Relación 4
De Lógica matemática y fundamentos (2014-15)
Revisión del 13:10 31 mar 2015 de Fracarmol1 (discusión | contribuciones)
header {* R4: Deducción natural de primer orden *}
theory R4
imports Main
begin
text {*
Demostrar o refutar los siguientes lemas usando sólo las reglas
básicas de deducción natural de la lógica proposicional, de los
cuantificadores y de la igualdad:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
· excluded_middel:(¬P ∨ P)
· allI: ⟦∀x. P x; P x ⟹ R⟧ ⟹ R
· allE: (⋀x. P x) ⟹ ∀x. P x
· exI: P x ⟹ ∃x. P x
· exE: ⟦∃x. P x; ⋀x. P x ⟹ Q⟧ ⟹ Q
· refl: t = t
· subst: ⟦s = t; P s⟧ ⟹ P t
· trans: ⟦r = s; s = t⟧ ⟹ r = t
· sym: s = t ⟹ t = s
· not_sym: t ≠ s ⟹ s ≠ t
· ssubst: ⟦t = s; P s⟧ ⟹ P t
· box_equals: ⟦a = b; a = c; b = d⟧ ⟹ a: = d
· arg_cong: x = y ⟹ f x = f y
· fun_cong: f = g ⟹ f x = g x
· cong: ⟦f = g; x = y⟧ ⟹ f x = g y
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación.
*}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
∀x. P x ⟶ Q x ⊢ (∀x. P x) ⟶ (∀x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_1a:
assumes "∀x. P x ⟶ Q x"
shows "(∀x. P x) ⟶ (∀x. Q x)"
proof (rule impI)
assume "∀x. P x"
{ fix a
have "P a ⟶ Q a" using assms by (rule allE)
have "P a" using `∀x. P x` by (rule allE)
have "Q a" using `P a ⟶ Q a` `P a` by (rule mp)}
thus "∀x. Q x" by (rule allI)
qed
-María Dolores Mateo
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
∃x. ¬(P x) ⊢ ¬(∀x. P x)
------------------------------------------------------------------ *}
lemma ejercicio_2a:
assumes "∃x. ¬(P x)"
shows "¬(∀x. P x)"
proof
assume "∀x. P x"
obtain a where "¬ (P a)" using assms by (rule exE)
have "P a" using `∀x. P x` by (rule allE)
show "False" using `¬ (P a)` `P a` by (rule notE)
qed
-María Dolores Mateo
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
∀x. P x ⊢ ∀y. P y
------------------------------------------------------------------ *}
lemma ejercicio_3a:
assumes "∀x. P x"
shows "∀y. P y"
proof
{ fix a
show "P a" using assms by (rule allE)}
qed
-María Dolores Mateo
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
∀x. P x ⟶ Q x ⊢ (∀x. ¬(Q x)) ⟶ (∀x. ¬ (P x))
------------------------------------------------------------------ *}
lemma ejercicio_4:
assumes "∀x. P x ⟶ Q x"
shows "(∀x. ¬(Q x)) ⟶ (∀x. ¬ (P x))"
proof
assume "∀x. ¬(Q x)"
{ fix a
have "P a ⟶ Q a" using assms by (rule allE)
have "¬ (Q a)" using `∀x. ¬(Q x)` by (rule allE)
have "¬(P a)" using `P a ⟶ Q a` `¬ (Q a)` by (rule mt)}
thus "∀x. ¬ (P x)" by (rule allI)
qed
-María Dolores Mateo
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
∀x. P x ⟶ ¬(Q x) ⊢ ¬(∃x. P x ∧ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_5:
assumes "∀x. P x ⟶ ¬(Q x)"
shows "¬(∃x. P x ∧ Q x)"
proof
assume "∃x. P x ∧ Q x"
obtain a where "P a ∧ Q a" using `∃x. P x ∧ Q x` by (rule exE)
have "P a" using `P a ∧ Q a` by (rule conjE)
have "Q a" using `P a ∧ Q a` by (rule conjE)
have "P a ⟶ ¬(Q a)" using assms by (rule allE)
have "¬(Q a)" using `P a ⟶ ¬(Q a)` `P a` by (rule mp)
show "False" using `¬(Q a)` `Q a` by (rule notE)
qed
-María Dolores Mateo
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
∀x y. P x y ⊢ ∀u v. P u v
------------------------------------------------------------------ *}
lemma ejercicio_6:
assumes "∀x y. P x y"
shows "∀u v. P u v"
proof (rule allI)+
fix a b
have "∀y. P a y" using assms by (rule allE)
thus " P a b" by (rule allE)
qed
--Jaime Alberto
lemma ejercicio_6b:
assumes 1: "∀x y. P x y"
shows "∀u v. P u v"
proof -
{fix u0
{fix v0
have 2: "∀y. P u0 y" using 1 by (rule allE)
have 3: "P u0 v0" using 2 by (rule allE)}
then have 4: "∀v. P u0 v" by (rule allI)}
then show "∀u v. P u v" by (rule allI)
qed
-- Rocio Rodriguez
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
∃x y. P x y ⟹ ∃u v. P u v
------------------------------------------------------------------ *}
lemma ejercicio_7:
assumes "∃x y. P x y"
shows "∃u v. P u v"
proof -
obtain a where "∃y. P a y" using assms by (rule exE)
then obtain b where "P a b" by (rule exE)
hence "∃v. P a v" by (rule exI)
thus "∃u v. P u v" by (rule exI)
qed
--Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
∃x. ∀y. P x y ⊢ ∀y. ∃x. P x y
------------------------------------------------------------------ *}
lemma ejercicio_8:
assumes "∃x. ∀y. P x y"
shows "∀y. ∃x. P x y"
proof
obtain a where "∀y. P a y" using assms by (rule exE)
fix b
have "P a b" using `∀y. P a y` by (rule allE)
thus "∃x. P x b" by (rule exI)
qed
--Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
∃x. P a ⟶ Q x ⊢ P a ⟶ (∃x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_9:
assumes "∃x. P a ⟶ Q x"
shows "P a ⟶ (∃x. Q x)"
proof
assume "P a"
obtain b where "P a ⟶ Q b" using assms by (rule exE)
have "Q b" using `P a ⟶ Q b` `P a` by (rule mp)
thus "∃x. Q x" by (rule exI)
qed
--Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
P a ⟶ (∃x. Q x) ⊢ ∃x. P a ⟶ Q x
------------------------------------------------------------------ *}
lemma ejercicio_10a:
fixes P Q :: "'b ⇒ bool"
assumes "P a ⟶ (∃x. Q x)"
shows "∃x. P a ⟶ Q x"
oops
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
(∃x. P x) ⟶ Q a ⊢ ∀x. P x ⟶ Q a
------------------------------------------------------------------ *}
lemma ejercicio_11a:
assumes "(∃x. P x) ⟶ Q a"
shows "∀x. P x ⟶ Q a"
proof
fix b
show "P b ⟶ Q a"
proof
assume "P b"
hence "∃x. P x" by (rule exI)
show "Q a" using assms `∃x. P x` by (rule mp)
qed
qed
-- Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
∀x. P x ⟶ Q a ⊢ ∃ x. P x ⟶ Q a
------------------------------------------------------------------ *}
lemma ejercicio_12a:
assumes "∀x. P x ⟶ Q a"
shows "∃x. P x ⟶ Q a"
proof -
fix b
have "P b ⟶ Q a" using assms by (rule allE)
thus "∃x. P x ⟶ Q a" by (rule exI)
qed
-- Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
(∀x. P x) ∨ (∀x. Q x) ⊢ ∀x. P x ∨ Q x
------------------------------------------------------------------ *}
lemma ejercicio_13a:
assumes "(∀x. P x) ∨ (∀x. Q x)"
shows "∀x. P x ∨ Q x"
proof
fix a
show "P a ∨ Q a" using assms
proof
assume "∀x. P x"
hence "P a" by (rule allE)
thus "P a ∨ Q a" by (rule disjI1)
next
assume "∀x. Q x"
hence "Q a" by (rule allE)
thus "P a ∨ Q a" by (rule disjI2)
qed
qed
-- Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
∃x. P x ∧ Q x ⊢ (∃x. P x) ∧ (∃x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_14a:
assumes "∃x. P x ∧ Q x"
shows "(∃x. P x) ∧ (∃x. Q x)"
proof
obtain a where "P a ∧ Q a" using assms by (rule exE)
hence "P a" by (rule conjunct1)
thus "∃x. P x" by (rule exI)
have "Q a" using `P a ∧ Q a` by (rule conjunct2)
thus "∃x. Q x" by (rule exI)
qed
-- Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
∀x y. P y ⟶ Q x ⊢ (∃y. P y) ⟶ (∀x. Q x)
------------------------------------------------------------------ *}
lemma ejercicio_15a:
assumes "∀x y. P y ⟶ Q x"
shows "(∃y. P y) ⟶ (∀x. Q x)"
proof
assume "∃y. P y"
then obtain b where "P b" by (rule exE)
{fix a
have "∀y. P y ⟶ Q a" using assms by (rule allE)
hence "P b ⟶ Q a" by (rule allE)
have "Q a" using `P b ⟶ Q a` `P b` by (rule mp)}
thus "∀x. Q x" by (rule allI)
qed
-- Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
¬(∀x. ¬(P x)) ⊢ ∃x. P x
------------------------------------------------------------------ *}
lemma ejercicio_16a:
assumes 1:"¬(∀x. ¬(P x))"
shows "∃x. P x"
proof-
fix x0
{assume 2: "¬(∃x. P x)"
{fix x1
{assume 3: "P x1"
have 4: "∃x. P x" using 3 by (rule exI)
have 5: "False" using 2 4 by (rule notE)}
then have 6: "¬ P x1" by (rule notI)}
then have 7: "∀x. ¬ P x" by (rule allI)
have 8: "False" using 1 7 by (rule notE)}
then show "∃x. P x" by (rule ccontr)
qed
-- Rocio Rodriguez
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
∀x. ¬(P x) ⊢ ¬(∃x. P x)
------------------------------------------------------------------ *}
lemma ejercicio_17a:
assumes "∀x. ¬(P x)"
shows "¬(∃x. P x)"
proof
assume "∃x. P x"
then obtain a where "P a" by (rule exE)
have " ¬ (P a)" using assms by (rule allE)
show False using `¬(P a)` `P a` by (rule notE)
qed
--Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
∃x. P x ⊢ ¬(∀x. ¬(P x))
------------------------------------------------------------------ *}
lemma ejercicio_18a:
assumes "∃x. P x"
shows "¬(∀x. ¬(P x))"
proof
assume "∀x. ¬(P x)"
obtain a where "P a" using assms by (rule exE)
have "¬(P a)" using `∀x. ¬(P x)` by (rule allE)
show False using `¬(P a)` `P a`by (rule notE)
qed
-- Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
P a ⟶ (∀x. Q x) ⊢ ∀x. P a ⟶ Q x
------------------------------------------------------------------ *}
lemma ejercicio_19a:
assumes "P a ⟶ (∀x. Q x)"
shows "∀x. P a ⟶ Q x"
proof
fix b
show "P a ⟶ Q b"
proof
assume "P a"
have "∀x. Q x" using assms `P a` by (rule mp)
thus "Q b" by (rule allE)
qed
qed
--Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
{∀x y z. R x y ∧ R y z ⟶ R x z,
∀x. ¬(R x x)}
⊢ ∀x y. R x y ⟶ ¬(R y x)
------------------------------------------------------------------ *}
lemma ejercicio_20a:
assumes "∀x y z. R x y ∧ R y z ⟶ R x z"
"∀x. ¬(R x x)"
shows "∀x y. R x y ⟶ ¬(R y x)"
proof (rule allI)+
fix a b
show "R a b ⟶ ¬(R b a )"
proof
assume 1:"R a b"
show"¬(R b a)"
proof
assume 2:"R b a"
have 3:"R a b ∧ R b a" using 1 2..
have "∀y z. R a y ∧ R y z ⟶ R a z" using assms(1)..
hence "∀z. R a b ∧ R b z ⟶ R a z"..
hence 4:"R a b ∧ R b a ⟶ R a a"..
have 5:"R a a" using 4 3..
have 6:" ¬(R a a)" using assms(2)..
show False using 6 5..
qed
qed
qed
--Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
{∀x. P x ∨ Q x, ∃x. ¬(Q x), ∀x. R x ⟶ ¬(P x)} ⊢ ∃x. ¬(R x)
------------------------------------------------------------------ *}
lemma ejercicio_21a:
assumes "∀x. P x ∨ Q x"
"∃x. ¬(Q x)"
"∀x. R x ⟶ ¬(P x)"
shows "∃x. ¬(R x)"
proof-
obtain a where "¬(Q a)" using assms(2) by (rule exE)
have "P a ∨ Q a" using assms(1) by (rule allE)
show "∃x. ¬(R x)" using `P a ∨ Q a`
proof
assume "P a"
hence 1:"¬¬(P a)" by (rule notnotI)
have 2:"R a ⟶ ¬(P a)" using assms(3) by (rule allE)
have "¬(R a)" using 2 1 by (rule mt)
thus "∃x. ¬(R x)" by (rule exI)
next
assume "Q a"
have False using `¬(Q a)` `Q a` by (rule notE)
thus "∃x. ¬(R x)" by (rule ccontr)
qed
qed
-Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
{∀x. P x ⟶ Q x ∨ R x, ¬(∃x. P x ∧ R x)} ⊢ ∀x. P x ⟶ Q x
------------------------------------------------------------------ *}
lemma ejercicio_22a:
assumes "∀x. P x ⟶ Q x ∨ R x"
"¬(∃x. P x ∧ R x)"
shows "∀x. P x ⟶ Q x"
proof
fix a
show "P a ⟶ Q a"
proof
assume 1:"P a"
have 2:"P a ⟶ Q a ∨ R a" using assms(1) by (rule allE)
have 3:"Q a ∨ R a" using 2 1 by (rule mp)
show "Q a" using 3
proof
assume "Q a"
next
assume 4:"R a"
have "P a ∧ R a" using 1 4 by (rule conjI)
hence 5:"∃x. P x ∧ R x" by (rule exI)
have False using assms(2) 5 by (rule notE)
thus "Q a" by (rule ccontr)
qed
qed
qed
--Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
∃x y. R x y ∨ R y x ⊢ ∃x y. R x y
------------------------------------------------------------------ *}
lemma ejercicio_23a:
assumes "∃x y. R x y ∨ R y x"
shows "∃x y. R x y"
proof -
obtain a where "∃y. R a y ∨ R y a " using assms by (rule exE)
then obtain b where 1:"R a b ∨ R b a" by (rule exE)
show "∃x y. R x y" using 1
proof
assume "R a b"
hence "∃y. R a y" by (rule exI)
thus "∃x y. R x y" by (rule exI)
next
assume "R b a"
hence "∃y. R b y" by (rule exI)
thus "∃x y. R x y" by (rule exI)
qed
qed
--Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
(∃x. ∀y. P x y) ⟶ (∀y. ∃x. P x y)
------------------------------------------------------------------ *}
lemma ejercicio_24a:
"(∃x. ∀y. P x y) ⟶ (∀y. ∃x. P x y)"
proof
assume "∃x. ∀y. P x y"
then obtain a where 1:"∀y. P a y" by (rule exE)
{fix b
have "P a b" using 1 by (rule allE)
hence "∃x. P x b" by (rule exI)}
thus "∀y. ∃x. P x y" by (rule allI)
qed
-- Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
(∀x. P x ⟶ Q) ⟷ ((∃x. P x) ⟶ Q)
------------------------------------------------------------------ *}
lemma ejercicio_25a:
"(∀x. P x ⟶ Q) ⟷ ((∃x. P x) ⟶ Q)"
proof
assume 1:"∀x. P x ⟶ Q"
show "(∃x. P x) ⟶ Q"
proof
assume "∃x. P x"
then obtain a where 3:"P a" by (rule exE)
have 4:"P a ⟶ Q"using 1 by (rule allE)
show "Q" using 4 3 by (rule mp)
qed
next
assume 5:"(∃x. P x) ⟶ Q"
show "∀x. P x ⟶ Q"
proof
fix a
show "P a⟶Q"
proof
assume "P a"
hence 6:"∃x. P x" by (rule exI)
show "Q" using 5 6 by (rule mp)
qed
qed
qed
--Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
((∀x. P x) ∧ (∀x. Q x)) ⟷ (∀x. P x ∧ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_26a:
"((∀x. P x) ∧ (∀x. Q x)) ⟷ (∀x. P x ∧ Q x)"
"((∀x. P x) ∧ (∀x. Q x)) ⟷ (∀x. P x ∧ Q x)"
proof
assume 0: "(∀x. P x) ∧ (∀x. Q x)"
have 1: "∀x. P x" using 0 by (rule conjunct1)
have 2: "∀x. Q x" using 0 by (rule conjunct2)
{fix a
have 3: "P a" using 1 by (rule allE)
have 4: "Q a" using 2 by (rule allE)
have 5: "P a ∧ Q a" using 3 4 by (rule conjI)}
thus "∀x. P x ∧ Q x" by (rule allI)
next
assume 0: "∀x. P x ∧ Q x"
{fix a
have 1: "P a ∧ Q a" using 0 by (rule allE)
have 2: "P a" using 1 by (rule conjunct1)}
hence 3: "∀x. P x" by (rule allI)
{fix a
have 4: "P a ∧ Q a" using 0 by (rule allE)
have 5: "Q a" using 4 by (rule conjunct2)}
hence 6: "∀x. Q x" by (rule allI)
show "(∀x. P x) ∧ (∀x. Q x)" using 3 6 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar o refutar
((∀x. P x) ∨ (∀x. Q x)) ⟷ (∀x. P x ∨ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_27a:
"((∀x. P x) ∨ (∀x. Q x)) ⟷ (∀x. P x ∨ Q x)"
proof
assume "(∀x. P x) ∨ (∀x. Q x)"
moreover
{assume "∀x. P x"
{fix a
have "P a" using `∀x. P x` by (rule allE)
have "P a ∨ Q a" using `P a` by (rule disjI1)}
hence "∀x. P x ∨ Q x" by (rule allI)}
moreover
{assume "∀x. Q x"
{fix a
have "Q a" using `∀x. Q x` by (rule allE)
have "P a ∨ Q a" using `Q a` by (rule disjI2)}
hence "∀x. P x ∨ Q x" by (rule allI)}
ultimately show "∀x. P x ∨ Q x" by (rule disjE)
next
assume "∀x. P x ∨ Q x"
oops
text{*
Consideremos los números naturales, ℕ. Sea P = "Ser par" y Q = "Ser impar". Claramente
∀x, P x ∨ Q x, pero es falso (∀x P x)∨(∀x Q x), pues no todo número es par
y no todo número es impar. Por tanto la propiedad, en general, es falsa. Es decir,
((∀x. P x) ∨ (∀x. Q x)) ⟶ (∀x. P x ∨ Q x) pero en general
(∀x. P x ∨ Q x) no implica ((∀x. P x) ∨ (∀x. Q x))
*}
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar o refutar
((∃x. P x) ∨ (∃x. Q x)) ⟷ (∃x. P x ∨ Q x)
------------------------------------------------------------------ *}
lemma ejercicio_28a:
"((∃x. P x) ∨ (∃x. Q x)) ⟷ (∃x. P x ∨ Q x)"
proof
assume 1:"(∃x. P x) ∨ (∃x. Q x)"
show "∃x. P x ∨ Q x" using 1
proof
assume "∃x. P x"
then obtain a where "P a" by (rule exE)
hence "P a ∨ Q a" by (rule disjI1)
thus "∃x. P x ∨ Q x" by (rule exI)
next
assume "∃x. Q x"
then obtain a where "Q a" by (rule exE)
hence "P a ∨ Q a" by (rule disjI2)
thus "∃x. P x ∨ Q x" by (rule exI)
qed
next
assume "∃x. P x ∨ Q x"
then obtain a where 2:"P a ∨ Q a" by (rule exE)
show "(∃x. P x) ∨ (∃x. Q x)" using 2
proof
assume "P a"
hence "∃x. P x" by (rule exI)
thus "(∃x. P x) ∨ (∃x. Q x)" by (rule disjI1)
next
assume "Q a"
hence "∃x. Q x" by (rule exI)
thus "(∃x. P x) ∨ (∃x. Q x)" by (rule disjI2)
qed
qed
-- Jaime Alberto
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar o refutar
(∀x. ∃y. P x y) ⟶ (∃y. ∀x. P x y)
------------------------------------------------------------------ *}
lemma ejercicio_29:
"(∀x. ∃y. P x y) ⟶ (∃y. ∀x. P x y)"
oops
text{*
Propiedad en general falsa. Sean los números naturales, y la propiedad P x y = "x + y es par". Claramente, para todo x, existe un y tal que P x y se verifica (baste tomar y = x). Pero, sea cual sea el y natural que tomemos, da igual el y que tomemos: no para todo elemento que le sumemos la suma será par.
*}
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar o refutar
(¬(∀x. P x)) ⟷ (∃x. ¬P x)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_30a:
"(¬(∀x. P x)) ⟷ (∃x. ¬P x)"
proof (rule iffI)
assume 1: "¬(∀x. P x)"
show "∃x. ¬P x"
proof (rule ccontr)
assume 2: "¬(∃x. ¬P x)"
show "False"
proof -
{ fix a
{ assume 3: "¬P a"
have 4: "∃x.¬ P x" using 3 by (rule exI)
have 5: "False" using 2 4 by (rule notE)}
hence 6: "P a" by (rule ccontr)}
hence 7: "∀x. P x" by (rule allI)
show 8: "False" using 1 7 by (rule notE)
qed
qed
next
assume 9: "∃x. ¬P x"
show "¬(∀x. P x)"
proof -
{assume 10: "¬¬(∀x. P x)"
have 11: "∀x. P x" using 10 by (rule notnotD)
obtain a where 12: "¬P a" using 9 by (rule exE)
have 13: "P a" using 11 by (rule allE)
have 14: "False" using 12 13 by (rule notE)}
thus 15: "¬(∀x. P x)" by (rule ccontr)
qed
qed
section {* Ejercicios sobre igualdad *}
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar o refutar
P a ⟹ ∀x. x = a ⟶ P x
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_31a:
assumes "P a"
shows "∀x. x = a ⟶ P x"
proof (rule allI)
fix b
show "b = a ⟶ P b"
proof (rule impI)
assume 1: "b = a"
show "P b"
proof -
have 2: "a = b" using 1 by (rule sym)
show 3: "P b" using 2 assms(1) by (rule subst)
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar o refutar
∃x y. R x y ∨ R y x; ¬(∃x. R x x)⟧ ⟹ ∃x y. x ≠ y
------------------------------------------------------------------ *}
lemma ejercicio_32a:
fixes R :: "'c ⇒ 'c ⇒ bool"
assumes "∃x y. R x y ∨ R y x"
"¬(∃x. R x x)"
shows "∃(x::'c) y. x ≠ y"
oops
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar o refutar
{∀x. P a x x,
∀x y z. P x y z ⟶ P (f x) y (f z)}
⊢ P (f a) a (f a)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_33a:
assumes "∀x. P a x x"
"∀x y z. P x y z ⟶ P (f x) y (f z)"
shows "P (f a) a (f a)"
proof -
have 1: "P a a a" using assms(1) by (rule allE)
have 2: "∀y z. P a y z ⟶ P (f a) y (f z)" using assms(2) by (rule allE)
have 3: "∀z. P a a z ⟶ P (f a) a (f z)" using 2 by (rule allE)
have 4: "P a a a ⟶ P (f a) a (f a)" using 3 by (rule allE)
show 5: "P (f a) a (f a)" using 4 1 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar o refutar
{∀x. P a x x,
∀x y z. P x y z ⟶ P (f x) y (f z)⟧
⊢ ∃z. P (f a) z (f (f a))
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_34a:
assumes "∀x. P a x x"
"∀x y z. P x y z ⟶ P (f x) y (f z)"
shows "∃z. P (f a) z (f (f a))"
proof -
have 1: "P a (f a) (f a)" using assms(1) by (rule allE)
have 2: "∀y z. P a y z ⟶ P (f a) y (f z)" using assms(2) by (rule allE)
have 3: "∀z. P a (f a) z ⟶ P (f a) (f a) (f z)" using 2 by (rule allE)
have 4: "P a (f a) (f a) ⟶ P (f a) (f a) (f (f a))" using 3 by (rule allE)
have 5: "P (f a) (f a) (f (f a))" using 4 1 by (rule mp)
show 6: "∃z. P (f a) z (f (f a))" using 5 by (rule exI)
qed
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar o refutar
{∀y. Q a y,
∀x y. Q x y ⟶ Q (s x) (s y)}
⊢ ∃z. Qa z ∧ Q z (s (s a))
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_35a:
assumes "∀y. Q a y"
"∀x y. Q x y ⟶ Q (s x) (s y)"
shows "∃z. Q a z ∧ Q z (s (s a))"
proof -
have 1: "Q a (s a)" using assms(1) by (rule allE)
have 2: "∀y. Q a y ⟶ Q (s a) (s y)" using assms(2) by (rule allE)
have 3: "Q a (s a) ⟶ Q (s a) (s (s a))" using 2 by (rule allE)
have 4: "Q (s a) (s (s a))" using 3 1 by (rule mp)
have 5: "Q a (s a) ∧ Q (s a) (s (s a))" using 1 4 by (rule conjI)
show 6: "∃z. Q a z ∧ Q z (s (s a))" using 5 by (rule exI)
qed
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar o refutar
{x = f x, odd (f x)} ⊢ odd x
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_36a:
assumes "x = f x" and
"odd (f x)"
shows "odd x"
proof -
show "odd x" using assms(1) assms(2) by (rule ssubst)
qed
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar o refutar
{x = f x, triple (f x) (f x) x} ⊢ triple x x x
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_37a:
assumes "x = f x" and
"triple (f x) (f x) x"
shows "triple x x x"
proof -
show "triple x x x" using assms(1) assms(2) by (rule ssubst)
qed
end