Diferencia entre revisiones de «Relación 7»
De Lógica matemática y fundamentos (2017-18)
Línea 152: | Línea 152: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_6: | + | lemma ejercicio_6: carmarria |
− | assumes "∀x y. P x y" | + | assumes 1: "∀x y. P x y" |
shows "∀u v. P u v" | shows "∀u v. P u v" | ||
− | + | proof - | |
+ | {fix a | ||
+ | have 2: "! y. P a y" using 1 by (rule allE) | ||
+ | {fix b | ||
+ | have 3: "P a b" using 2 by (rule allE) | ||
+ | } | ||
+ | hence 4: "!v. P a v" by (rule allI) | ||
+ | } | ||
+ | thus "!u v. P u v" by (rule allI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 162: | Línea 171: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_7: | + | lemma ejercicio_7: carmarria |
− | assumes "∃x y. P x y" | + | assumes 1: "∃x y. P x y" |
shows "∃u v. P u v" | shows "∃u v. P u v" | ||
− | + | proof - | |
+ | obtain a where 2: "? y. P a y" using 1 by (rule exE) | ||
+ | obtain b where 3: "P a b" using 2 by (rule exE) | ||
+ | have 4: "? v. P a v" using 3 by (rule exI) | ||
+ | show 5: "? u v. P u v" using 4 by (rule exI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 172: | Línea 186: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_8: | + | lemma ejercicio_8: carmarria |
− | assumes "∃x. ∀y. P x y" | + | assumes 1: "∃x. ∀y. P x y" |
shows "∀y. ∃x. P x y" | shows "∀y. ∃x. P x y" | ||
− | + | proof - | |
+ | obtain a where 2: "! y. P a y" using 1 by (rule exE) | ||
+ | {fix b | ||
+ | have 3: "P a b" using 2 by (rule allE) | ||
+ | have 4: "? x. P x b" using 3 by (rule exI) | ||
+ | } | ||
+ | thus "! y. ? x. P x y" by (rule allI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 182: | Línea 203: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_9: | + | lemma ejercicio_9: carmarria |
− | assumes "∃x. P a ⟶ Q x" | + | assumes 1: "∃x. P a ⟶ Q x" |
shows "P a ⟶ (∃x. Q x)" | shows "P a ⟶ (∃x. Q x)" | ||
− | + | proof - | |
+ | {assume 2: "P a" | ||
+ | obtain b where 3: "P a ⟶ Q b" using 1 by (rule exE) | ||
+ | have 4: "Q b" using 3 2 by (rule mp) | ||
+ | have 5: "? x. Q x" using 4 by (rule exI) | ||
+ | } | ||
+ | thus "P a ⟶ (? x. Q x)" by (rule impI) | ||
+ | qed | ||
Línea 193: | Línea 221: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_10a: | + | lemma ejercicio_10a: carmarria |
fixes P Q :: "'b ⇒ bool" | fixes P Q :: "'b ⇒ bool" | ||
− | assumes "P a ⟶ (∃x. Q x)" | + | assumes 1: "P a ⟶ (∃x. Q x)" |
shows "∃x. P a ⟶ Q x" | shows "∃x. P a ⟶ Q x" | ||
− | + | proof - | |
+ | have 2: "¬(P a) ∨ (P a)" by (rule excluded_middle) | ||
+ | moreover {assume 3: "¬(P a)" | ||
+ | {assume 4: "P a" | ||
+ | have 5: False using 3 4 by (rule notE) | ||
+ | have 6: "Q b" using 5 by (rule FalseE) | ||
+ | } | ||
+ | hence 7: "P a ⟶Q b" by (rule impI) | ||
+ | have 8: "? x. P a ⟶ Q x" using 7 by (rule exI) | ||
+ | } | ||
+ | moreover {assume 9: "P a" | ||
+ | have 10: "? x. Q x" using 1 9 by (rule mp) | ||
+ | obtain b where 11: "Q b" using 10 by (rule exE) | ||
+ | {assume 12: "P a" | ||
+ | have 13: "Q b" using 11 by this | ||
+ | } | ||
+ | hence 13: "P a ⟶ Q b" by (rule impI) | ||
+ | have 14: "? x. P a ⟶ Q x" using 13 by (rule exI) | ||
+ | } | ||
+ | ultimately show "? x. P a ⟶ Q x" by (rule disjE) | ||
+ | qed | ||
Línea 205: | Línea 253: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_11a: | + | lemma ejercicio_11a: carmarria |
− | assumes "(∃x. P x) ⟶ Q a" | + | assumes 1:"(∃x. P x) ⟶ Q a" |
shows "∀x. P x ⟶ Q a" | shows "∀x. P x ⟶ Q a" | ||
− | + | proof- | |
+ | {fix b | ||
+ | {assume 2: "P b" | ||
+ | have 3: "? x. P x" using 2 by (rule exI) | ||
+ | have 4: "Q a" using 1 3 by (rule mp) | ||
+ | } | ||
+ | hence 5: "P b ⟶ Q a" by (rule impI) | ||
+ | } | ||
+ | thus "! x. P x ⟶ Q a" by (rule allI) | ||
+ | qed | ||
Línea 216: | Línea 273: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_12a: | + | lemma ejercicio_12a: carmarria |
− | assumes "∀x. P x ⟶ Q a" | + | assumes 1: "∀x. P x ⟶ Q a" |
shows "∃x. P x ⟶ Q a" | shows "∃x. P x ⟶ Q a" | ||
− | + | proof - | |
+ | have 2: "P b ⟶ Q a" using 1 by (rule allE) | ||
+ | show 3: "? x. P x ⟶ Q a" using 2 by (rule exI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 226: | Línea 286: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_13a: | + | lemma ejercicio_13a: carmarria |
− | assumes "(∀x. P x) ∨ (∀x. Q x)" | + | assumes 1: "(∀x. P x) ∨ (∀x. Q x)" |
shows "∀x. P x ∨ Q x" | shows "∀x. P x ∨ Q x" | ||
− | + | proof - | |
+ | {fix a | ||
+ | have 2: "(! x. P x) ∨ (! x. Q x)" using 1 by this | ||
+ | moreover {assume 3:"! x. P x" | ||
+ | have 4: "P a" using 3 by (rule allE) | ||
+ | have 5: "P a | Q a" using 4 by (rule disjI1) | ||
+ | } | ||
+ | moreover {assume 6: "! x. Q x" | ||
+ | have 7: "Q a" using 6 by (rule allE) | ||
+ | have 8: "P a | Q a" using 7 by (rule disjI2) | ||
+ | } | ||
+ | ultimately have 9: "P a | Q a" by (rule disjE) | ||
+ | } | ||
+ | thus "! x. P x | Q x" by (rule allI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 236: | Línea 310: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_14a: | + | lemma ejercicio_14a: carmarria |
− | assumes "∃x. P x ∧ Q x" | + | assumes 1: "∃x. P x ∧ Q x" |
shows "(∃x. P x) ∧ (∃x. Q x)" | shows "(∃x. P x) ∧ (∃x. Q x)" | ||
− | + | proof - | |
+ | obtain a where 2: "P a & Q a" using 1 by (rule exE) | ||
+ | have 3: "P a" using 2 by (rule conjunct1) | ||
+ | have 4: "Q a" using 2 by (rule conjunct2) | ||
+ | have 5: "? x. P x" using 3 by (rule exI) | ||
+ | have 6: "? x. Q x" using 4 by (rule exI) | ||
+ | show "(? x. P x) ∧ (? x. Q x)" using 5 6 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 246: | Línea 327: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_15a: | + | lemma ejercicio_15a: carmarria |
− | assumes "∀x y. P y ⟶ Q x" | + | assumes 1: "∀x y. P y ⟶ Q x" |
shows "(∃y. P y) ⟶ (∀x. Q x)" | shows "(∃y. P y) ⟶ (∀x. Q x)" | ||
− | + | proof - | |
+ | {assume 2: "? y. P y" | ||
+ | {fix a | ||
+ | have 3: "! y. P y ⟶ Q a" using 1 by (rule allE) | ||
+ | obtain b where 4: "P b" using 2 by (rule exE) | ||
+ | have 5: "P b ⟶ Q a" using 3 by (rule allE) | ||
+ | have 6: "Q a" using 5 4 by (rule mp) | ||
+ | } | ||
+ | hence 7: "! x. Q x" by (rule allI) | ||
+ | } | ||
+ | thus "(? y. P y) ⟶ (! x. Q x)" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 256: | Línea 348: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_16a: | + | lemma ejercicio_16a: carmarria |
− | assumes "¬(∀x. ¬(P x))" | + | assumes 1: "¬(∀x. ¬(P x))" |
shows "∃x. P x" | shows "∃x. P x" | ||
− | + | proof - | |
+ | {assume 2: "¬(? x. P x)" | ||
+ | {fix b | ||
+ | {assume 3: "P b" | ||
+ | have 4: "? x. P x" using 3 by (rule exI) | ||
+ | have 5: False using 2 4 by (rule notE) | ||
+ | } | ||
+ | hence 6: "¬(P b)" by (rule notI) | ||
+ | } | ||
+ | hence 7: "! x. ¬(P x)" by (rule allI) | ||
+ | have 8: False using 1 7 by (rule notE) | ||
+ | } | ||
+ | hence 9: "¬¬(? x. P x)" by (rule notI) | ||
+ | show "? x. P x" using 9 by (rule notnotD) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 266: | Línea 372: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_17a: | + | lemma ejercicio_17a: carmarria |
− | assumes "∀x. ¬(P x)" | + | assumes 1: "∀x. ¬(P x)" |
shows "¬(∃x. P x)" | shows "¬(∃x. P x)" | ||
− | + | proof - | |
+ | {assume 2: "? x. P x" | ||
+ | obtain a where 3: "P a" using 2 by (rule exE) | ||
+ | have 4: "¬(P a)" using 1 by (rule allE) | ||
+ | have 5: False using 4 3 by (rule notE) | ||
+ | } | ||
+ | thus "¬(? x. P x)" by (rule notI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 276: | Línea 389: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_18a: | + | lemma ejercicio_18a: carmarria |
− | assumes "∃x. P x" | + | assumes 1: "∃x. P x" |
shows "¬(∀x. ¬(P x))" | shows "¬(∀x. ¬(P x))" | ||
− | + | proof- | |
+ | {assume 2: "! x. ¬(P x)" | ||
+ | obtain a where 3: "P a" using 1 by (rule exE) | ||
+ | have 4: "¬(P a)" using 2 by (rule allE) | ||
+ | have 5: False using 4 3 by (rule notE) | ||
+ | } | ||
+ | thus "¬(! x. ¬(P x))" by (rule notI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 286: | Línea 406: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma ejercicio_19a: | + | lemma ejercicio_19a: carmarria |
− | assumes "P a ⟶ (∀x. Q x)" | + | assumes 1: "P a ⟶ (∀x. Q x)" |
shows "∀x. P a ⟶ Q x" | shows "∀x. P a ⟶ Q x" | ||
− | + | proof - | |
+ | {fix b | ||
+ | {assume 2: "P a" | ||
+ | have 3: "! x. Q x" using 1 2 by (rule mp) | ||
+ | have 4: "Q b" using 3 by (rule allE) | ||
+ | } | ||
+ | hence 5: "P a ⟶ Q b" by (rule impI) | ||
+ | } | ||
+ | thus "! x. P a ⟶ Q x" by (rule allI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- |
Revisión del 14:01 7 abr 2018
chapter {* R7: Deducción natural en lógica de primer orden *}
theory R7
imports Main
begin
text {*
Demostrar o refutar los siguientes lemas usando sólo las reglas
básicas de deducción natural de la lógica proposicional, de los
cuantificadores y de la igualdad:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
· excluded_middel:(¬P ∨ P)
· allI: ⟦∀x. P x; P x ⟹ R⟧ ⟹ R
· allE: (⋀x. P x) ⟹ ∀x. P x
· exI: P x ⟹ ∃x. P x
· exE: ⟦∃x. P x; ⋀x. P x ⟹ Q⟧ ⟹ Q
· refl: t = t
· subst: ⟦s = t; P s⟧ ⟹ P t
· trans: ⟦r = s; s = t⟧ ⟹ r = t
· sym: s = t ⟹ t = s
· not_sym: t ≠ s ⟹ s ≠ t
· ssubst: ⟦t = s; P s⟧ ⟹ P t
· box_equals: ⟦a = b; a = c; b = d⟧ ⟹ a: = d
· arg_cong: x = y ⟹ f x = f y
· fun_cong: f = g ⟹ f x = g x
· cong: ⟦f = g; x = y⟧ ⟹ f x = g y
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación.
*}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
∀x. P x ⟶ Q x ⊢ (∀x. P x) ⟶ (∀x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_1a: carmarria
assumes 1: "∀x. P x ⟶ Q x"
shows "(∀x. P x) ⟶ (∀x. Q x)"
proof -
{assume 2: "! x. P x"
{fix a
have 3: "P a ⟶ Q a" using 1 by (rule allE)
have 4: "P a" using 2 by (rule allE)
have 5: "Q a" using 3 4 by (rule mp)
}
hence 6: "! x. Q x" by (rule allI)
}
thus "(! x. P x) ⟶ (! x. Q x)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
∃x. ¬(P x) ⊢ ¬(∀x. P x)
------------------------------------------------------------------ *}
lemma ejercicio_2a: carmarria
assumes 1: "∃x. ¬(P x)"
shows "¬(∀x. P x)"
proof -
obtain a where 2: "¬(P a)" using 1 by (rule exE)
{assume 3: "! x. P x"
have 4: "P a" using 3 by (rule allE)
have 5: False using 2 4 by (rule notE)
}
thus "¬(! x. P x)" by (rule notI)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
∀x. P x ⊢ ∀y. P y
------------------------------------------------------------------ *}
lemma ejercicio_3a: carmarria
assumes 1: "∀x. P x"
shows "∀y. P y"
proof -
{fix a
have 2: "P a" using 1 by (rule allE)
}
thus "! y. P y" by (rule allI)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
∀x. P x ⟶ Q x ⊢ (∀x. ¬(Q x)) ⟶ (∀x. ¬ (P x))
------------------------------------------------------------------ *}
lemma ejercicio_4: carmarria
assumes 1: "∀x. P x ⟶ Q x"
shows "(∀x. ¬(Q x)) ⟶ (∀x. ¬ (P x))"
proof -
{assume 2: "!x. ¬(Q x)"
{fix a
have 3: "¬(Q a)" using 2 by (rule allE)
have 4: "P a ⟶ Q a" using 1 by (rule allE)
have 5: "¬(P a)" using 4 3 by (rule mt)
}
hence 6: "!x. ¬ (P x)" by (rule allI)
}
thus "(!x. ¬(Q x)) ⟶ (!x. ¬ (P x))" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
∀x. P x ⟶ ¬(Q x) ⊢ ¬(∃x. P x ∧ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_5: carmarria
assumes 1: "∀x. P x ⟶ ¬(Q x)"
shows "¬(∃x. P x ∧ Q x)"
proof -
{assume 2: "? x. P x & Q x"
obtain a where 3: "P a & Q a" using 2 by (rule exE)
have 4: "P a ⟶ ¬(Q a)" using 1 by (rule allE)
have 5: "P a" using 3 by (rule conjunct1)
have 6: "Q a" using 3 by (rule conjunct2)
have 7: "¬(Q a)" using 4 5 by (rule mp)
have 8: False using 7 6 by (rule notE)
}
thus "¬(? x. P x & Q x)" by (rule notI)
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
∀x y. P x y ⊢ ∀u v. P u v
------------------------------------------------------------------ *}
lemma ejercicio_6: carmarria
assumes 1: "∀x y. P x y"
shows "∀u v. P u v"
proof -
{fix a
have 2: "! y. P a y" using 1 by (rule allE)
{fix b
have 3: "P a b" using 2 by (rule allE)
}
hence 4: "!v. P a v" by (rule allI)
}
thus "!u v. P u v" by (rule allI)
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
∃x y. P x y ⟹ ∃u v. P u v
------------------------------------------------------------------ *}
lemma ejercicio_7: carmarria
assumes 1: "∃x y. P x y"
shows "∃u v. P u v"
proof -
obtain a where 2: "? y. P a y" using 1 by (rule exE)
obtain b where 3: "P a b" using 2 by (rule exE)
have 4: "? v. P a v" using 3 by (rule exI)
show 5: "? u v. P u v" using 4 by (rule exI)
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
∃x. ∀y. P x y ⊢ ∀y. ∃x. P x y
------------------------------------------------------------------ *}
lemma ejercicio_8: carmarria
assumes 1: "∃x. ∀y. P x y"
shows "∀y. ∃x. P x y"
proof -
obtain a where 2: "! y. P a y" using 1 by (rule exE)
{fix b
have 3: "P a b" using 2 by (rule allE)
have 4: "? x. P x b" using 3 by (rule exI)
}
thus "! y. ? x. P x y" by (rule allI)
qed
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
∃x. P a ⟶ Q x ⊢ P a ⟶ (∃x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_9: carmarria
assumes 1: "∃x. P a ⟶ Q x"
shows "P a ⟶ (∃x. Q x)"
proof -
{assume 2: "P a"
obtain b where 3: "P a ⟶ Q b" using 1 by (rule exE)
have 4: "Q b" using 3 2 by (rule mp)
have 5: "? x. Q x" using 4 by (rule exI)
}
thus "P a ⟶ (? x. Q x)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
P a ⟶ (∃x. Q x) ⊢ ∃x. P a ⟶ Q x
------------------------------------------------------------------ *}
lemma ejercicio_10a: carmarria
fixes P Q :: "'b ⇒ bool"
assumes 1: "P a ⟶ (∃x. Q x)"
shows "∃x. P a ⟶ Q x"
proof -
have 2: "¬(P a) ∨ (P a)" by (rule excluded_middle)
moreover {assume 3: "¬(P a)"
{assume 4: "P a"
have 5: False using 3 4 by (rule notE)
have 6: "Q b" using 5 by (rule FalseE)
}
hence 7: "P a ⟶Q b" by (rule impI)
have 8: "? x. P a ⟶ Q x" using 7 by (rule exI)
}
moreover {assume 9: "P a"
have 10: "? x. Q x" using 1 9 by (rule mp)
obtain b where 11: "Q b" using 10 by (rule exE)
{assume 12: "P a"
have 13: "Q b" using 11 by this
}
hence 13: "P a ⟶ Q b" by (rule impI)
have 14: "? x. P a ⟶ Q x" using 13 by (rule exI)
}
ultimately show "? x. P a ⟶ Q x" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
(∃x. P x) ⟶ Q a ⊢ ∀x. P x ⟶ Q a
------------------------------------------------------------------ *}
lemma ejercicio_11a: carmarria
assumes 1:"(∃x. P x) ⟶ Q a"
shows "∀x. P x ⟶ Q a"
proof-
{fix b
{assume 2: "P b"
have 3: "? x. P x" using 2 by (rule exI)
have 4: "Q a" using 1 3 by (rule mp)
}
hence 5: "P b ⟶ Q a" by (rule impI)
}
thus "! x. P x ⟶ Q a" by (rule allI)
qed
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
∀x. P x ⟶ Q a ⊢ ∃ x. P x ⟶ Q a
------------------------------------------------------------------ *}
lemma ejercicio_12a: carmarria
assumes 1: "∀x. P x ⟶ Q a"
shows "∃x. P x ⟶ Q a"
proof -
have 2: "P b ⟶ Q a" using 1 by (rule allE)
show 3: "? x. P x ⟶ Q a" using 2 by (rule exI)
qed
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
(∀x. P x) ∨ (∀x. Q x) ⊢ ∀x. P x ∨ Q x
------------------------------------------------------------------ *}
lemma ejercicio_13a: carmarria
assumes 1: "(∀x. P x) ∨ (∀x. Q x)"
shows "∀x. P x ∨ Q x"
proof -
{fix a
have 2: "(! x. P x) ∨ (! x. Q x)" using 1 by this
moreover {assume 3:"! x. P x"
have 4: "P a" using 3 by (rule allE)
have 5: "P a | Q a" using 4 by (rule disjI1)
}
moreover {assume 6: "! x. Q x"
have 7: "Q a" using 6 by (rule allE)
have 8: "P a | Q a" using 7 by (rule disjI2)
}
ultimately have 9: "P a | Q a" by (rule disjE)
}
thus "! x. P x | Q x" by (rule allI)
qed
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
∃x. P x ∧ Q x ⊢ (∃x. P x) ∧ (∃x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_14a: carmarria
assumes 1: "∃x. P x ∧ Q x"
shows "(∃x. P x) ∧ (∃x. Q x)"
proof -
obtain a where 2: "P a & Q a" using 1 by (rule exE)
have 3: "P a" using 2 by (rule conjunct1)
have 4: "Q a" using 2 by (rule conjunct2)
have 5: "? x. P x" using 3 by (rule exI)
have 6: "? x. Q x" using 4 by (rule exI)
show "(? x. P x) ∧ (? x. Q x)" using 5 6 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
∀x y. P y ⟶ Q x ⊢ (∃y. P y) ⟶ (∀x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_15a: carmarria
assumes 1: "∀x y. P y ⟶ Q x"
shows "(∃y. P y) ⟶ (∀x. Q x)"
proof -
{assume 2: "? y. P y"
{fix a
have 3: "! y. P y ⟶ Q a" using 1 by (rule allE)
obtain b where 4: "P b" using 2 by (rule exE)
have 5: "P b ⟶ Q a" using 3 by (rule allE)
have 6: "Q a" using 5 4 by (rule mp)
}
hence 7: "! x. Q x" by (rule allI)
}
thus "(? y. P y) ⟶ (! x. Q x)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
¬(∀x. ¬(P x)) ⊢ ∃x. P x
------------------------------------------------------------------ *}
lemma ejercicio_16a: carmarria
assumes 1: "¬(∀x. ¬(P x))"
shows "∃x. P x"
proof -
{assume 2: "¬(? x. P x)"
{fix b
{assume 3: "P b"
have 4: "? x. P x" using 3 by (rule exI)
have 5: False using 2 4 by (rule notE)
}
hence 6: "¬(P b)" by (rule notI)
}
hence 7: "! x. ¬(P x)" by (rule allI)
have 8: False using 1 7 by (rule notE)
}
hence 9: "¬¬(? x. P x)" by (rule notI)
show "? x. P x" using 9 by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
∀x. ¬(P x) ⊢ ¬(∃x. P x)
------------------------------------------------------------------ *}
lemma ejercicio_17a: carmarria
assumes 1: "∀x. ¬(P x)"
shows "¬(∃x. P x)"
proof -
{assume 2: "? x. P x"
obtain a where 3: "P a" using 2 by (rule exE)
have 4: "¬(P a)" using 1 by (rule allE)
have 5: False using 4 3 by (rule notE)
}
thus "¬(? x. P x)" by (rule notI)
qed
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
∃x. P x ⊢ ¬(∀x. ¬(P x))
------------------------------------------------------------------ *}
lemma ejercicio_18a: carmarria
assumes 1: "∃x. P x"
shows "¬(∀x. ¬(P x))"
proof-
{assume 2: "! x. ¬(P x)"
obtain a where 3: "P a" using 1 by (rule exE)
have 4: "¬(P a)" using 2 by (rule allE)
have 5: False using 4 3 by (rule notE)
}
thus "¬(! x. ¬(P x))" by (rule notI)
qed
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
P a ⟶ (∀x. Q x) ⊢ ∀x. P a ⟶ Q x
------------------------------------------------------------------ *}
lemma ejercicio_19a: carmarria
assumes 1: "P a ⟶ (∀x. Q x)"
shows "∀x. P a ⟶ Q x"
proof -
{fix b
{assume 2: "P a"
have 3: "! x. Q x" using 1 2 by (rule mp)
have 4: "Q b" using 3 by (rule allE)
}
hence 5: "P a ⟶ Q b" by (rule impI)
}
thus "! x. P a ⟶ Q x" by (rule allI)
qed
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
{∀x y z. R x y ∧ R y z ⟶ R x z,
∀x. ¬(R x x)}
⊢ ∀x y. R x y ⟶ ¬(R y x)
------------------------------------------------------------------ *}
lemma ejercicio_20a:
assumes "∀x y z. R x y ∧ R y z ⟶ R x z"
"∀x. ¬(R x x)"
shows "∀x y. R x y ⟶ ¬(R y x)"
oops
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
{∀x. P x ∨ Q x, ∃x. ¬(Q x), ∀x. R x ⟶ ¬(P x)} ⊢ ∃x. ¬(R x)
------------------------------------------------------------------ *}
lemma ejercicio_21a:
assumes "∀x. P x ∨ Q x"
"∃x. ¬(Q x)"
"∀x. R x ⟶ ¬(P x)"
shows "∃x. ¬(R x)"
oops
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
{∀x. P x ⟶ Q x ∨ R x, ¬(∃x. P x ∧ R x)} ⊢ ∀x. P x ⟶ Q x
------------------------------------------------------------------ *}
lemma ejercicio_22a:
assumes "∀x. P x ⟶ Q x ∨ R x"
"¬(∃x. P x ∧ R x)"
shows "∀x. P x ⟶ Q x"
oops
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
∃x y. R x y ∨ R y x ⊢ ∃x y. R x y
------------------------------------------------------------------ *}
lemma ejercicio_23a:
assumes "∃x y. R x y ∨ R y x"
shows "∃x y. R x y"
oops
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
(∃x. ∀y. P x y) ⟶ (∀y. ∃x. P x y)
------------------------------------------------------------------ *}
lemma ejercicio_24a:
"(∃x. ∀y. P x y) ⟶ (∀y. ∃x. P x y)"
oops
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
(∀x. P x ⟶ Q) ⟷ ((∃x. P x) ⟶ Q)
------------------------------------------------------------------ *}
lemma ejercicio_25a:
"(∀x. P x ⟶ Q) ⟷ ((∃x. P x) ⟶ Q)"
oops
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
((∀x. P x) ∧ (∀x. Q x)) ⟷ (∀x. P x ∧ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_26a:
"((∀x. P x) ∧ (∀x. Q x)) ⟷ (∀x. P x ∧ Q x)"
oops
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar o refutar
((∀x. P x) ∨ (∀x. Q x)) ⟷ (∀x. P x ∨ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_27a:
"((∀x. P x) ∨ (∀x. Q x)) ⟷ (∀x. P x ∨ Q x)"
oops
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar o refutar
((∃x. P x) ∨ (∃x. Q x)) ⟷ (∃x. P x ∨ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_28a:
"((∃x. P x) ∨ (∃x. Q x)) ⟷ (∃x. P x ∨ Q x)"
oops
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar o refutar
(∀x. ∃y. P x y) ⟶ (∃y. ∀x. P x y)
------------------------------------------------------------------ *}
lemma ejercicio_29:
"(∀x. ∃y. P x y) ⟶ (∃y. ∀x. P x y)"
oops
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar o refutar
(¬(∀x. P x)) ⟷ (∃x. ¬P x)
------------------------------------------------------------------ *}
lemma ejercicio_30a:
"(¬(∀x. P x)) ⟷ (∃x. ¬P x)"
oops
section {* Ejercicios sobre igualdad *}
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar o refutar
P a ⟹ ∀x. x = a ⟶ P x
------------------------------------------------------------------ *}
lemma ejercicio_31a:
assumes "P a"
shows "∀x. x = a ⟶ P x"
oops
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar o refutar
∃x y. R x y ∨ R y x; ¬(∃x. R x x)⟧ ⟹ ∃x y. x ≠ y
------------------------------------------------------------------ *}
lemma ejercicio_32a:
fixes R :: "'c ⇒ 'c ⇒ bool"
assumes "∃x y. R x y ∨ R y x"
"¬(∃x. R x x)"
shows "∃(x::'c) y. x ≠ y"
oops
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar o refutar
{∀x. P a x x,
∀x y z. P x y z ⟶ P (f x) y (f z)}
⊢ P (f a) a (f a)
------------------------------------------------------------------ *}
lemma ejercicio_33a:
assumes "∀x. P a x x"
"∀x y z. P x y z ⟶ P (f x) y (f z)"
shows "P (f a) a (f a)"
oops
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar o refutar
{∀x. P a x x,
∀x y z. P x y z ⟶ P (f x) y (f z)⟧
⊢ ∃z. P (f a) z (f (f a))
------------------------------------------------------------------ *}
lemma ejercicio_34a:
assumes "∀x. P a x x"
"∀x y z. P x y z ⟶ P (f x) y (f z)"
shows "∃z. P (f a) z (f (f a))"
oops
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar o refutar
{∀y. Q a y,
∀x y. Q x y ⟶ Q (s x) (s y)}
⊢ ∃z. Qa z ∧ Q z (s (s a))
------------------------------------------------------------------ *}
lemma ejercicio_35a:
assumes "∀y. Q a y"
"∀x y. Q x y ⟶ Q (s x) (s y)"
shows "∃z. Q a z ∧ Q z (s (s a))"
oops
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar o refutar
{x = f x, odd (f x)} ⊢ odd x
------------------------------------------------------------------ *}
lemma ejercicio_36a:
assumes "x = f x" and
"odd (f x)"
shows "odd x"
oops
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar o refutar
{x = f x, triple (f x) (f x) x} ⊢ triple x x x
------------------------------------------------------------------ *}
lemma ejercicio_37a:
assumes "x = f x" and
"triple (f x) (f x) x"
shows "triple x x x"
oops
end