Diferencia entre revisiones de «Relación 3»
De Lógica matemática y fundamentos (2014-15)
Línea 363: | Línea 363: | ||
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r) | p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_20: | lemma ejercicio_20: | ||
assumes "p ⟶ q ∧ r" | assumes "p ⟶ q ∧ r" | ||
shows "(p ⟶ q) ∧ (p ⟶ r)" | shows "(p ⟶ q) ∧ (p ⟶ r)" | ||
− | + | proof (rule conjI) | |
+ | { assume 1: "p" | ||
+ | have 2: "q ∧ r" using assms(1) 1 by (rule mp) | ||
+ | have 3: "q" using 2 by (rule conjunct1)} | ||
+ | thus "p ⟶ q" by (rule impI) | ||
+ | next | ||
+ | { assume 1: "p" | ||
+ | have 2: "q ∧ r" using assms(1) 1 by (rule mp) | ||
+ | have 3: "r" using 2 by (rule conjunct2)} | ||
+ | thus "p ⟶ r" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 373: | Línea 384: | ||
p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r | p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_21: | lemma ejercicio_21: | ||
assumes "p ⟶ (q ⟶ r)" | assumes "p ⟶ (q ⟶ r)" | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
− | + | proof - | |
+ | { assume 1: "p ∧ q" | ||
+ | have 2: "p" using 1 by (rule conjunct1) | ||
+ | have 3: "q ⟶ r" using assms(1) 2 by (rule mp) | ||
+ | have 4: "q" using 1 by (rule conjunct2) | ||
+ | have 5: "r" using 3 4 by (rule mp)} | ||
+ | thus "(p ∧ q) ⟶ r" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 383: | Línea 403: | ||
p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r) | p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_22: | lemma ejercicio_22: | ||
assumes "p ∧ q ⟶ r" | assumes "p ∧ q ⟶ r" | ||
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
− | + | proof - | |
+ | { assume 1: "p" | ||
+ | {assume 2: "q" | ||
+ | have 3: "p ∧ q" using 1 2 by (rule conjI) | ||
+ | have 4: "r" using assms(1) 3 by (rule mp)} | ||
+ | then have 5: "q ⟶ r" by (rule impI)} | ||
+ | thus "p ⟶ (q ⟶ r)" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 393: | Línea 422: | ||
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r | (p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_23: | lemma ejercicio_23: | ||
assumes "(p ⟶ q) ⟶ r" | assumes "(p ⟶ q) ⟶ r" | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
− | + | proof - | |
+ | { assume 1: "p ∧q" | ||
+ | {assume 2: "p" | ||
+ | have 3: "q" using 1 by (rule conjunct2)} | ||
+ | hence 4: "p ⟶ q" by (rule impI) | ||
+ | have 5: "r" using assms(1) 4 by (rule mp)} | ||
+ | thus "p ∧ q ⟶ r" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 403: | Línea 441: | ||
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r | p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_24: | lemma ejercicio_24: | ||
assumes "p ∧ (q ⟶ r)" | assumes "p ∧ (q ⟶ r)" | ||
shows "(p ⟶ q) ⟶ r" | shows "(p ⟶ q) ⟶ r" | ||
− | + | proof - | |
+ | { assume 1: "p ⟶ q" | ||
+ | have 2: "p" using assms(1) by (rule conjunct1) | ||
+ | have 3: "q" using 1 2 by (rule mp) | ||
+ | have 4: "q ⟶ r" using assms(1) by (rule conjunct2) | ||
+ | have 5: "r" using 4 3 by (rule mp)} | ||
+ | thus "(p ⟶ q) ⟶ r" by (rule impI) | ||
+ | qed | ||
section {* Disyunciones *} | section {* Disyunciones *} | ||
Línea 415: | Línea 462: | ||
p ⊢ p ∨ q | p ⊢ p ∨ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_25: | lemma ejercicio_25: | ||
assumes "p" | assumes "p" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | proof - | |
+ | show "p ∨ q" using assms(1) by (rule disjI1) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 425: | Línea 476: | ||
q ⊢ p ∨ q | q ⊢ p ∨ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_26: | lemma ejercicio_26: | ||
assumes "q" | assumes "q" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | proof - | |
+ | show "p ∨ q" using assms(1) by (rule disjI2) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 435: | Línea 490: | ||
p ∨ q ⊢ q ∨ p | p ∨ q ⊢ q ∨ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_27: | lemma ejercicio_27: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
shows "q ∨ p" | shows "q ∨ p" | ||
− | + | proof - | |
+ | have "p ∨ q" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | have 2: "q ∨ p" using 1 by (rule disjI2)} | ||
+ | moreover | ||
+ | { assume 1: "q" | ||
+ | have 2: "q ∨ p" using 1 by (rule disjI1)} | ||
+ | ultimately show "q ∨ p" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 445: | Línea 511: | ||
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r | q ⟶ r ⊢ p ∨ q ⟶ p ∨ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_28: | lemma ejercicio_28: | ||
assumes "q ⟶ r" | assumes "q ⟶ r" | ||
shows "p ∨ q ⟶ p ∨ r" | shows "p ∨ q ⟶ p ∨ r" | ||
− | + | proof - | |
+ | { assume 1: "p ∨ q" | ||
+ | moreover | ||
+ | { assume 2: "p" | ||
+ | have 3: "p ∨ r" using 2 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 4: "q" | ||
+ | have 5: "r" using assms(1) 4 by (rule mp) | ||
+ | have 6: "p ∨ r" using 5 by (rule disjI2)} | ||
+ | ultimately have "p ∨r" by (rule disjE)} | ||
+ | thus "p ∨ q ⟶ p ∨ r" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 455: | Línea 534: | ||
p ∨ p ⊢ p | p ∨ p ⊢ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_29: | lemma ejercicio_29: | ||
assumes "p ∨ p" | assumes "p ∨ p" | ||
shows "p" | shows "p" | ||
− | + | proof - | |
+ | have "p ∨ p" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | have 2: "p" using 1 by this} | ||
+ | moreover | ||
+ | { assume 3: "p" | ||
+ | have 4: "p" using 3 by this} | ||
+ | ultimately show "p" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 465: | Línea 555: | ||
p ⊢ p ∨ p | p ⊢ p ∨ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_30: | lemma ejercicio_30: | ||
assumes "p" | assumes "p" | ||
shows "p ∨ p" | shows "p ∨ p" | ||
− | + | proof - | |
+ | show "p ∨ p" using assms(1) by (rule disjI1) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 475: | Línea 569: | ||
p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r | p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_31: | lemma ejercicio_31: | ||
assumes "p ∨ (q ∨ r)" | assumes "p ∨ (q ∨ r)" | ||
shows "(p ∨ q) ∨ r" | shows "(p ∨ q) ∨ r" | ||
− | + | proof - | |
+ | have "p ∨ (q ∨ r)" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | have 2: "p ∨ q" using 1 by (rule disjI1) | ||
+ | have 3: "(p ∨ q) ∨ r" using 2 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 4: "q ∨ r" | ||
+ | moreover | ||
+ | { assume 5: "q" | ||
+ | have 6: "p ∨ q" using 5 by (rule disjI2) | ||
+ | have 7: "(p ∨ q) ∨ r" using 6 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 8: "r" | ||
+ | have 9: "(p ∨ q) ∨ r" using 8 by (rule disjI2)} | ||
+ | ultimately have "(p ∨ q) ∨ r" by (rule disjE)} | ||
+ | ultimately show "(p ∨ q) ∨ r" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 485: | Línea 598: | ||
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r) | (p ∨ q) ∨ r ⊢ p ∨ (q ∨ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_32: | lemma ejercicio_32: | ||
assumes "(p ∨ q) ∨ r" | assumes "(p ∨ q) ∨ r" | ||
shows "p ∨ (q ∨ r)" | shows "p ∨ (q ∨ r)" | ||
− | + | proof - | |
+ | have "(p ∨ q) ∨ r" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p ∨ q" | ||
+ | moreover | ||
+ | { assume 2: "p" | ||
+ | have 3: "p ∨ (q ∨ r)" using 2 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 4: "q" | ||
+ | have 5: "q ∨ r" using 4 by (rule disjI1) | ||
+ | have 6: "p ∨ (q ∨ r)" using 5 by (rule disjI2)} | ||
+ | ultimately have "p ∨ (q ∨ r)" by (rule disjE)} | ||
+ | moreover | ||
+ | { assume 7: "r" | ||
+ | have 8: "q ∨ r" using 7 by (rule disjI2) | ||
+ | have 9: "p ∨ (q ∨ r)" using 8 by (rule disjI2)} | ||
+ | ultimately show "p ∨ (q ∨ r)" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 495: | Línea 627: | ||
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r) | p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_33: | lemma ejercicio_33: | ||
assumes "p ∧ (q ∨ r)" | assumes "p ∧ (q ∨ r)" | ||
shows "(p ∧ q) ∨ (p ∧ r)" | shows "(p ∧ q) ∨ (p ∧ r)" | ||
− | + | proof - | |
+ | have 1: "p" using assms(1) by (rule conjunct1) | ||
+ | have 2: "q ∨ r" using assms(1) by (rule conjunct2) | ||
+ | moreover | ||
+ | { assume 3: "q" | ||
+ | have 4: "p ∧ q" using 1 3 by (rule conjI) | ||
+ | have 5: "(p ∧ q) ∨ (p ∧ r)" using 4 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 6: "r" | ||
+ | have 7: "p ∧ r" using 1 6 by (rule conjI) | ||
+ | have 8: "(p ∧ q) ∨ (p ∧ r)" using 7 by (rule disjI2)} | ||
+ | ultimately show "(p ∧ q) ∨ (p ∧ r)" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 505: | Línea 651: | ||
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r) | (p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_34: | lemma ejercicio_34: | ||
assumes "(p ∧ q) ∨ (p ∧ r)" | assumes "(p ∧ q) ∨ (p ∧ r)" | ||
shows "p ∧ (q ∨ r)" | shows "p ∧ (q ∨ r)" | ||
− | + | proof - | |
+ | have "(p ∧ q) ∨ (p ∧ r)" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p ∧ q" | ||
+ | have 2: "q" using 1 by (rule conjunct2) | ||
+ | have 3: "q ∨ r" using 2 by (rule disjI1) | ||
+ | have 4: "p" using 1 by (rule conjunct1) | ||
+ | have 5: "p ∧ (q ∨ r)" using 4 3 by (rule conjI)} | ||
+ | moreover | ||
+ | { assume 6: "p ∧ r" | ||
+ | have 7: "r" using 6 by (rule conjunct2) | ||
+ | have 8: "q ∨ r" using 7 by (rule disjI2) | ||
+ | have 9: "p" using 6 by (rule conjunct1) | ||
+ | have 10: "p ∧ (q ∨ r)" using 9 8 by (rule conjI)} | ||
+ | ultimately show "p ∧ (q ∨ r)" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 515: | Línea 678: | ||
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r) | p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_35: | lemma ejercicio_35: | ||
assumes "p ∨ (q ∧ r)" | assumes "p ∨ (q ∧ r)" | ||
shows "(p ∨ q) ∧ (p ∨ r)" | shows "(p ∨ q) ∧ (p ∨ r)" | ||
− | + | proof - | |
+ | have "p ∨ (q ∧ r)" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | have 2: "p ∨ q" using 1 by (rule disjI1) | ||
+ | have 3: "p ∨ r" using 1 by (rule disjI1) | ||
+ | have 4: "(p ∨ q) ∧ (p ∨ r)" using 2 3 by (rule conjI)} | ||
+ | moreover | ||
+ | { assume 5: "q ∧ r" | ||
+ | have 6: "q" using 5 by (rule conjunct1) | ||
+ | have 7: "p ∨ q" using 6 by (rule disjI2) | ||
+ | have 8: "r" using 5 by (rule conjunct2) | ||
+ | have 9: "p ∨ r" using 8 by (rule disjI2) | ||
+ | have 10: "(p ∨ q) ∧ (p ∨ r)" using 7 9 by (rule conjI)} | ||
+ | ultimately show "(p ∨ q) ∧ (p ∨ r)" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 525: | Línea 705: | ||
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r) | (p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_36: | lemma ejercicio_36: | ||
assumes "(p ∨ q) ∧ (p ∨ r)" | assumes "(p ∨ q) ∧ (p ∨ r)" | ||
shows "p ∨ (q ∧ r)" | shows "p ∨ (q ∧ r)" | ||
− | + | proof - | |
+ | have "(p ∨ q)" using assms(1) by (rule conjunct1) | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | have 2: "p ∨ (q ∧ r)" using 1 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 3: "q" | ||
+ | have 4: "p ∨ r" using assms(1) by (rule conjunct2) | ||
+ | moreover | ||
+ | { assume 5: "p" | ||
+ | have 6: "p ∨ (q ∧ r)" using 5 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 7: "r" | ||
+ | have 8: "q ∧ r" using 3 7 by (rule conjI) | ||
+ | have 9: "p ∨ (q ∧ r)" using 8 by (rule disjI2)} | ||
+ | ultimately have "p ∨ (q ∧ r)" by (rule disjE)} | ||
+ | ultimately show "p ∨ (q ∧ r)" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 535: | Línea 734: | ||
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r | (p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_37: | lemma ejercicio_37: | ||
assumes "(p ⟶ r) ∧ (q ⟶ r)" | assumes "(p ⟶ r) ∧ (q ⟶ r)" | ||
shows "p ∨ q ⟶ r" | shows "p ∨ q ⟶ r" | ||
− | + | proof - | |
+ | { assume 1: "p ∨ q" | ||
+ | moreover | ||
+ | { assume 2: "p" | ||
+ | have 3: "p ⟶ r" using assms(1) by (rule conjunct1) | ||
+ | have 4: "r" using 3 2 by (rule mp)} | ||
+ | moreover | ||
+ | { assume 5: "q" | ||
+ | have 6: "q ⟶ r" using assms(1) by (rule conjunct2) | ||
+ | have 7: "r" using 6 5 by (rule mp)} | ||
+ | ultimately have "r" by (rule disjE)} | ||
+ | thus "(p ∨ q) ⟶ r" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 545: | Línea 758: | ||
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r) | p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_38: | lemma ejercicio_38: | ||
assumes "p ∨ q ⟶ r" | assumes "p ∨ q ⟶ r" | ||
shows "(p ⟶ r) ∧ (q ⟶ r)" | shows "(p ⟶ r) ∧ (q ⟶ r)" | ||
− | + | proof (rule conjI) | |
+ | { assume 1: "p" | ||
+ | have 2: "p ∨ q" using 1 by (rule disjI1) | ||
+ | have 3: "r" using assms(1) 2 by (rule mp)} | ||
+ | thus "p ⟶ r" by (rule impI) | ||
+ | next | ||
+ | { assume 4: "q" | ||
+ | have 5: "p ∨ q" using 4 by (rule disjI2) | ||
+ | have 6: "r" using assms(1) 5 by (rule mp)} | ||
+ | thus "q ⟶ r" by (rule impI) | ||
+ | qed | ||
section {* Negaciones *} | section {* Negaciones *} | ||
Línea 557: | Línea 782: | ||
p ⊢ ¬¬p | p ⊢ ¬¬p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_39: | lemma ejercicio_39: | ||
assumes "p" | assumes "p" | ||
shows "¬¬p" | shows "¬¬p" | ||
− | + | proof - | |
+ | show "¬¬p" using assms(1) by (rule notnotI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 567: | Línea 796: | ||
¬p ⊢ p ⟶ q | ¬p ⊢ p ⟶ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_40: | lemma ejercicio_40: | ||
assumes "¬p" | assumes "¬p" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | proof - | |
+ | { assume 1: "p" | ||
+ | have 2: "False" using assms(1) 1 by (rule notE) | ||
+ | have 3: "q" using 2 by (rule FalseE)} | ||
+ | thus "p ⟶ q" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 587: | Línea 823: | ||
p∨q, ¬q ⊢ p | p∨q, ¬q ⊢ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_42: | lemma ejercicio_42: | ||
Línea 592: | Línea 830: | ||
"¬q" | "¬q" | ||
shows "p" | shows "p" | ||
− | + | proof - | |
+ | have "p ∨ q" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | have 2: "p" using 1 by this} | ||
+ | moreover | ||
+ | { assume 3: "q" | ||
+ | have 4: "False" using assms(2) 3 by (rule notE) | ||
+ | have 5: "p" using 4 by (rule FalseE)} | ||
+ | ultimately show "p" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 598: | Línea 846: | ||
p ∨ q, ¬p ⊢ q | p ∨ q, ¬p ⊢ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_43: | lemma ejercicio_43: | ||
Línea 603: | Línea 853: | ||
"¬p" | "¬p" | ||
shows "q" | shows "q" | ||
− | + | proof - | |
+ | have "p ∨ q" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | have 2: "False" using assms(2) 1 by (rule notE) | ||
+ | have 3: "q" using 2 by (rule FalseE)} | ||
+ | moreover | ||
+ | { assume 4: "q" | ||
+ | have 5: "q" using 4 by this} | ||
+ | ultimately show "q" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- |
Revisión del 14:35 7 mar 2015
header {* R3: Deducción natural proposicional *}
theory R3
imports Main
begin
text {*
---------------------------------------------------------------------
El objetivo de esta relación es demostrar cada uno de los ejercicios
usando sólo las reglas básicas de deducción natural de la lógica
proposicional (sin usar el método auto).
Las reglas básicas de la deducción natural son las siguientes:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· notnotI: P ⟹ ¬¬ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· mt: ⟦F ⟶ G; ¬G⟧ ⟹ ¬F
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
---------------------------------------------------------------------
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación. *}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
section {* Implicaciones *}
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
p ⟶ q, p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_1:
assumes "p ⟶ q"
"p"
shows "q"
proof -
show "q" using assms(1) assms(2) by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
p ⟶ q, q ⟶ r, p ⊢ r
------------------------------------------------------------------ *}
lemma ejercicio_2:
assumes "p ⟶ q"
"q ⟶ r"
"p"
shows "r"
proof - have 1: "q" using assms(1) assms(3) by (rule mp)
show "r" using assms(2) 1 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
------------------------------------------------------------------ *}
lemma ejercicio_3:
assumes "p ⟶ (q ⟶ r)"
"p ⟶ q"
"p"
shows "r"
proof -
have 1:"q⟶r" using assms(1) assms(3) by (rule mp)
have 2:"q" using assms(2) assms(3) by (rule mp)
show "r" using 1 2 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
p ⟶ q, q ⟶ r ⊢ p ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_4:
assumes "p ⟶ q"
"q ⟶ r"
shows "p ⟶ r"
proof -
{assume 1: "p"
have 2: "q" using assms(1) 1 by (rule mp)
have 3: "r" using assms(2) 2 by (rule mp)}
then show "p⟶r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_5:
assumes "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof-
{assume 1: "q"
{assume 2: "p"
have 3:"q⟶r" using assms(1) 2 by (rule mp)
have "r" using 3 1 by (rule mp)}
hence "p⟶r" by (rule impI)}
then show "q⟶(p⟶r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_6:
assumes "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof-
{assume 1: "p⟶q"
{assume 2: "p"
have 3: "q⟶r" using assms(1) 2 by (rule mp)
have 4: "q" using 1 2 by (rule mp)
have 5: "r" using 3 4 by (rule mp)}
hence "p⟶r" by (rule impI)}
then show "(p⟶q)⟶(p⟶r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
p ⊢ q ⟶ p
------------------------------------------------------------------ *}
lemma ejercicio_7:
assumes "p"
shows "q ⟶ p"
proof-
{assume 1: "q"
note `p`}
thus "q⟶p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
⊢ p ⟶ (q ⟶ p)
------------------------------------------------------------------ *}
lemma ejercicio_8:
"p ⟶ (q ⟶ p)"
proof-
{assume "p"
{assume "q"
note `p`}
hence "q⟶p" by (rule impI)}
thus "p⟶q⟶p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_9:
assumes "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof-
{assume 1: "q⟶r"
{assume 2:"p"
have 3: "q" using assms(1) 2 by (rule mp)
have 4: "r" using 1 3 by (rule mp)}
hence "p⟶r" by (rule impI)}
thus "(q⟶r)⟶(p⟶r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s))
------------------------------------------------------------------ *}
lemma ejercicio_10:
assumes "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof -
{assume 1: "r"
{assume 2: "q"
{assume 3: "p"
have 4: "q ⟶ (r ⟶ s)" using assms(1) 3 by (rule mp)
have 5: "r⟶s" using 4 2 by (rule mp)
have 6: "s" using 5 1 by (rule mp)}
hence "p⟶s" by (rule impI)}
hence "q⟶(p⟶s)" by (rule impI)}
thus "r⟶(q⟶(p⟶s))" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
------------------------------------------------------------------ *}
lemma ejercicio_11:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof-
{assume 1: "p⟶(q⟶r)"
{ assume 2: "p⟶q"
{assume 3: "p"
have 4: "q⟶r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
have 6: "r" using 4 5 by (rule mp)}
hence "p⟶r" by (rule impI)}
hence "(p⟶q)⟶(p⟶r)" by (rule impI)}
thus "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_12:
assumes "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof-
{assume 1: "p"
{assume 2: "q"
{assume 3:"p"
note `q`}
hence 4:"p⟶q" by (rule impI)
have 5: "r" using assms(1) 4 by (rule mp)}
hence "q⟶r" by (rule impI)}
thus "p⟶(q⟶r)" by (rule impI)
qed
section {* Conjunciones *}
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
p, q ⊢ p ∧ q
------------------------------------------------------------------ *}
lemma ejercicio_13:
assumes "p"
"q"
shows "p ∧ q"
proof-
show "p∧q" using assms(1) assms(2) by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
p ∧ q ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_14:
assumes "p ∧ q"
shows "p"
proof-
show "p" using assms(1) by (rule conjunct1)
qed
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
p ∧ q ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_15:
assumes "p ∧ q"
shows "q"
proof-
show "q" using assms(1) by (rule conjunct2)
qed
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r
------------------------------------------------------------------ *}
lemma ejercicio_16:
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
proof -
have 1: "p" using assms(1) by (rule conjunct1)
have 2: "q ∧ r" using assms(1) by (rule conjunct2)
have 3: "q" using 2 by (rule conjunct1)
have 4: "r" using 2 by (rule conjunct2)
have 5: "p ∧ q" using 1 3 by (rule conjI)
show "(p ∧ q) ∧ r" using 5 4 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
(p ∧ q) ∧ r ⊢ p ∧ (q ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_17:
assumes "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof-
have 1: "p ∧ q" using assms(1) by (rule conjunct1)
have 2: "r" using assms(1) by (rule conjunct2)
have 3: "p" using 1 by (rule conjunct1)
have 4: "q" using 1 by (rule conjunct2)
have 5: "q ∧ r" using 4 2 by (rule conjI)
show "p ∧(q ∧ r)" using 3 5 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
p ∧ q ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_18:
assumes "p ∧ q"
shows "p ⟶ q"
proof-
{assume "p"
have "q" using assms(1) by (rule conjunct2)}
thus "p⟶q" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r
------------------------------------------------------------------ *}
lemma ejercicio_19:
assumes "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof-
{assume 1: "p"
have 2: "p⟶q" using assms(1) by (rule conjunct1)
have 3: "p⟶r" using assms(1) by (rule conjunct2)
have 4: "q" using 2 1 by (rule mp)
have 5: "r" using 3 1 by (rule mp)
have 6: "q ∧ r" using 4 5 by (rule conjI)}
thus "p⟶(q ∧ r)" by(rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_20:
assumes "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof (rule conjI)
{ assume 1: "p"
have 2: "q ∧ r" using assms(1) 1 by (rule mp)
have 3: "q" using 2 by (rule conjunct1)}
thus "p ⟶ q" by (rule impI)
next
{ assume 1: "p"
have 2: "q ∧ r" using assms(1) 1 by (rule mp)
have 3: "r" using 2 by (rule conjunct2)}
thus "p ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_21:
assumes "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof -
{ assume 1: "p ∧ q"
have 2: "p" using 1 by (rule conjunct1)
have 3: "q ⟶ r" using assms(1) 2 by (rule mp)
have 4: "q" using 1 by (rule conjunct2)
have 5: "r" using 3 4 by (rule mp)}
thus "(p ∧ q) ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_22:
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof -
{ assume 1: "p"
{assume 2: "q"
have 3: "p ∧ q" using 1 2 by (rule conjI)
have 4: "r" using assms(1) 3 by (rule mp)}
then have 5: "q ⟶ r" by (rule impI)}
thus "p ⟶ (q ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_23:
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof -
{ assume 1: "p ∧q"
{assume 2: "p"
have 3: "q" using 1 by (rule conjunct2)}
hence 4: "p ⟶ q" by (rule impI)
have 5: "r" using assms(1) 4 by (rule mp)}
thus "p ∧ q ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_24:
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof -
{ assume 1: "p ⟶ q"
have 2: "p" using assms(1) by (rule conjunct1)
have 3: "q" using 1 2 by (rule mp)
have 4: "q ⟶ r" using assms(1) by (rule conjunct2)
have 5: "r" using 4 3 by (rule mp)}
thus "(p ⟶ q) ⟶ r" by (rule impI)
qed
section {* Disyunciones *}
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
p ⊢ p ∨ q
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_25:
assumes "p"
shows "p ∨ q"
proof -
show "p ∨ q" using assms(1) by (rule disjI1)
qed
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
q ⊢ p ∨ q
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_26:
assumes "q"
shows "p ∨ q"
proof -
show "p ∨ q" using assms(1) by (rule disjI2)
qed
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar
p ∨ q ⊢ q ∨ p
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_27:
assumes "p ∨ q"
shows "q ∨ p"
proof -
have "p ∨ q" using assms(1) by this
moreover
{ assume 1: "p"
have 2: "q ∨ p" using 1 by (rule disjI2)}
moreover
{ assume 1: "q"
have 2: "q ∨ p" using 1 by (rule disjI1)}
ultimately show "q ∨ p" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_28:
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
proof -
{ assume 1: "p ∨ q"
moreover
{ assume 2: "p"
have 3: "p ∨ r" using 2 by (rule disjI1)}
moreover
{ assume 4: "q"
have 5: "r" using assms(1) 4 by (rule mp)
have 6: "p ∨ r" using 5 by (rule disjI2)}
ultimately have "p ∨r" by (rule disjE)}
thus "p ∨ q ⟶ p ∨ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar
p ∨ p ⊢ p
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_29:
assumes "p ∨ p"
shows "p"
proof -
have "p ∨ p" using assms(1) by this
moreover
{ assume 1: "p"
have 2: "p" using 1 by this}
moreover
{ assume 3: "p"
have 4: "p" using 3 by this}
ultimately show "p" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar
p ⊢ p ∨ p
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_30:
assumes "p"
shows "p ∨ p"
proof -
show "p ∨ p" using assms(1) by (rule disjI1)
qed
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar
p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_31:
assumes "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r"
proof -
have "p ∨ (q ∨ r)" using assms(1) by this
moreover
{ assume 1: "p"
have 2: "p ∨ q" using 1 by (rule disjI1)
have 3: "(p ∨ q) ∨ r" using 2 by (rule disjI1)}
moreover
{ assume 4: "q ∨ r"
moreover
{ assume 5: "q"
have 6: "p ∨ q" using 5 by (rule disjI2)
have 7: "(p ∨ q) ∨ r" using 6 by (rule disjI1)}
moreover
{ assume 8: "r"
have 9: "(p ∨ q) ∨ r" using 8 by (rule disjI2)}
ultimately have "(p ∨ q) ∨ r" by (rule disjE)}
ultimately show "(p ∨ q) ∨ r" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_32:
assumes "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
proof -
have "(p ∨ q) ∨ r" using assms(1) by this
moreover
{ assume 1: "p ∨ q"
moreover
{ assume 2: "p"
have 3: "p ∨ (q ∨ r)" using 2 by (rule disjI1)}
moreover
{ assume 4: "q"
have 5: "q ∨ r" using 4 by (rule disjI1)
have 6: "p ∨ (q ∨ r)" using 5 by (rule disjI2)}
ultimately have "p ∨ (q ∨ r)" by (rule disjE)}
moreover
{ assume 7: "r"
have 8: "q ∨ r" using 7 by (rule disjI2)
have 9: "p ∨ (q ∨ r)" using 8 by (rule disjI2)}
ultimately show "p ∨ (q ∨ r)" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_33:
assumes "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
proof -
have 1: "p" using assms(1) by (rule conjunct1)
have 2: "q ∨ r" using assms(1) by (rule conjunct2)
moreover
{ assume 3: "q"
have 4: "p ∧ q" using 1 3 by (rule conjI)
have 5: "(p ∧ q) ∨ (p ∧ r)" using 4 by (rule disjI1)}
moreover
{ assume 6: "r"
have 7: "p ∧ r" using 1 6 by (rule conjI)
have 8: "(p ∧ q) ∨ (p ∧ r)" using 7 by (rule disjI2)}
ultimately show "(p ∧ q) ∨ (p ∧ r)" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_34:
assumes "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
proof -
have "(p ∧ q) ∨ (p ∧ r)" using assms(1) by this
moreover
{ assume 1: "p ∧ q"
have 2: "q" using 1 by (rule conjunct2)
have 3: "q ∨ r" using 2 by (rule disjI1)
have 4: "p" using 1 by (rule conjunct1)
have 5: "p ∧ (q ∨ r)" using 4 3 by (rule conjI)}
moreover
{ assume 6: "p ∧ r"
have 7: "r" using 6 by (rule conjunct2)
have 8: "q ∨ r" using 7 by (rule disjI2)
have 9: "p" using 6 by (rule conjunct1)
have 10: "p ∧ (q ∨ r)" using 9 8 by (rule conjI)}
ultimately show "p ∧ (q ∨ r)" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_35:
assumes "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
proof -
have "p ∨ (q ∧ r)" using assms(1) by this
moreover
{ assume 1: "p"
have 2: "p ∨ q" using 1 by (rule disjI1)
have 3: "p ∨ r" using 1 by (rule disjI1)
have 4: "(p ∨ q) ∧ (p ∨ r)" using 2 3 by (rule conjI)}
moreover
{ assume 5: "q ∧ r"
have 6: "q" using 5 by (rule conjunct1)
have 7: "p ∨ q" using 6 by (rule disjI2)
have 8: "r" using 5 by (rule conjunct2)
have 9: "p ∨ r" using 8 by (rule disjI2)
have 10: "(p ∨ q) ∧ (p ∨ r)" using 7 9 by (rule conjI)}
ultimately show "(p ∨ q) ∧ (p ∨ r)" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_36:
assumes "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
proof -
have "(p ∨ q)" using assms(1) by (rule conjunct1)
moreover
{ assume 1: "p"
have 2: "p ∨ (q ∧ r)" using 1 by (rule disjI1)}
moreover
{ assume 3: "q"
have 4: "p ∨ r" using assms(1) by (rule conjunct2)
moreover
{ assume 5: "p"
have 6: "p ∨ (q ∧ r)" using 5 by (rule disjI1)}
moreover
{ assume 7: "r"
have 8: "q ∧ r" using 3 7 by (rule conjI)
have 9: "p ∨ (q ∧ r)" using 8 by (rule disjI2)}
ultimately have "p ∨ (q ∧ r)" by (rule disjE)}
ultimately show "p ∨ (q ∧ r)" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_37:
assumes "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
proof -
{ assume 1: "p ∨ q"
moreover
{ assume 2: "p"
have 3: "p ⟶ r" using assms(1) by (rule conjunct1)
have 4: "r" using 3 2 by (rule mp)}
moreover
{ assume 5: "q"
have 6: "q ⟶ r" using assms(1) by (rule conjunct2)
have 7: "r" using 6 5 by (rule mp)}
ultimately have "r" by (rule disjE)}
thus "(p ∨ q) ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 38. Demostrar
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_38:
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
proof (rule conjI)
{ assume 1: "p"
have 2: "p ∨ q" using 1 by (rule disjI1)
have 3: "r" using assms(1) 2 by (rule mp)}
thus "p ⟶ r" by (rule impI)
next
{ assume 4: "q"
have 5: "p ∨ q" using 4 by (rule disjI2)
have 6: "r" using assms(1) 5 by (rule mp)}
thus "q ⟶ r" by (rule impI)
qed
section {* Negaciones *}
text {* ---------------------------------------------------------------
Ejercicio 39. Demostrar
p ⊢ ¬¬p
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_39:
assumes "p"
shows "¬¬p"
proof -
show "¬¬p" using assms(1) by (rule notnotI)
qed
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_40:
assumes "¬p"
shows "p ⟶ q"
proof -
{ assume 1: "p"
have 2: "False" using assms(1) 1 by (rule notE)
have 3: "q" using 2 by (rule FalseE)}
thus "p ⟶ q" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 41. Demostrar
p ⟶ q ⊢ ¬q ⟶ ¬p
------------------------------------------------------------------ *}
lemma ejercicio_41:
assumes "p ⟶ q"
shows "¬q ⟶ ¬p"
oops
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p∨q, ¬q ⊢ p
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_42:
assumes "p∨q"
"¬q"
shows "p"
proof -
have "p ∨ q" using assms(1) by this
moreover
{ assume 1: "p"
have 2: "p" using 1 by this}
moreover
{ assume 3: "q"
have 4: "False" using assms(2) 3 by (rule notE)
have 5: "p" using 4 by (rule FalseE)}
ultimately show "p" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p ∨ q, ¬p ⊢ q
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_43:
assumes "p ∨ q"
"¬p"
shows "q"
proof -
have "p ∨ q" using assms(1) by this
moreover
{ assume 1: "p"
have 2: "False" using assms(2) 1 by (rule notE)
have 3: "q" using 2 by (rule FalseE)}
moreover
{ assume 4: "q"
have 5: "q" using 4 by this}
ultimately show "q" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
p ∨ q ⊢ ¬(¬p ∧ ¬q)
------------------------------------------------------------------ *}
lemma ejercicio_44:
assumes "p ∨ q"
shows "¬(¬p ∧ ¬q)"
oops
text {* ---------------------------------------------------------------
Ejercicio 45. Demostrar
p ∧ q ⊢ ¬(¬p ∨ ¬q)
------------------------------------------------------------------ *}
lemma ejercicio_45:
assumes "p ∧ q"
shows "¬(¬p ∨ ¬q)"
oops
text {* ---------------------------------------------------------------
Ejercicio 46. Demostrar
¬(p ∨ q) ⊢ ¬p ∧ ¬q
------------------------------------------------------------------ *}
lemma ejercicio_46:
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
oops
text {* ---------------------------------------------------------------
Ejercicio 47. Demostrar
¬p ∧ ¬q ⊢ ¬(p ∨ q)
------------------------------------------------------------------ *}
lemma ejercicio_47:
assumes "¬p ∧ ¬q"
shows "¬(p ∨ q)"
oops
text {* ---------------------------------------------------------------
Ejercicio 48. Demostrar
¬p ∨ ¬q ⊢ ¬(p ∧ q)
------------------------------------------------------------------ *}
lemma ejercicio_48:
assumes "¬p ∨ ¬q"
shows "¬(p ∧ q)"
oops
text {* ---------------------------------------------------------------
Ejercicio 49. Demostrar
⊢ ¬(p ∧ ¬p)
------------------------------------------------------------------ *}
lemma ejercicio_49:
"¬(p ∧ ¬p)"
oops
text {* ---------------------------------------------------------------
Ejercicio 50. Demostrar
p ∧ ¬p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_50:
assumes "p ∧ ¬p"
shows "q"
oops
text {* ---------------------------------------------------------------
Ejercicio 51. Demostrar
¬¬p ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_51:
assumes "¬¬p"
shows "p"
oops
text {* ---------------------------------------------------------------
Ejercicio 52. Demostrar
⊢ p ∨ ¬p
------------------------------------------------------------------ *}
lemma ejercicio_52:
"p ∨ ¬p"
oops
text {* ---------------------------------------------------------------
Ejercicio 53. Demostrar
⊢ ((p ⟶ q) ⟶ p) ⟶ p
------------------------------------------------------------------ *}
lemma ejercicio_53:
"((p ⟶ q) ⟶ p) ⟶ p"
oops
text {* ---------------------------------------------------------------
Ejercicio 54. Demostrar
¬q ⟶ ¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_54:
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
oops
text {* ---------------------------------------------------------------
Ejercicio 55. Demostrar
¬(¬p ∧ ¬q) ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_55:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
oops
text {* ---------------------------------------------------------------
Ejercicio 56. Demostrar
¬(¬p ∨ ¬q) ⊢ p ∧ q
------------------------------------------------------------------ *}
lemma ejercicio_56:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
oops
text {* ---------------------------------------------------------------
Ejercicio 57. Demostrar
¬(p ∧ q) ⊢ ¬p ∨ ¬q
------------------------------------------------------------------ *}
lemma ejercicio_57:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
oops
text {* ---------------------------------------------------------------
Ejercicio 58. Demostrar
⊢ (p ⟶ q) ∨ (q ⟶ p)
------------------------------------------------------------------ *}
lemma ejercicio_58:
"(p ⟶ q) ∨ (q ⟶ p)"
oops
end