)
qed
have "p⟶r"
proof
assume "p"
have "q∧r" using assms `p` by (rule mp)
show "r" using `q∧r` by (rule conjunct2)
qed
show "(p⟶q)∧(p⟶r)" using `p⟶q` `p⟶r` by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_21: carmarria
assumes 1: "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof -
{assume 2: "p \<and> q"
have 3: p using 2 by (rule conjunct1)
have 4: q using 2 by (rule conjunct2)
have 5: "q ⟶ r" using 1 3 by (rule mp)
have 6: r using 5 4 by (rule mp)
}
thus "p ∧ q ⟶ r" by (rule impI)
qed
lemma ejercicio_21: marmedmar3
assumes "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof
assume "p ∧ q"
hence "p" by (rule conjunct1)
with assms have "(q ⟶ r)" by (rule mp)
have "q" using `p ∧ q` by (rule conjunct2)
with `(q ⟶ r)` show "r" by (rule mp)
qed
lemma ej_21: joslopjim4 marcabcar1
assumes "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof (rule impI)
assume "p∧q"
have "p" using `p∧q` by (rule conjunct1)
have "q" using `p∧q` by (rule conjunct2)
have "q⟶r" using assms `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_22: carmarria
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof -
{assume p
{assume q
have "p \<and> q" using `p` `q` by (rule conjI)
have r using assms(1) `p \<and> q` by (rule mp)
}
hence "q ⟶ r" by (rule impI)
}
thus "p ⟶ (q ⟶ r)" by (rule impI)
qed
lemma ejercicio_22: marmedmar3
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof
assume "p"
show "(q ⟶ r)"
proof
assume "q"
with `p` have "p ∧ q" by (rule conjI)
with assms show "r" by (rule mp)
qed
qed
lemma ej_22: joslopjim4 marcabcar1
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof (rule impI)
assume "p"
show "q⟶r"
proof (rule impI)
assume "q"
have "p∧q" using `p` `q` by (rule conjI)
show "r" using assms `p∧q` by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_23: carmarria
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof -
{assume "p \<and> q"
{assume p
have q using `p \<and> q` by (rule conjunct2)
}
hence "p ⟶ q" by (rule impI)
have r using assms(1) `p ⟶ q` by (rule mp)
}
thus "p \<and> q ⟶ r" by (rule impI)
qed
lemma ejercicio_23: marmedmar3
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof
assume "p ∧ q"
have "p" using `p ∧ q` by (rule conjunct1)
have "q" using `p ∧ q` by (rule conjunct2)
hence "(p ⟶ q)" by (rule impI)
with assms show "r" by (rule mp)
qed
lemma ej_23: joslopjim4 marcabcar1
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof (rule impI)
assume "p∧q"
have "p⟶q"
proof
assume "p"
show "q" using `p∧q` by (rule conjunct2)
qed
show "r" using assms `p⟶q` by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_24: carmarria
assumes 1: "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof -
{assume 2: "p ⟶ q"
have 3: p using 1 by (rule conjunct1)
have 4: "q ⟶ r" using 1 by (rule conjunct2)
have 5: q using 2 3 by (rule mp)
have 6: r using 4 5 by (rule mp)
}
thus "(p ⟶ q) ⟶ r" by (rule impI)
qed
lemma ejercicio_24: marmedmar3
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof
assume "(p ⟶ q)"
have "(q ⟶ r)" using assms by (rule conjunct2)
have "p" using assms by (rule conjunct1)
with `(p ⟶ q)` have "q" by (rule mp)
with `(q ⟶ r)` show "r" by (rule mp)
qed
lemma ej_24: joslopjim4 marcabcar1
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof (rule impI)
assume "p⟶q"
have "p" using assms by (rule conjunct1)
have "q⟶r" using assms by (rule conjunct2)
have "q" using `p⟶q` `p` by (rule mp)
show "r" using `q⟶r` `q` by (rule mp)
qed
section {* Disyunciones *}
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
p ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_25: carmarria
assumes "p"
shows "p ∨ q"
proof -
show "p | q" using assms(1) by (rule disjI1)
qed
lemma ej_25: joslopjim4 marcabcar1
assumes "p"
shows "p ∨ q"
proof (rule disjI1)
show "p" using assms by this
qed
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
q ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_26: carmarria
assumes "q"
shows "p ∨ q"
proof -
show "p | q" using assms(1) by (rule disjI2)
qed
lemma ej_26: joslopjim4 marcabcar1
assumes "q"
shows "p ∨ q"
proof (rule disjI2)
show "q" using assms by this
qed
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar
p ∨ q ⊢ q ∨ p
------------------------------------------------------------------ *}
lemma ejercicio_27: carmarria
assumes "p ∨ q"
shows "q ∨ p"
proof -
have "p | q" using assms(1) by this
moreover
{assume p
have "q | p" using `p` by (rule disjI2)
}
moreover
{assume q
have "q | p" using `q` by (rule disjI1)
}
ultimately show "q | p" by (rule disjE)
qed
lemma ej_27: joslopjim4 marcabcar1
assumes "p ∨ q"
shows "q ∨ p"
using assms
proof
assume "p"
then show "q∨p" by(rule disjI2)
next
assume "q"
show "q∨p" using `q` by(rule disjI1)
qed
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
------------------------------------------------------------------ *}
lemma ejercicio_28: carmarria
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
proof -
{assume "p | q"
moreover
{assume p
have "p | r" using `p` by (rule disjI1)
}
moreover
{assume q
have r using assms(1) `q` by (rule mp)
have "p | r" using `r` by (rule disjI2)
}
ultimately have "p | r" by (rule disjE)
}
thus "p | q ⟶ p | r" by (rule impI)
qed
lemma ej_28: joslopjim4 marcabcar1
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
proof (rule impI)
assume "p∨q"
show "p∨r"
using `p∨q`
proof
assume "p"
show "p∨r" using `p` by (rule disjI1)
next
assume "q"
have "r" using assms `q` by (rule mp)
show "p∨r" using `r` by (rule disjI2)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar
p ∨ p ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_29: carmarria
assumes "p ∨ p"
shows "p"
proof -
have "p | p" using assms(1) by this
moreover
{assume p
}
moreover
{assume p
}
ultimately show p by (rule disjE)
qed
lemma ej_29: joslopjim4
assumes "p ∨ p"
shows "p"
proof (rule ccontr)
assume "¬p"
show False
using assms
proof
assume "p"
show False using `¬p` `p` by (rule notE)
next
assume "p"
show False using `¬p` `p` by (rule notE)
qed
qed
lemma ejercicio_29: marcabcar1
assumes "p ∨ p"
shows "p"
using `p ∨ p`
proof (rule disjE)
{assume "p"
show "p" using `p` by this}
next
{assume "p"
show "p" using `p` by this}
qed
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar
p ⊢ p ∨ p
------------------------------------------------------------------ *}
lemma ejercicio_30: carmarria
assumes "p"
shows "p ∨ p"
proof -
show "p | p" using assms(1) by (rule disjI1)
qed
lemma ej_30: joslopjim4 marcabcar1
assumes "p"
shows "p ∨ p"
proof (rule disjI1)
show "p" using assms by this
qed
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar
p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r
------------------------------------------------------------------ *}
lemma ejercicio_31: carmarria
assumes 1: "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r"
proof -
have "p | (q | r)" using 1 by this
moreover {assume 2: p
have 3: "p | q" using 2 by (rule disjI1)
have 4: "(p | q) | r" using 3 by (rule disjI1)
}
moreover {assume 5: "q | r"
moreover {assume 6: q
have 7: "p | q" using 6 by (rule disjI2)
have 8: "(p | q) | r " using 7 by (rule disjI1)
}
moreover {assume 9: r
have 10: "(p | q) | r " using 9 by (rule disjI2)
}
ultimately have 11: "(p | q) | r " by (rule disjE)
}
ultimately show "(p | q) | r " by (rule disjE)
qed
lemma ej_31: joslopjim4 marcabcar1
assumes "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r"
using assms
proof
assume "p"
have "p∨q" using `p` by (rule disjI1)
thus "(p ∨ q) ∨ r" by (rule disjI1)
next
assume "q∨r"
show "(p ∨ q) ∨ r"
using `q∨r`
proof
assume "q"
have "p∨q" using `q` by (rule disjI2)
show "(p ∨ q) ∨ r" using `p∨q` by (rule disjI1)
next
assume "r"
show "(p ∨ q) ∨ r" using `r` by (rule disjI2)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_32: carmarria
assumes 1: "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
proof -
have "(p | q) | r" using 1 by this
moreover {assume 2: "p | q"
moreover {assume 3: p
have 4: "p | (q | r)" using 3 by (rule disjI1)
}
moreover {assume 5: q
have 6: "q | r" using 5 by (rule disjI1)
have 7: "p | (q | r)" using 6 by (rule disjI2)
}
ultimately have 8: " p | (q | r)" by (rule disjE)
}
moreover {assume 9: r
have 10: "q | r" using 9 by (rule disjI2)
have 11: "p | (q | r)" using 10 by (rule disjI2)
}
ultimately show "p | (q | r)" by (rule disjE)
qed
lemma ej_32: joslopjim4 marcabcar1
assumes "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
using assms
proof
assume "p∨q"
show "p ∨ (q ∨ r)"
using `p∨q`
proof
assume "p"
show "p ∨ (q ∨ r)" using `p` by (rule disjI1)
next
assume "q"
have "q∨r" using `q` by (rule disjI1)
show "p ∨ (q ∨ r)" using `q∨r` by (rule disjI2)
qed
next
assume "r"
have "q∨r" using `r` by (rule disjI2)
show "p ∨ (q ∨ r)" using `q∨r` by (rule disjI2)
qed
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_33: carmarria
assumes 1: "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
proof -
have 2: p using 1 by (rule conjunct1)
have 3: "q | r" using 1 by (rule conjunct2)
moreover {assume 4: q
have 5: "p & q" using 2 4 by (rule conjI)
have 6: "(p & q) | (p & r)" using 5 by (rule disjI1)
}
moreover {assume 7: r
have 8: "p & r" using 2 7 by (rule conjI)
have 9: "(p & q) | (p & r)" using 8 by (rule disjI2)
}
ultimately show "(p & q) | (p & r)" by (rule disjE)
qed
lemma ej_33: joslopjim4 marcabcar1
assumes "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
proof-
have "p" using assms by (rule conjunct1)
have "q∨r" using assms by (rule conjunct2)
show "(p ∧ q) ∨ (p ∧ r)"
using `q∨r`
proof (rule disjE)
assume "q"
have "p∧q" using `p` `q` by (rule conjI)
show "(p ∧ q) ∨ (p ∧ r)" using `p∧q` by (rule disjI1)
next
assume "r"
have "p∧r" using `p` `r` by (rule conjI)
show "(p ∧ q) ∨ (p ∧ r)" using `p∧r` by (rule disjI2)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_34: carmarria
assumes 1: "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
proof -
have "(p & q) | (p & r)" using 1 by this
moreover {assume 2: "p & q"
have 3: p using 2 by (rule conjunct1)
have 4: q using 2 by (rule conjunct2)
have 5: "q | r" using 4 by (rule disjI1)
have 6: "p & (q | r)" using 3 5 by (rule conjI)
}
moreover {assume 7: "p & r"
have 8: p using 7 by (rule conjunct1)
have 9: r using 7 by (rule conjunct2)
have 10: "q | r" using 9 by (rule disjI2)
have 11: "p & (q | r)" using 8 10 by (rule conjI)
}
ultimately show "p & (q | r)" by (rule disjE)
qed
lemma ej_34: joslopjim4 marcabcar1
assumes "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
using assms
proof
assume "p∧q"
have "p" using `p∧q` by (rule conjunct1)
have "q" using `p∧q` by (rule conjunct2)
have "q∨r" using `q` by (rule disjI1)
show "p∧(q∨r)" using `p` `q∨r` by (rule conjI)
next
assume "p∧r"
have "p" using `p∧r` by (rule conjunct1)
have "r" using `p∧r` by (rule conjunct2)
have "q∨r" using `r` by (rule disjI2)
show "p∧(q∨r)" using `p` `q∨r` by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_35: carmarria
assumes 1: "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
proof -
have "p | (q & r)" using 1 by this
moreover {assume 2: p
have 3: " p | q" using 2 by (rule disjI1)
have 4: " p | r" using 2 by (rule disjI1)
have 5: "(p | q) & (p | r)" using 3 4 by (rule conjI)
}
moreover {assume 6: "q & r"
have 7: q using 6 by (rule conjunct1)
have 8: r using 6 by (rule conjunct2)
have 9: "p | q" using 7 by (rule disjI2)
have 10: "p | r" using 8 by (rule disjI2)
have 11: "(p | q) & (p | r)" using 9 10 by (rule conjI)
}
ultimately show "(p | q) & (p | r)" by (rule disjE)
qed
lemma ej_35: joslopjim4 marcabcar1
assumes "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
using assms
proof (rule disjE)
assume "p"
have "p∨q" using `p` by (rule disjI1)
have "p∨r" using `p` by (rule disjI1)
show "(p ∨ q) ∧ (p ∨ r)" using `p∨q` `p∨r` by (rule conjI)
next
assume "q∧r"
have "q" using `q∧r` by (rule conjunct1)
have "r" using `q∧r` by (rule conjunct2)
have "p∨q" using `q` by (rule disjI2)
have "p∨r" using `r` by (rule disjI2)
show "(p ∨ q) ∧ (p ∨ r)" using `p∨q` `p∨r` by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_36: carmarria
assumes 1: "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
proof -
have 2: "p | q" using 1 by (rule conjunct1)
moreover {assume 3: p
have 4: "p | (q & r)" using 3 by (rule disjI1)
}
moreover {assume 5: q
have 6: "p | r" using 1 by (rule conjunct2)
moreover {assume 7: p
have 8: "p | (q & r)" using 7 by (rule disjI1)
}
moreover {assume 9: r
have 10: "q & r" using 5 9 by (rule conjI)
have 11: "p | (q & r)" using 10 by (rule disjI2)
}
ultimately have 12: "p | (q & r)" by (rule disjE)
}
ultimately show "p | (q & r)" by (rule disjE)
qed
lemma ej_36: joslopjim4 marcabcar1
assumes "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
proof-
have "p∨q" using assms by (rule conjunct1)
have "p∨r" using assms by (rule conjunct2)
show "p∨(q ∧ r)"
using `p∨r`
proof
assume "p"
show "p∨(q ∧ r)" using `p` by (rule disjI1)
next
assume "r"
show "p∨(q ∧ r)"
using `p∨q`
proof
assume "p"
show "p∨(q ∧ r)" using `p` by (rule disjI1)
next
assume "q"
have "q∧r" using `q` `r` by (rule conjI)
show "p∨(q ∧ r)" using `q∧r` by (rule disjI2)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_37: carmarria
assumes 1: "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
proof -
have 2: "p ⟶ r" using 1 by (rule conjunct1)
have 3: "q ⟶ r" using 1 by (rule conjunct2)
{assume 4: "p | q"
moreover {assume 5: p
have 6: r using 2 5 by (rule mp)
}
moreover {assume 7: q
have 8: r using 3 7 by (rule mp)
}
ultimately have r by (rule disjE)
}
thus "p | q ⟶ r" by (rule impI)
qed
lemma ej_37: joslopjim4 marcabcar1
assumes "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
proof (rule impI)
assume "p∨q"
have "p⟶r" using assms by (rule conjunct1)
have "q⟶r" using assms by (rule conjunct2)
show "r"
using `p∨q`
proof
assume "p"
show "r" using `p⟶r` `p` by (rule mp)
next
assume "q"
show "r" using `q⟶r` `q` by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 38. Demostrar
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_38: carmarria
assumes 1: "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
proof -
{assume 2: p
have 3: "p | q" using 2 by (rule disjI1)
have 4: r using 1 3 by (rule mp)
}
hence 5: "p ⟶ r" by (rule impI)
{assume 6: q
have 7: "p | q" using 6 by (rule disjI2)
have 8: r using 1 7 by (rule mp)
}
hence 9: "q ⟶ r" by (rule impI)
show "(p ⟶ r) & (q ⟶ r)" using 5 9 by (rule conjI)
qed
lemma ej_38: joslopjim4 marcabcar1
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
proof-
have "p⟶r"
proof (rule impI)
assume "p"
have "p∨q" using `p` by (rule disjI1)
show "r" using assms `p∨q` by (rule mp)
qed
have "q⟶r"
proof (rule impI)
assume "q"
have "p∨q" using `q` by (rule disjI2)
show "r" using assms `p∨q` by (rule mp)
qed
show "(p ⟶ r) ∧ (q ⟶ r)" using `p⟶r` `q⟶r` by (rule conjI)
qed
section {* Negaciones *}
text {* ---------------------------------------------------------------
Ejercicio 39. Demostrar
p ⊢ ¬¬p
------------------------------------------------------------------ *}
lemma ejercicio_39: carmarria
assumes "p"
shows "¬¬p"
proof -
show "~~p" using assms(1) by (rule notnotI)
qed
lemma ej_39: joslopjim4 marcabcar1
assumes "p"
shows "¬¬p"
proof-
show "¬¬p" using assms by (rule notnotI)
qed
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_40: carmarria
assumes "¬p"
shows "p ⟶ q"
proof -
{assume p
have "~p" using assms(1) by this
have False using `~p` `p` by (rule notE)
have q using `False` by (rule FalseE)
}
thus "p ⟶ q" by (rule impI)
qed
lemma ej_40: joslopjim4 marcabcar1
assumes "¬p"
shows "p ⟶ q"
proof (rule impI)
assume "p"
show "q" using assms `p` by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 41. Demostrar
p ⟶ q ⊢ ¬q ⟶ ¬p
------------------------------------------------------------------ *}
lemma ejercicio_41: carmarria
assumes 1: "p ⟶ q"
shows "¬q ⟶ ¬p"
proof -
{assume 2: "~q"
have 3: "~p" using 1 2 by (rule mt)
}
thus 4: "~q ⟶ ~p" by (rule impI)
qed
lemma ej_41: joslopjim4 marcabcar1
assumes "p ⟶ q"
shows "¬q ⟶ ¬p"
proof (rule impI)
assume "¬q"
show "¬p" using assms `¬q` by (rule mt)
qed
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p∨q, ¬q ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_42: carmarria
assumes 1: "p∨q" and
2: "¬q"
shows "p"
proof -
have " p | q" using 1 by this
moreover {assume 3: p
}
moreover {assume 4: q
have 5: False using 2 4 by (rule notE)
have 6: p using 5 by (rule FalseE)
}
ultimately show p by (rule disjE)
qed
lemma ej_42: joslopjim4 marcabcar1
assumes "p∨q"
"¬q"
shows "p"
using assms(1)
proof
assume "p"
show "p" using `p` by this
next
assume "q"
show "p" using assms(2) `q` by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 43. Demostrar
p ∨ q, ¬p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_43: carmarria
assumes 1: "p ∨ q" and
2: "¬p"
shows "q"
proof -
have " p | q" using 1 by this
moreover {assume 3: p
have 4: False using 2 3 by (rule notE)
have 5: q using 4 by (rule FalseE)
}
moreover {assume 6: q
}
ultimately show q by (rule disjE)
qed
lemma ej_43: joslopjim4 marcabcar1
assumes "p ∨ q"
"¬p"
shows "q"
using assms(1)
proof
assume "p"
show "q" using assms(2) `p` by (rule notE)
next
assume "q"
show "q" using `q` by this
qed
text {* ---------------------------------------------------------------
Ejercicio 44. Demostrar
p ∨ q ⊢ ¬(¬p ∧ ¬q)
------------------------------------------------------------------ *}
lemma ejercicio_44: carmarria
assumes 1: "p ∨ q"
shows "¬(¬p ∧ ¬q)"
proof -
have "p | q" using 1 by this
moreover {assume 2: p
{assume 3:"~p & ~q"
have 4: "~p" using 3 by (rule conjunct1)
have 5: False using 4 2 by (rule notE)
}
hence 6: "~(~p & ~q)" by (rule notI)
}
moreover {assume 7: q
{assume 8: "~p & ~q"
have 9: "~q" using 8 by (rule conjunct2)
have 10: False using 9 7 by (rule notE)
}
hence 11: "~(~p & ~q)" by (rule notI)
}
ultimately show "~(~p & ~q)" by (rule disjE)
qed
lemma ej_44: joslopjim4 marcabcar1
assumes "p∨q"
shows "¬(¬p∧¬q)"
proof (rule notI)
assume "¬p∧¬q"
show False
using assms
proof
assume "p"
have "¬p" using `¬p∧¬q` by (rule conjunct1)
show False using `¬p` `p` by (rule notE)
next
assume "q"
have "¬q" using `¬p∧¬q` by (rule conjunct2)
show False using `¬q` `q` by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 45. Demostrar
p ∧ q ⊢ ¬(¬p ∨ ¬q)
------------------------------------------------------------------ *}
lemma ejercicio_45: carmarria
assumes 1: "p ∧ q"
shows "¬(¬p ∨ ¬q)"
proof -
{assume 2: "~p | ~q"
moreover {assume 3: "~p"
have 4: p using 1 by (rule conjunct1)
have 5: False using 3 4 by (rule notE)
}
moreover {assume 6: "~q"
have 7: q using 1 by (rule conjunct2)
have 8: False using 6 7 by (rule notE)
}
ultimately have False by (rule disjE)
}
thus "~(~p | ~q)" by (rule notI)
qed
lemma ej_45: joslopjim4 marcabcar1
assumes "p∧q"
shows "¬(¬p∨¬q)"
proof (rule notI)
assume "¬p∨¬q"
then show False
proof (rule disjE)
assume "¬p"
have "p" using assms by (rule conjunct1)
show False using `¬p` `p` by (rule notE)
next
assume "¬q"
have "q" using assms by (rule conjunct2)
show False using `¬q` `q` by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 46. Demostrar
¬(p ∨ q) ⊢ ¬p ∧ ¬q
------------------------------------------------------------------ *}
lemma ejercicio_46: carmarria
assumes 1: "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof -
{assume 2: p
have 3: "p | q" using 2 by (rule disjI1)
have 4: False using 1 3 by (rule notE)
}
hence 5: "~p" by (rule notI)
{assume 6: q
have 7: "p | q" using 6 by (rule disjI2)
have 8: False using 1 7 by (rule notE)
}
hence 9: "~q" by (rule notI)
show "~p & ~q" using 5 9 by (rule conjI)
qed
lemma ej_46: joslopjim4
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof (rule conjI)
show "¬p"
proof (rule ccontr)
assume "¬¬p"
have "p" using `¬¬p` by (rule notnotD)
have "p∨q" using `p` by (rule disjI1)
show False using assms `p∨q` by (rule notE)
qed
show "¬q"
proof (rule ccontr)
assume "¬¬q"
have "q" using `¬¬q` by (rule notnotD)
have "p∨q" using `q` by (rule disjI2)
show False using assms `p∨q` by (rule notE)
qed
qed
lemma ejercicio_46: marcabcar1
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof (rule conjI)
show "¬p"
proof (rule disjE)
show "p∨¬p" by (rule excluded_middle)
{assume "p"
have "p ∨ q" using `p` by (rule disjI1)
show "¬p" using `¬(p ∨ q)` and `p ∨ q` by (rule notE)}
next
{assume "¬p"
show "¬p" using `¬p` by this}
qed
show "¬q"
proof (rule disjE)
show "q∨¬q" by (rule excluded_middle)
{assume "q"
have "p ∨ q" using `q` by (rule disjI2)
show "¬q" using `¬(p ∨ q)` and `p ∨ q` by (rule notE)}
next
{assume "¬q"
show "¬q" using `¬q` by this}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 47. Demostrar
¬p ∧ ¬q ⊢ ¬(p ∨ q)
------------------------------------------------------------------ *}
lemma ejercicio_47: carmarria
assumes 1: "¬p ∧ ¬q"
shows "¬(p ∨ q)"
proof -
{assume 2: "p | q"
moreover {assume 3: p
have 4: "~p" using 1 by (rule conjunct1)
have 5: False using 4 3 by (rule notE)
}
moreover {assume 6: q
have 7: "~q" using 1 by (rule conjunct2)
have 8: False using 7 6 by (rule notE)
}
ultimately have 9: False by (rule disjE)
}
thus "~(p | q)" by (rule notI)
qed
lemma ej_47: joslopjim4 marcabcar1
assumes "¬p∧¬q"
shows "¬(p∨q)"
proof (rule notI)
assume "p∨q"
then show False
proof
assume "p"
have "¬p" using assms by (rule conjunct1)
show False using `¬p` `p` by (rule notE)
next
assume "q"
have "¬q" using assms by (rule conjunct2)
show False using `¬q` `q` by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 48. Demostrar
¬p ∨ ¬q ⊢ ¬(p ∧ q)
------------------------------------------------------------------ *}
lemma ejercicio_48: carmarria
assumes 1: "¬p ∨ ¬q"
shows "¬(p ∧ q)"
proof -
have "~p | ~q" using 1 by this
moreover {assume 2: "~p"
{assume 3: "p & q"
have 4: p using 3 by (rule conjunct1)
have 5: False using 2 4 by (rule notE)
}
hence 6: "~(p & q)" by (rule notI)
}
moreover {assume 7: "~q"
{assume 8: "p & q"
have 9: q using 8 by (rule conjunct2)
have 10: False using 7 9 by (rule notE)
}
hence 11: "~(p & q)" by (rule notI)
}
ultimately show "~(p & q)" by (rule disjE)
qed
lemma ej_48: joslopjim4 marcabcar1
assumes "¬p ∨ ¬q"
shows "¬(p ∧ q)"
proof (rule notI)
assume "p∧q"
have "p" using `p∧q` by (rule conjunct1)
have "q" using `p∧q` by (rule conjunct2)
show False
using assms
proof
assume "¬p"
have "p" using `p∧q` by (rule conjunct1)
show False using `¬p` `p` by (rule notE)
next
assume "¬q"
have "q" using `p∧q` by (rule conjunct2)
show False using `¬q` `q` by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 49. Demostrar
⊢ ¬(p ∧ ¬p)
------------------------------------------------------------------ *}
lemma ejercicio_49: carmarria
"¬(p ∧ ¬p)"
proof -
{assume 1: "p & ~p"
have 2: p using 1 by (rule conjunct1)
have 3: "~p" using 1 by (rule conjunct2)
have 4: False using 3 2 by (rule notE)
}
thus "~(p & ~p)" by (rule notI)
qed
lemma ej_49: joslopjim4 marcacar1
shows "¬(p∧¬p)"
proof
assume "p∧¬p"
have "p" using `p∧¬p` by (rule conjunct1)
have "¬p" using `p∧¬p` by (rule conjunct2)
show False using `¬p` `p` by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 50. Demostrar
p ∧ ¬p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_50: carmarria
assumes 1: "p ∧ ¬p"
shows "q"
proof -
have 2: p using 1 by (rule conjunct1)
have 3: "~p" using 1 by (rule conjunct2)
have 4: False using 3 2 by (rule notE)
show q using 4 by (rule FalseE)
qed
lemma ej_50: joslopjim4 marcabcar1
assumes "p∧¬p"
shows "q"
proof-
have "p" using `p∧¬p` by (rule conjunct1)
have "¬p" using `p∧¬p` by (rule conjunct2)
have False using `¬p` `p` by (rule notE)
then show "q" by (rule FalseE)
qed
text {* ---------------------------------------------------------------
Ejercicio 51. Demostrar
¬¬p ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_51: carmarria joslopjim4 marcabcar1
assumes "¬¬p"
shows "p"
proof -
show p using assms by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 52. Demostrar
⊢ p ∨ ¬p
------------------------------------------------------------------ *}
lemma ejercicio_52: carmarria
"p ∨ ¬p"
proof -
{assume 1: "~(p | ~p)"
{assume 2: p
have 3: "p | ~p" using 2 by (rule disjI1)
have 4: False using 1 3 by (rule notE)
}
hence 5: "~p" by (rule notI)
have 6: "p | ~p" using 5 by (rule disjI2)
have 7: False using 1 6 by (rule notE)
}
hence 8: "~~(p | ~p)" by (rule notI)
show "p | ~p" using 8 by (rule notnotD)
qed
lemma ejercicio_52: marcabcar1
"p ∨ ¬p"
proof (rule ccontr)
{assume "¬(p ∨ ¬p)"
have "¬p"
proof (rule notI)
{assume "p"
have "p ∨ ¬p" using `p` by (rule disjI1)
show "False" using `¬(p ∨ ¬p)` and `(p ∨ ¬p)` by (rule notE)}
qed
have "p ∨ ¬p" using `¬p` by (rule disjI2)
show "False" using `¬(p ∨ ¬p)` and `p ∨ ¬p` by (rule notE)}
qed
text {* ---------------------------------------------------------------
Ejercicio 53. Demostrar
⊢ ((p ⟶ q) ⟶ p) ⟶ p
------------------------------------------------------------------ *}
lemma ej_53: joslopjim4
shows "((p ⟶ q) ⟶ p) ⟶ p"
proof (rule impI)
assume "(p ⟶ q) ⟶ p"
show "p"
proof (rule ccontr)
assume "¬p"
have "¬(p⟶q)" using `(p ⟶ q) ⟶ p` `¬p` by (rule mt)
have "p⟶q"
proof (rule impI)
assume "p"
show "q" using `¬p` `p` by (rule notE)
qed
show False using `¬(p⟶q)` `p⟶q` by (rule notE)
qed
qed
lemma ejercicio_53: carmarria
"((p ⟶ q) ⟶ p) ⟶ p"
proof -
{assume 1: "(p ⟶ q) ⟶ p"
{assume 2:"~p"
have 3: "~(p ⟶q)" using 1 2 by (rule mt)
{assume 4: p
have 5: False using 2 4 by (rule notE)
have 6: q using 5 by (rule FalseE)
}
hence 7: "p ⟶q" by (rule impI)
have 8: False using 3 7 by (rule notE)
}
hence 9: "~~p" by (rule notI)
have 10: p using 9 by (rule notnotD)
}
thus "((p ⟶ q)⟶p)⟶p" by (rule impI)
qed
lemma ejercicio_53: marcabcar1
"((p ⟶ q) ⟶ p) ⟶ p"
proof (rule impI)
assume "(p ⟶ q) ⟶ p"
show "p"
proof (rule disjE)
show "p ∨ ¬p" by (rule excluded_middle)
{assume "p"
show "p" using `p` by this}
next
{assume "¬p"
have "¬(p⟶q)" using `(p ⟶ q) ⟶ p` and `¬p` by (rule mt)
have "p⟶q"
proof (rule impI)
{assume "p"
show "q" using `¬p` and `p` by (rule notE)}
qed
show "p" using `¬(p⟶q)` and `p⟶q` by (rule notE)}
qed
text {* ---------------------------------------------------------------
Ejercicio 54. Demostrar
¬q ⟶ ¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ej_54: joslopjim4
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
proof (rule impI)
assume "p"
have "¬¬p" using `p` by (rule notnotI)
have "¬¬q" using assms `¬¬p` by (rule mt)
show "q" using `¬¬q` by (rule notnotD)
qed
lemma ejercicio_54: carmarria
assumes 1: "¬q ⟶ ¬p"
shows "p ⟶ q"
proof -
{assume 2: p
have 3: "~~p" using 2 by (rule notnotI)
have 4: "~~q" using 1 3 by (rule mt)
have 5: q using 4 by (rule notnotD)
}
thus "p ⟶q" by (rule impI)
qed
lemma ejercicio_54: marcabcar1
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
proof (rule impI)
{assume "p"
have "q∨¬q" by (rule excluded_middle)
show "q"
proof (rule disjE)
show "q ∨ ¬q" using `q ∨ ¬q` by this
{assume "q"
show "q" using `q` by this}
next
{assume "¬q"
have "¬p" using `¬q ⟶ ¬p` and `¬q` by (rule mp)
show "q" using `¬p` and `p` by (rule notE)}
qed}
qed
text {* ---------------------------------------------------------------
Ejercicio 55. Demostrar
¬(¬p ∧ ¬q) ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_55: carmarria
assumes 1: "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof -
{assume 2: "~(p | q)"
{assume 3: "~p"
{assume 4: "~q"
have 5: "~p & ~q" using 3 4 by (rule conjI)
have 6: False using 1 5 by (rule notE)
}
hence 7: "~~q" by (rule notI)
have 8: q using 7 by (rule notnotD)
have 9: "p | q" using 8 by (rule disjI2)
have 10: False using 2 9 by (rule notE)
}
hence 11: "~~p" by (rule notI)
have 12: p using 11 by(rule notnotD)
have 13: "p | q" using 12 by (rule disjI1)
have 14: False using 2 13 by (rule notE)
}
hence 15: "~~(p | q)" by (rule notI)
show "p | q" using 15 by (rule notnotD)
qed
lemma ej_55: joslopjim4
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof-
have "¬p∨p" by (rule excluded_middle)
thus "p∨q"
proof (rule disjE)
assume "¬p"
thus "p∨q"
proof-
have "¬q∨q" by (rule excluded_middle)
thus "p∨q"
proof
assume "¬q"
have "¬p∧¬q" using `¬p` `¬q` by (rule conjI)
have False using assms `¬p∧¬q` by (rule notE)
then show "p∨q" by (rule FalseE)
next
assume "q"
show "p∨q" using `q` by (rule disjI2)
qed
qed
next
assume "p"
show "p∨q" using `p` by (rule disjI1)
qed
qed
lemma ejercicio_55:marcabcar1
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof (rule disjE)
show "p ∨ ¬p" by (rule excluded_middle)
{assume "p"
show "p ∨ q" using `p` by (rule disjI1)}
next
{assume "¬p"
show "p ∨ q"
proof (rule disjE)
show "q ∨ ¬q" by (rule excluded_middle)
{assume "q"
show "p ∨ q" using `q` by (rule disjI2)}
next
{assume "¬q"
have "¬p ∧ ¬q" using `¬p` and `¬q` by (rule conjI)
show "p ∨ q" using `¬(¬p ∧ ¬q)` and `(¬p ∧ ¬q)` by (rule notE)}
qed}
qed
text {* ---------------------------------------------------------------
Ejercicio 56. Demostrar
¬(¬p ∨ ¬q) ⊢ p ∧ q
------------------------------------------------------------------ *}
lemma ejercicio_56: carmarria
assumes 1: "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof -
{assume 2: "~p"
have 3: "~p | ~q" using 2 by (rule disjI1)
have 4: False using 1 3 by (rule notE)
}
hence 5: "~~p" by (rule notI)
have 6: p using 5 by (rule notnotD)
{assume 7: "~q"
have 8: "~p | ~q" using 7 by (rule disjI2)
have 9: False using 1 8 by (rule notE)
}
hence 10: "~~q" by (rule notI)
have 11: q using 10 by (rule notnotD)
show 12: " p & q" using 6 11 by (rule conjI)
qed
lemma ej_56: joslopjim4 marcabcar1
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof-
have "¬p∨p" by (rule excluded_middle)
thus "p∧q"
proof
assume "¬p"
have "¬p∨¬q" using `¬p` by (rule disjI1)
have False using assms `¬p∨¬q` by (rule notE)
then show "p∧q" by (rule FalseE)
next
assume "p"
have "¬q∨q" by (rule excluded_middle)
thus "p∧q"
proof
assume "q"
show "p∧q" using `p` `q` by (rule conjI)
next
assume "¬q"
have "¬p∨¬q" using `¬q` by (rule disjI2)
have False using assms `¬p∨¬q` by (rule notE)
then show "p∧q" by (rule FalseE)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 57. Demostrar
¬(p ∧ q) ⊢ ¬p ∨ ¬q
------------------------------------------------------------------ *}
lemma ejercicio_57: carmarria
assumes 1: "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof -
{assume 2: "~(~p | ~q)"
{assume 3: p
{assume 4: q
have 5: "p & q" using 3 4 by (rule conjI)
have 6: False using 1 5 by (rule notE)
}
hence 7: "~q" by (rule notI)
have 8: "~p | ~q" using 7 by (rule disjI2)
have 9: False using 2 8 by (rule notE)
}
hence 10: "~p" by (rule notI)
have 11: "~p | ~q" using 10 by (rule disjI1)
have 12: False using 2 11 by (rule notE)
}
hence 13: "~~(~p | ~q)" by (rule notI)
show "~p | ~q" using 13 by (rule notnotD)
qed
lemma ej_57: joslopjim4 marcabcar1
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof-
have "¬p∨p" by (rule excluded_middle)
thus "¬p∨¬q"
proof (rule disjE)
assume "¬p"
show "¬p∨¬q" using `¬p` by (rule disjI1)
next
assume "p"
have "¬q∨q" by (rule excluded_middle)
thus "¬p∨¬q"
proof (rule disjE)
assume "¬q"
show "¬p∨¬q" using `¬q` by (rule disjI2)
next
assume "q"
have "p∧q" using `p` `q` by (rule conjI)
have False using assms `p∧q` by (rule notE)
then show "¬p∨¬q" by (rule FalseE)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 58. Demostrar
⊢ (p ⟶ q) ∨ (q ⟶ p)
------------------------------------------------------------------ *}
lemma ej_58: joslopjim4 marcabcar1
shows "(p ⟶ q) ∨ (q ⟶ p)"
proof -
have "¬p∨p" by (rule excluded_middle)
thus "(p ⟶ q) ∨ (q ⟶ p)"
proof (rule disjE)
assume "¬p"
show "(p ⟶ q) ∨ (q ⟶ p)"
proof (rule disjI1)
show "p⟶q"
proof
assume "p"
show "q" using `¬p` `p` by (rule notE)
qed
qed
next
assume "p"
show "(p ⟶ q) ∨ (q ⟶ p)"
proof (rule disjI2)
show "q⟶p"
proof (rule impI)
assume "q"
show "p" using `p` by this
qed
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 59 (EXTRA). Demostrar
p∧¬(q⟶r) ⊢ (p∧q)∧¬r
------------------------------------------------------------------ *}
lemma ej_59: joslopjim4 marcabcar1
assumes "p∧¬(q⟶r)"
shows "(p∧q)∧¬r"
proof
show "p∧q"
proof
show "p" using assms by (rule conjunct1)
next
show "q"
proof (rule ccontr)
assume "¬q"
have "¬(q⟶r)" using assms by (rule conjunct2)
have "q⟶r"
proof
assume "q"
show "r" using `¬q` `q` by (rule notE)
qed
show False using `¬(q⟶r)` `q⟶r` by (rule notE)
qed
qed
next
show "¬r"
proof (rule notI)
assume "r"
have "q⟶r"
proof
assume "q"
show "r" using `r` by this
qed
have "¬(q⟶r)" using assms ..
thus False using `q⟶r` ..
qed
qed
end