Diferencia entre revisiones de «Relación 3»
De Lógica matemática y fundamentos (2014-15)
(Página creada con '<source lang = "isar"> header {* R3: Deducción natural proposicional *} theory R3 imports Main begin text {* --------------------------------------------------------------...') |
m (Texto reemplazado: «isar» por «isabelle») |
||
(No se muestran 7 ediciones intermedias de 3 usuarios) | |||
Línea 1: | Línea 1: | ||
− | <source lang = " | + | <source lang = "isabelle"> |
header {* R3: Deducción natural proposicional *} | header {* R3: Deducción natural proposicional *} | ||
Línea 54: | Línea 54: | ||
"p" | "p" | ||
shows "q" | shows "q" | ||
− | + | proof - | |
+ | show "q" using assms(1) assms(2) by (rule mp) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 66: | Línea 68: | ||
"p" | "p" | ||
shows "r" | shows "r" | ||
− | + | proof - have 1: "q" using assms(1) assms(3) by (rule mp) | |
+ | show "r" using assms(2) 1 by (rule mp) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 78: | Línea 82: | ||
"p" | "p" | ||
shows "r" | shows "r" | ||
− | + | proof - | |
+ | have 1:"q⟶r" using assms(1) assms(3) by (rule mp) | ||
+ | have 2:"q" using assms(2) assms(3) by (rule mp) | ||
+ | show "r" using 1 2 by (rule mp) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 89: | Línea 97: | ||
"q ⟶ r" | "q ⟶ r" | ||
shows "p ⟶ r" | shows "p ⟶ r" | ||
− | |||
+ | |||
+ | proof - | ||
+ | {assume 1: "p" | ||
+ | have 2: "q" using assms(1) 1 by (rule mp) | ||
+ | have 3: "r" using assms(2) 2 by (rule mp)} | ||
+ | then show "p⟶r" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 5. Demostrar | Ejercicio 5. Demostrar | ||
Línea 99: | Línea 113: | ||
assumes "p ⟶ (q ⟶ r)" | assumes "p ⟶ (q ⟶ r)" | ||
shows "q ⟶ (p ⟶ r)" | shows "q ⟶ (p ⟶ r)" | ||
− | |||
+ | |||
+ | proof- | ||
+ | {assume 1: "q" | ||
+ | {assume 2: "p" | ||
+ | have 3:"q⟶r" using assms(1) 2 by (rule mp) | ||
+ | have "r" using 3 1 by (rule mp)} | ||
+ | hence "p⟶r" by (rule impI)} | ||
+ | then show "q⟶(p⟶r)" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 6. Demostrar | Ejercicio 6. Demostrar | ||
Línea 109: | Línea 131: | ||
assumes "p ⟶ (q ⟶ r)" | assumes "p ⟶ (q ⟶ r)" | ||
shows "(p ⟶ q) ⟶ (p ⟶ r)" | shows "(p ⟶ q) ⟶ (p ⟶ r)" | ||
− | + | ||
+ | proof- | ||
+ | {assume 1: "p⟶q" | ||
+ | {assume 2: "p" | ||
+ | have 3: "q⟶r" using assms(1) 2 by (rule mp) | ||
+ | have 4: "q" using 1 2 by (rule mp) | ||
+ | have 5: "r" using 3 4 by (rule mp)} | ||
+ | hence "p⟶r" by (rule impI)} | ||
+ | then show "(p⟶q)⟶(p⟶r)" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 119: | Línea 150: | ||
assumes "p" | assumes "p" | ||
shows "q ⟶ p" | shows "q ⟶ p" | ||
− | + | proof- | |
+ | {assume 1: "q" | ||
+ | note `p`} | ||
+ | thus "q⟶p" by (rule impI) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 128: | Línea 164: | ||
lemma ejercicio_8: | lemma ejercicio_8: | ||
"p ⟶ (q ⟶ p)" | "p ⟶ (q ⟶ p)" | ||
− | + | proof- | |
+ | {assume "p" | ||
+ | {assume "q" | ||
+ | note `p`} | ||
+ | hence "q⟶p" by (rule impI)} | ||
+ | thus "p⟶q⟶p" by (rule impI) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 138: | Línea 181: | ||
assumes "p ⟶ q" | assumes "p ⟶ q" | ||
shows "(q ⟶ r) ⟶ (p ⟶ r)" | shows "(q ⟶ r) ⟶ (p ⟶ r)" | ||
− | + | ||
+ | proof- | ||
+ | {assume 1: "q⟶r" | ||
+ | {assume 2:"p" | ||
+ | have 3: "q" using assms(1) 2 by (rule mp) | ||
+ | have 4: "r" using 1 3 by (rule mp)} | ||
+ | hence "p⟶r" by (rule impI)} | ||
+ | thus "(q⟶r)⟶(p⟶r)" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 148: | Línea 199: | ||
assumes "p ⟶ (q ⟶ (r ⟶ s))" | assumes "p ⟶ (q ⟶ (r ⟶ s))" | ||
shows "r ⟶ (q ⟶ (p ⟶ s))" | shows "r ⟶ (q ⟶ (p ⟶ s))" | ||
− | + | proof - | |
+ | {assume 1: "r" | ||
+ | {assume 2: "q" | ||
+ | {assume 3: "p" | ||
+ | have 4: "q ⟶ (r ⟶ s)" using assms(1) 3 by (rule mp) | ||
+ | have 5: "r⟶s" using 4 2 by (rule mp) | ||
+ | have 6: "s" using 5 1 by (rule mp)} | ||
+ | hence "p⟶s" by (rule impI)} | ||
+ | hence "q⟶(p⟶s)" by (rule impI)} | ||
+ | thus "r⟶(q⟶(p⟶s))" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 157: | Línea 218: | ||
lemma ejercicio_11: | lemma ejercicio_11: | ||
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | ||
− | + | ||
+ | proof- | ||
+ | {assume 1: "p⟶(q⟶r)" | ||
+ | { assume 2: "p⟶q" | ||
+ | {assume 3: "p" | ||
+ | have 4: "q⟶r" using 1 3 by (rule mp) | ||
+ | have 5: "q" using 2 3 by (rule mp) | ||
+ | have 6: "r" using 4 5 by (rule mp)} | ||
+ | hence "p⟶r" by (rule impI)} | ||
+ | hence "(p⟶q)⟶(p⟶r)" by (rule impI)} | ||
+ | thus "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 167: | Línea 239: | ||
assumes "(p ⟶ q) ⟶ r" | assumes "(p ⟶ q) ⟶ r" | ||
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
− | + | ||
+ | proof- | ||
+ | {assume 1: "p" | ||
+ | {assume 2: "q" | ||
+ | {assume 3:"p" | ||
+ | note `q`} | ||
+ | hence 4:"p⟶q" by (rule impI) | ||
+ | have 5: "r" using assms(1) 4 by (rule mp)} | ||
+ | hence "q⟶r" by (rule impI)} | ||
+ | thus "p⟶(q⟶r)" by (rule impI) | ||
+ | qed | ||
section {* Conjunciones *} | section {* Conjunciones *} | ||
Línea 180: | Línea 262: | ||
"q" | "q" | ||
shows "p ∧ q" | shows "p ∧ q" | ||
− | + | proof- | |
+ | show "p∧q" using assms(1) assms(2) by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 190: | Línea 274: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "p" | shows "p" | ||
− | + | proof- | |
+ | show "p" using assms(1) by (rule conjunct1) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 200: | Línea 286: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "q" | shows "q" | ||
− | + | proof- | |
+ | show "q" using assms(1) by (rule conjunct2) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 210: | Línea 298: | ||
assumes "p ∧ (q ∧ r)" | assumes "p ∧ (q ∧ r)" | ||
shows "(p ∧ q) ∧ r" | shows "(p ∧ q) ∧ r" | ||
− | + | proof - | |
+ | have 1: "p" using assms(1) by (rule conjunct1) | ||
+ | have 2: "q ∧ r" using assms(1) by (rule conjunct2) | ||
+ | have 3: "q" using 2 by (rule conjunct1) | ||
+ | have 4: "r" using 2 by (rule conjunct2) | ||
+ | have 5: "p ∧ q" using 1 3 by (rule conjI) | ||
+ | show "(p ∧ q) ∧ r" using 5 4 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 220: | Línea 315: | ||
assumes "(p ∧ q) ∧ r" | assumes "(p ∧ q) ∧ r" | ||
shows "p ∧ (q ∧ r)" | shows "p ∧ (q ∧ r)" | ||
− | + | ||
+ | proof- | ||
+ | have 1: "p ∧ q" using assms(1) by (rule conjunct1) | ||
+ | have 2: "r" using assms(1) by (rule conjunct2) | ||
+ | have 3: "p" using 1 by (rule conjunct1) | ||
+ | have 4: "q" using 1 by (rule conjunct2) | ||
+ | have 5: "q ∧ r" using 4 2 by (rule conjI) | ||
+ | show "p ∧(q ∧ r)" using 3 5 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 230: | Línea 333: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | |||
+ | proof- | ||
+ | {assume "p" | ||
+ | have "q" using assms(1) by (rule conjunct2)} | ||
+ | thus "p⟶q" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 19. Demostrar | Ejercicio 19. Demostrar | ||
Línea 240: | Línea 347: | ||
assumes "(p ⟶ q) ∧ (p ⟶ r)" | assumes "(p ⟶ q) ∧ (p ⟶ r)" | ||
shows "p ⟶ q ∧ r" | shows "p ⟶ q ∧ r" | ||
− | + | ||
+ | |||
+ | proof- | ||
+ | {assume 1: "p" | ||
+ | have 2: "p⟶q" using assms(1) by (rule conjunct1) | ||
+ | have 3: "p⟶r" using assms(1) by (rule conjunct2) | ||
+ | have 4: "q" using 2 1 by (rule mp) | ||
+ | have 5: "r" using 3 1 by (rule mp) | ||
+ | have 6: "q ∧ r" using 4 5 by (rule conjI)} | ||
+ | thus "p⟶(q ∧ r)" by(rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 246: | Línea 363: | ||
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r) | p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_20: | lemma ejercicio_20: | ||
assumes "p ⟶ q ∧ r" | assumes "p ⟶ q ∧ r" | ||
shows "(p ⟶ q) ∧ (p ⟶ r)" | shows "(p ⟶ q) ∧ (p ⟶ r)" | ||
− | + | proof (rule conjI) | |
+ | { assume 1: "p" | ||
+ | have 2: "q ∧ r" using assms(1) 1 by (rule mp) | ||
+ | have 3: "q" using 2 by (rule conjunct1)} | ||
+ | thus "p ⟶ q" by (rule impI) | ||
+ | next | ||
+ | { assume 1: "p" | ||
+ | have 2: "q ∧ r" using assms(1) 1 by (rule mp) | ||
+ | have 3: "r" using 2 by (rule conjunct2)} | ||
+ | thus "p ⟶ r" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 256: | Línea 384: | ||
p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r | p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_21: | lemma ejercicio_21: | ||
assumes "p ⟶ (q ⟶ r)" | assumes "p ⟶ (q ⟶ r)" | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
− | + | proof - | |
+ | { assume 1: "p ∧ q" | ||
+ | have 2: "p" using 1 by (rule conjunct1) | ||
+ | have 3: "q ⟶ r" using assms(1) 2 by (rule mp) | ||
+ | have 4: "q" using 1 by (rule conjunct2) | ||
+ | have 5: "r" using 3 4 by (rule mp)} | ||
+ | thus "(p ∧ q) ⟶ r" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 266: | Línea 403: | ||
p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r) | p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_22: | lemma ejercicio_22: | ||
assumes "p ∧ q ⟶ r" | assumes "p ∧ q ⟶ r" | ||
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
− | + | proof - | |
+ | { assume 1: "p" | ||
+ | {assume 2: "q" | ||
+ | have 3: "p ∧ q" using 1 2 by (rule conjI) | ||
+ | have 4: "r" using assms(1) 3 by (rule mp)} | ||
+ | then have 5: "q ⟶ r" by (rule impI)} | ||
+ | thus "p ⟶ (q ⟶ r)" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 276: | Línea 422: | ||
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r | (p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_23: | lemma ejercicio_23: | ||
assumes "(p ⟶ q) ⟶ r" | assumes "(p ⟶ q) ⟶ r" | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
− | + | proof - | |
+ | { assume 1: "p ∧q" | ||
+ | {assume 2: "p" | ||
+ | have 3: "q" using 1 by (rule conjunct2)} | ||
+ | hence 4: "p ⟶ q" by (rule impI) | ||
+ | have 5: "r" using assms(1) 4 by (rule mp)} | ||
+ | thus "p ∧ q ⟶ r" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 286: | Línea 441: | ||
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r | p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_24: | lemma ejercicio_24: | ||
assumes "p ∧ (q ⟶ r)" | assumes "p ∧ (q ⟶ r)" | ||
shows "(p ⟶ q) ⟶ r" | shows "(p ⟶ q) ⟶ r" | ||
− | + | proof - | |
+ | { assume 1: "p ⟶ q" | ||
+ | have 2: "p" using assms(1) by (rule conjunct1) | ||
+ | have 3: "q" using 1 2 by (rule mp) | ||
+ | have 4: "q ⟶ r" using assms(1) by (rule conjunct2) | ||
+ | have 5: "r" using 4 3 by (rule mp)} | ||
+ | thus "(p ⟶ q) ⟶ r" by (rule impI) | ||
+ | qed | ||
section {* Disyunciones *} | section {* Disyunciones *} | ||
Línea 298: | Línea 462: | ||
p ⊢ p ∨ q | p ⊢ p ∨ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_25: | lemma ejercicio_25: | ||
assumes "p" | assumes "p" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | proof - | |
+ | show "p ∨ q" using assms(1) by (rule disjI1) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 308: | Línea 476: | ||
q ⊢ p ∨ q | q ⊢ p ∨ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_26: | lemma ejercicio_26: | ||
assumes "q" | assumes "q" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | proof - | |
+ | show "p ∨ q" using assms(1) by (rule disjI2) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 318: | Línea 490: | ||
p ∨ q ⊢ q ∨ p | p ∨ q ⊢ q ∨ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_27: | lemma ejercicio_27: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
shows "q ∨ p" | shows "q ∨ p" | ||
− | + | proof - | |
+ | have "p ∨ q" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | have 2: "q ∨ p" using 1 by (rule disjI2)} | ||
+ | moreover | ||
+ | { assume 1: "q" | ||
+ | have 2: "q ∨ p" using 1 by (rule disjI1)} | ||
+ | ultimately show "q ∨ p" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 328: | Línea 511: | ||
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r | q ⟶ r ⊢ p ∨ q ⟶ p ∨ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_28: | lemma ejercicio_28: | ||
assumes "q ⟶ r" | assumes "q ⟶ r" | ||
shows "p ∨ q ⟶ p ∨ r" | shows "p ∨ q ⟶ p ∨ r" | ||
− | + | proof - | |
+ | { assume 1: "p ∨ q" | ||
+ | moreover | ||
+ | { assume 2: "p" | ||
+ | have 3: "p ∨ r" using 2 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 4: "q" | ||
+ | have 5: "r" using assms(1) 4 by (rule mp) | ||
+ | have 6: "p ∨ r" using 5 by (rule disjI2)} | ||
+ | ultimately have "p ∨r" by (rule disjE)} | ||
+ | thus "p ∨ q ⟶ p ∨ r" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 338: | Línea 534: | ||
p ∨ p ⊢ p | p ∨ p ⊢ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_29: | lemma ejercicio_29: | ||
assumes "p ∨ p" | assumes "p ∨ p" | ||
shows "p" | shows "p" | ||
− | + | proof - | |
+ | have "p ∨ p" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | have 2: "p" using 1 by this} | ||
+ | moreover | ||
+ | { assume 3: "p" | ||
+ | have 4: "p" using 3 by this} | ||
+ | ultimately show "p" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 348: | Línea 555: | ||
p ⊢ p ∨ p | p ⊢ p ∨ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_30: | lemma ejercicio_30: | ||
assumes "p" | assumes "p" | ||
shows "p ∨ p" | shows "p ∨ p" | ||
− | + | proof - | |
+ | show "p ∨ p" using assms(1) by (rule disjI1) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 358: | Línea 569: | ||
p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r | p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_31: | lemma ejercicio_31: | ||
assumes "p ∨ (q ∨ r)" | assumes "p ∨ (q ∨ r)" | ||
shows "(p ∨ q) ∨ r" | shows "(p ∨ q) ∨ r" | ||
− | + | proof - | |
+ | have "p ∨ (q ∨ r)" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | have 2: "p ∨ q" using 1 by (rule disjI1) | ||
+ | have 3: "(p ∨ q) ∨ r" using 2 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 4: "q ∨ r" | ||
+ | moreover | ||
+ | { assume 5: "q" | ||
+ | have 6: "p ∨ q" using 5 by (rule disjI2) | ||
+ | have 7: "(p ∨ q) ∨ r" using 6 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 8: "r" | ||
+ | have 9: "(p ∨ q) ∨ r" using 8 by (rule disjI2)} | ||
+ | ultimately have "(p ∨ q) ∨ r" by (rule disjE)} | ||
+ | ultimately show "(p ∨ q) ∨ r" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 368: | Línea 598: | ||
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r) | (p ∨ q) ∨ r ⊢ p ∨ (q ∨ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_32: | lemma ejercicio_32: | ||
assumes "(p ∨ q) ∨ r" | assumes "(p ∨ q) ∨ r" | ||
shows "p ∨ (q ∨ r)" | shows "p ∨ (q ∨ r)" | ||
− | + | proof - | |
+ | have "(p ∨ q) ∨ r" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p ∨ q" | ||
+ | moreover | ||
+ | { assume 2: "p" | ||
+ | have 3: "p ∨ (q ∨ r)" using 2 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 4: "q" | ||
+ | have 5: "q ∨ r" using 4 by (rule disjI1) | ||
+ | have 6: "p ∨ (q ∨ r)" using 5 by (rule disjI2)} | ||
+ | ultimately have "p ∨ (q ∨ r)" by (rule disjE)} | ||
+ | moreover | ||
+ | { assume 7: "r" | ||
+ | have 8: "q ∨ r" using 7 by (rule disjI2) | ||
+ | have 9: "p ∨ (q ∨ r)" using 8 by (rule disjI2)} | ||
+ | ultimately show "p ∨ (q ∨ r)" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 378: | Línea 627: | ||
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r) | p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_33: | lemma ejercicio_33: | ||
assumes "p ∧ (q ∨ r)" | assumes "p ∧ (q ∨ r)" | ||
shows "(p ∧ q) ∨ (p ∧ r)" | shows "(p ∧ q) ∨ (p ∧ r)" | ||
− | + | proof - | |
+ | have 1: "p" using assms(1) by (rule conjunct1) | ||
+ | have 2: "q ∨ r" using assms(1) by (rule conjunct2) | ||
+ | moreover | ||
+ | { assume 3: "q" | ||
+ | have 4: "p ∧ q" using 1 3 by (rule conjI) | ||
+ | have 5: "(p ∧ q) ∨ (p ∧ r)" using 4 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 6: "r" | ||
+ | have 7: "p ∧ r" using 1 6 by (rule conjI) | ||
+ | have 8: "(p ∧ q) ∨ (p ∧ r)" using 7 by (rule disjI2)} | ||
+ | ultimately show "(p ∧ q) ∨ (p ∧ r)" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 388: | Línea 651: | ||
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r) | (p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_34: | lemma ejercicio_34: | ||
assumes "(p ∧ q) ∨ (p ∧ r)" | assumes "(p ∧ q) ∨ (p ∧ r)" | ||
shows "p ∧ (q ∨ r)" | shows "p ∧ (q ∨ r)" | ||
− | + | proof - | |
+ | have "(p ∧ q) ∨ (p ∧ r)" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p ∧ q" | ||
+ | have 2: "q" using 1 by (rule conjunct2) | ||
+ | have 3: "q ∨ r" using 2 by (rule disjI1) | ||
+ | have 4: "p" using 1 by (rule conjunct1) | ||
+ | have 5: "p ∧ (q ∨ r)" using 4 3 by (rule conjI)} | ||
+ | moreover | ||
+ | { assume 6: "p ∧ r" | ||
+ | have 7: "r" using 6 by (rule conjunct2) | ||
+ | have 8: "q ∨ r" using 7 by (rule disjI2) | ||
+ | have 9: "p" using 6 by (rule conjunct1) | ||
+ | have 10: "p ∧ (q ∨ r)" using 9 8 by (rule conjI)} | ||
+ | ultimately show "p ∧ (q ∨ r)" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 398: | Línea 678: | ||
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r) | p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_35: | lemma ejercicio_35: | ||
assumes "p ∨ (q ∧ r)" | assumes "p ∨ (q ∧ r)" | ||
shows "(p ∨ q) ∧ (p ∨ r)" | shows "(p ∨ q) ∧ (p ∨ r)" | ||
− | + | proof - | |
+ | have "p ∨ (q ∧ r)" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | have 2: "p ∨ q" using 1 by (rule disjI1) | ||
+ | have 3: "p ∨ r" using 1 by (rule disjI1) | ||
+ | have 4: "(p ∨ q) ∧ (p ∨ r)" using 2 3 by (rule conjI)} | ||
+ | moreover | ||
+ | { assume 5: "q ∧ r" | ||
+ | have 6: "q" using 5 by (rule conjunct1) | ||
+ | have 7: "p ∨ q" using 6 by (rule disjI2) | ||
+ | have 8: "r" using 5 by (rule conjunct2) | ||
+ | have 9: "p ∨ r" using 8 by (rule disjI2) | ||
+ | have 10: "(p ∨ q) ∧ (p ∨ r)" using 7 9 by (rule conjI)} | ||
+ | ultimately show "(p ∨ q) ∧ (p ∨ r)" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 408: | Línea 705: | ||
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r) | (p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_36: | lemma ejercicio_36: | ||
assumes "(p ∨ q) ∧ (p ∨ r)" | assumes "(p ∨ q) ∧ (p ∨ r)" | ||
shows "p ∨ (q ∧ r)" | shows "p ∨ (q ∧ r)" | ||
− | + | proof - | |
+ | have "(p ∨ q)" using assms(1) by (rule conjunct1) | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | have 2: "p ∨ (q ∧ r)" using 1 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 3: "q" | ||
+ | have 4: "p ∨ r" using assms(1) by (rule conjunct2) | ||
+ | moreover | ||
+ | { assume 5: "p" | ||
+ | have 6: "p ∨ (q ∧ r)" using 5 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 7: "r" | ||
+ | have 8: "q ∧ r" using 3 7 by (rule conjI) | ||
+ | have 9: "p ∨ (q ∧ r)" using 8 by (rule disjI2)} | ||
+ | ultimately have "p ∨ (q ∧ r)" by (rule disjE)} | ||
+ | ultimately show "p ∨ (q ∧ r)" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 418: | Línea 734: | ||
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r | (p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_37: | lemma ejercicio_37: | ||
assumes "(p ⟶ r) ∧ (q ⟶ r)" | assumes "(p ⟶ r) ∧ (q ⟶ r)" | ||
shows "p ∨ q ⟶ r" | shows "p ∨ q ⟶ r" | ||
− | + | proof - | |
+ | { assume 1: "p ∨ q" | ||
+ | moreover | ||
+ | { assume 2: "p" | ||
+ | have 3: "p ⟶ r" using assms(1) by (rule conjunct1) | ||
+ | have 4: "r" using 3 2 by (rule mp)} | ||
+ | moreover | ||
+ | { assume 5: "q" | ||
+ | have 6: "q ⟶ r" using assms(1) by (rule conjunct2) | ||
+ | have 7: "r" using 6 5 by (rule mp)} | ||
+ | ultimately have "r" by (rule disjE)} | ||
+ | thus "(p ∨ q) ⟶ r" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 428: | Línea 758: | ||
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r) | p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_38: | lemma ejercicio_38: | ||
assumes "p ∨ q ⟶ r" | assumes "p ∨ q ⟶ r" | ||
shows "(p ⟶ r) ∧ (q ⟶ r)" | shows "(p ⟶ r) ∧ (q ⟶ r)" | ||
− | + | proof (rule conjI) | |
+ | { assume 1: "p" | ||
+ | have 2: "p ∨ q" using 1 by (rule disjI1) | ||
+ | have 3: "r" using assms(1) 2 by (rule mp)} | ||
+ | thus "p ⟶ r" by (rule impI) | ||
+ | next | ||
+ | { assume 4: "q" | ||
+ | have 5: "p ∨ q" using 4 by (rule disjI2) | ||
+ | have 6: "r" using assms(1) 5 by (rule mp)} | ||
+ | thus "q ⟶ r" by (rule impI) | ||
+ | qed | ||
section {* Negaciones *} | section {* Negaciones *} | ||
Línea 440: | Línea 782: | ||
p ⊢ ¬¬p | p ⊢ ¬¬p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_39: | lemma ejercicio_39: | ||
assumes "p" | assumes "p" | ||
shows "¬¬p" | shows "¬¬p" | ||
− | + | proof - | |
+ | show "¬¬p" using assms(1) by (rule notnotI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 450: | Línea 796: | ||
¬p ⊢ p ⟶ q | ¬p ⊢ p ⟶ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_40: | lemma ejercicio_40: | ||
assumes "¬p" | assumes "¬p" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | proof - | |
+ | { assume 1: "p" | ||
+ | have 2: "False" using assms(1) 1 by (rule notE) | ||
+ | have 3: "q" using 2 by (rule FalseE)} | ||
+ | thus "p ⟶ q" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 460: | Línea 813: | ||
p ⟶ q ⊢ ¬q ⟶ ¬p | p ⟶ q ⊢ ¬q ⟶ ¬p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_41: | lemma ejercicio_41: | ||
assumes "p ⟶ q" | assumes "p ⟶ q" | ||
shows "¬q ⟶ ¬p" | shows "¬q ⟶ ¬p" | ||
− | + | proof - | |
+ | {assume 1: "¬q" | ||
+ | have 2: "¬p" using assms(1) 1 by (rule mt)} | ||
+ | thus "¬q ⟶ ¬p" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 470: | Línea 829: | ||
p∨q, ¬q ⊢ p | p∨q, ¬q ⊢ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_42: | lemma ejercicio_42: | ||
Línea 475: | Línea 836: | ||
"¬q" | "¬q" | ||
shows "p" | shows "p" | ||
− | + | proof - | |
+ | have "p ∨ q" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | have 2: "p" using 1 by this} | ||
+ | moreover | ||
+ | { assume 3: "q" | ||
+ | have 4: "False" using assms(2) 3 by (rule notE) | ||
+ | have 5: "p" using 4 by (rule FalseE)} | ||
+ | ultimately show "p" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 481: | Línea 852: | ||
p ∨ q, ¬p ⊢ q | p ∨ q, ¬p ⊢ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_43: | lemma ejercicio_43: | ||
Línea 486: | Línea 859: | ||
"¬p" | "¬p" | ||
shows "q" | shows "q" | ||
− | + | proof - | |
+ | have "p ∨ q" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | have 2: "False" using assms(2) 1 by (rule notE) | ||
+ | have 3: "q" using 2 by (rule FalseE)} | ||
+ | moreover | ||
+ | { assume 4: "q" | ||
+ | have 5: "q" using 4 by this} | ||
+ | ultimately show "q" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 492: | Línea 875: | ||
p ∨ q ⊢ ¬(¬p ∧ ¬q) | p ∨ q ⊢ ¬(¬p ∧ ¬q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
+ | |||
+ | lemma ejercicio_44: | ||
+ | assumes "p ∨ q" | ||
+ | shows "¬(¬p ∧ ¬q)" | ||
+ | proof (rule ccontr) | ||
+ | assume 1: "¬¬(¬p ∧ ¬q)" | ||
+ | have 2: "¬p ∧ ¬q" using 1 by (rule notnotD) | ||
+ | have 3: "p ∨ q" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 4: "p" | ||
+ | have 5: "¬p" using 2 by (rule conjunct1) | ||
+ | have 6: "False" using 5 4 by (rule notE)} | ||
+ | moreover | ||
+ | { assume 7: "q" | ||
+ | have 8: "¬q" using 2 by (rule conjunct2) | ||
+ | have 9: "False" using 8 7 by (rule notE)} | ||
+ | ultimately show "False" by (rule disjE) | ||
+ | qed | ||
+ | |||
+ | |||
+ | -- Miguel Peña Gallardo | ||
lemma ejercicio_44: | lemma ejercicio_44: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
shows "¬(¬p ∧ ¬q)" | shows "¬(¬p ∧ ¬q)" | ||
− | + | proof- | |
+ | {assume 1:"¬¬(¬p ∧ ¬q)" | ||
+ | have 2: "(¬p ∧ ¬q)" using 1 by (rule notnotD) | ||
+ | have 3: "¬p" using 2 by (rule conjunct1) | ||
+ | have 4: "¬q" using 2 by (rule conjunct2) | ||
+ | have "p∨q" using assms(1) by this | ||
+ | moreover | ||
+ | {assume 5: "p" | ||
+ | have 6: "False" using 3 5 by (rule notE)} | ||
+ | moreover | ||
+ | {assume 7: "q" | ||
+ | have 8: "False" using 4 7 by (rule notE)} | ||
+ | ultimately have "False" by (rule disjE)} | ||
+ | then show "¬(¬p ∧¬q)" by (rule ccontr) | ||
+ | |||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 502: | Línea 923: | ||
p ∧ q ⊢ ¬(¬p ∨ ¬q) | p ∧ q ⊢ ¬(¬p ∨ ¬q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
+ | |||
+ | lemma ejercicio_45: | ||
+ | assumes "p ∧ q" | ||
+ | shows "¬(¬p ∨ ¬q)" | ||
+ | proof (rule ccontr) | ||
+ | assume 1: "¬¬(¬p ∨ ¬q)" | ||
+ | have 2: "¬p ∨ ¬q" using 1 by (rule notnotD) | ||
+ | moreover | ||
+ | {assume 3: "¬p" | ||
+ | have 4: "p" using assms(1) by (rule conjunct1) | ||
+ | have 5: "False" using 3 4 by (rule notE)} | ||
+ | moreover | ||
+ | { assume 6: "¬q" | ||
+ | have 7: "q" using assms(1) by (rule conjunct2) | ||
+ | have 8: "False" using 6 7 by (rule notE)} | ||
+ | ultimately show "False" by (rule disjE) | ||
+ | qed | ||
+ | |||
+ | --Miguel Peña Gallardo | ||
lemma ejercicio_45: | lemma ejercicio_45: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "¬(¬p ∨ ¬q)" | shows "¬(¬p ∨ ¬q)" | ||
− | + | ||
+ | proof- | ||
+ | have 1: "p" using assms(1) by (rule conjunct1) | ||
+ | have 2: "q" using assms(1) by (rule conjunct2) | ||
+ | {assume 3: "¬¬(¬p∨¬q)" | ||
+ | have 4: "¬p ∨¬q" using 3 by (rule notnotD) | ||
+ | have "¬p ∨¬q" using 4 by this | ||
+ | moreover | ||
+ | {assume 5: "¬p" | ||
+ | have 6: "False" using 5 1 by (rule notE)} | ||
+ | moreover | ||
+ | {assume 7: "¬q" | ||
+ | have 8: "False" using 7 2 by (rule notE)} | ||
+ | ultimately have "False" by (rule disjE)} | ||
+ | then show "¬(¬p∨¬q)" by (rule ccontr) | ||
+ | |||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 512: | Línea 970: | ||
¬(p ∨ q) ⊢ ¬p ∧ ¬q | ¬(p ∨ q) ⊢ ¬p ∧ ¬q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_46: | lemma ejercicio_46: | ||
assumes "¬(p ∨ q)" | assumes "¬(p ∨ q)" | ||
shows "¬p ∧ ¬q" | shows "¬p ∧ ¬q" | ||
− | + | proof (rule conjI) | |
+ | {assume 1: "¬¬p" | ||
+ | have 2: "p" using 1 by (rule notnotD) | ||
+ | have 3: "p ∨ q" using 2 by (rule disjI1) | ||
+ | have 4: "False" using assms(1) 3 by (rule notE)} | ||
+ | thus 5: "¬p" by (rule ccontr) | ||
+ | next | ||
+ | { assume 6: "¬¬q" | ||
+ | have 7: "q" using 6 by (rule notnotD) | ||
+ | have 8: "p ∨ q" using 7 by (rule disjI2) | ||
+ | have 9: "False" using assms(1) 8 by (rule notE)} | ||
+ | thus 10: "¬q" by (rule ccontr) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 522: | Línea 994: | ||
¬p ∧ ¬q ⊢ ¬(p ∨ q) | ¬p ∧ ¬q ⊢ ¬(p ∨ q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_47: | lemma ejercicio_47: | ||
assumes "¬p ∧ ¬q" | assumes "¬p ∧ ¬q" | ||
shows "¬(p ∨ q)" | shows "¬(p ∨ q)" | ||
− | + | proof (rule ccontr) | |
+ | assume 1: "¬¬(p ∨ q)" | ||
+ | have 2: "p ∨ q" using 1 by (rule notnotD) | ||
+ | moreover | ||
+ | { assume 3: "p" | ||
+ | have 4: "¬p" using assms(1) by (rule conjunct1) | ||
+ | have 5: "False" using 4 3 by (rule notE)} | ||
+ | moreover | ||
+ | { assume 6: "q" | ||
+ | have 7: "¬q" using assms(1) by (rule conjunct2) | ||
+ | have 8: "False" using 7 6 by (rule notE)} | ||
+ | ultimately show "False" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 532: | Línea 1018: | ||
¬p ∨ ¬q ⊢ ¬(p ∧ q) | ¬p ∨ ¬q ⊢ ¬(p ∧ q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_48: | lemma ejercicio_48: | ||
assumes "¬p ∨ ¬q" | assumes "¬p ∨ ¬q" | ||
shows "¬(p ∧ q)" | shows "¬(p ∧ q)" | ||
− | + | proof (rule ccontr) | |
+ | assume 1: "¬¬(p ∧ q)" | ||
+ | have 2: "(p ∧ q)" using 1 by (rule notnotD) | ||
+ | have 3: "¬p ∨ ¬q" using assms(1) by this | ||
+ | moreover | ||
+ | { assume 4: "¬p" | ||
+ | have 5: "p" using 2 by (rule conjunct1) | ||
+ | have 6: "False" using 4 5 by (rule notE)} | ||
+ | moreover | ||
+ | { assume 7: "¬q" | ||
+ | have 8: "q" using 2 by (rule conjunct2) | ||
+ | have 9: "False" using 7 8 by (rule notE)} | ||
+ | ultimately show "False" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 542: | Línea 1043: | ||
⊢ ¬(p ∧ ¬p) | ⊢ ¬(p ∧ ¬p) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_49: | lemma ejercicio_49: | ||
"¬(p ∧ ¬p)" | "¬(p ∧ ¬p)" | ||
− | + | proof - | |
+ | {assume 1: "¬¬(p ∧ ¬p)" | ||
+ | have 2: "p ∧ ¬p" using 1 by (rule notnotD) | ||
+ | have 3: "p" using 2 by (rule conjunct1) | ||
+ | have 4: "¬p" using 2 by (rule conjunct2) | ||
+ | have 5: "False" using 4 3 by (rule notE)} | ||
+ | thus "¬(p ∧ ¬p)" by (rule ccontr) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 551: | Línea 1061: | ||
p ∧ ¬p ⊢ q | p ∧ ¬p ⊢ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_50: | lemma ejercicio_50: | ||
assumes "p ∧ ¬p" | assumes "p ∧ ¬p" | ||
shows "q" | shows "q" | ||
− | + | proof - | |
+ | have 1: "p" using assms(1) by (rule conjunct1) | ||
+ | have 2: "¬p" using assms(1) by (rule conjunct2) | ||
+ | have 3: "False" using 2 1 by (rule notE) | ||
+ | show 4: "q" using 3 by (rule FalseE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 561: | Línea 1078: | ||
¬¬p ⊢ p | ¬¬p ⊢ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_51: | lemma ejercicio_51: | ||
assumes "¬¬p" | assumes "¬¬p" | ||
shows "p" | shows "p" | ||
− | + | proof - | |
+ | show "p" using assms(1) by (rule notnotD) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 571: | Línea 1092: | ||
⊢ p ∨ ¬p | ⊢ p ∨ ¬p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_52: | lemma ejercicio_52: | ||
"p ∨ ¬p" | "p ∨ ¬p" | ||
− | + | proof - | |
+ | have 1: "¬p ∨ p" by (rule excluded_middle) | ||
+ | moreover | ||
+ | { assume 2: "¬p" | ||
+ | have 3: "p ∨ ¬p" using 2 by (rule disjI2)} | ||
+ | moreover | ||
+ | { assume 4: "p" | ||
+ | have 5: "p ∨ ¬p" using 4 by (rule disjI1)} | ||
+ | ultimately show "p ∨ ¬p" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 580: | Línea 1112: | ||
⊢ ((p ⟶ q) ⟶ p) ⟶ p | ⊢ ((p ⟶ q) ⟶ p) ⟶ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_53: | lemma ejercicio_53: | ||
"((p ⟶ q) ⟶ p) ⟶ p" | "((p ⟶ q) ⟶ p) ⟶ p" | ||
− | + | proof - | |
+ | {assume 1: "(p ⟶ q) ⟶ p" | ||
+ | { assume 3: "¬p" | ||
+ | have 4: "¬(p ⟶ q)" using 1 3 by (rule mt) | ||
+ | { assume 5: "p" | ||
+ | have 6: "False" using 3 5 by (rule notE) | ||
+ | have 7: "q" using 6 by (rule FalseE)} | ||
+ | hence 8: "p ⟶ q" by (rule impI) | ||
+ | have 9: "False" using 4 8 by (rule notE)} | ||
+ | hence 10: "p" by (rule ccontr)} | ||
+ | thus 11: "((p ⟶ q) ⟶ p) ⟶ p" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 589: | Línea 1134: | ||
¬q ⟶ ¬p ⊢ p ⟶ q | ¬q ⟶ ¬p ⊢ p ⟶ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_54: | lemma ejercicio_54: | ||
assumes "¬q ⟶ ¬p" | assumes "¬q ⟶ ¬p" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | proof (rule impI) | |
+ | assume 1: "p" | ||
+ | have 2: "¬q ∨ q" by (rule excluded_middle) | ||
+ | moreover | ||
+ | { assume 3: "¬q" | ||
+ | have 4: "¬p" using assms(1) 3 by (rule mp) | ||
+ | have 5: "False" using 4 1 by (rule notE) | ||
+ | have 6: "q" using 5 by (rule FalseE)} | ||
+ | moreover | ||
+ | { assume 7: "q" | ||
+ | have 8: "q" using 7 by this} | ||
+ | ultimately show "q" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 599: | Línea 1158: | ||
¬(¬p ∧ ¬q) ⊢ p ∨ q | ¬(¬p ∧ ¬q) ⊢ p ∨ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_55: | lemma ejercicio_55: | ||
assumes "¬(¬p ∧ ¬q)" | assumes "¬(¬p ∧ ¬q)" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | proof - | |
+ | have 1: "¬p ∨ p" by (rule excluded_middle) | ||
+ | moreover | ||
+ | { assume 2: "¬p" | ||
+ | have 3: "¬q ∨ q" by (rule excluded_middle) | ||
+ | moreover | ||
+ | { assume 4: "¬q" | ||
+ | have 5: "¬p ∧ ¬ q" using 2 4 by (rule conjI) | ||
+ | have 6: "False" using assms(1) 5 by (rule notE) | ||
+ | have 7: "p ∨ q" using 6 by (rule FalseE)} | ||
+ | moreover | ||
+ | { assume 8: "q" | ||
+ | have 9: "p ∨ q" using 8 by (rule disjI2)} | ||
+ | ultimately have "p ∨ q" by (rule disjE)} | ||
+ | moreover | ||
+ | { assume 10: "p" | ||
+ | have 11: "p ∨ q" using 10 by (rule disjI1)} | ||
+ | ultimately show "p ∨ q" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 609: | Línea 1188: | ||
¬(¬p ∨ ¬q) ⊢ p ∧ q | ¬(¬p ∨ ¬q) ⊢ p ∧ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_56: | lemma ejercicio_56: | ||
assumes "¬(¬p ∨ ¬q)" | assumes "¬(¬p ∨ ¬q)" | ||
shows "p ∧ q" | shows "p ∧ q" | ||
− | + | proof (rule conjI) | |
+ | { assume 1: "¬p" | ||
+ | have 2: "¬p ∨ ¬q" using 1 by (rule disjI1) | ||
+ | have 3: "False" using assms(1) 2 by (rule notE)} | ||
+ | thus 4: "p" by (rule ccontr) | ||
+ | next | ||
+ | { assume 5: "¬q" | ||
+ | have 6: "¬p ∨ ¬q" using 5 by (rule disjI2) | ||
+ | have 7: "False" using assms(1) 6 by (rule notE)} | ||
+ | thus 8: "q" by (rule ccontr) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 619: | Línea 1210: | ||
¬(p ∧ q) ⊢ ¬p ∨ ¬q | ¬(p ∧ q) ⊢ ¬p ∨ ¬q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_57: | lemma ejercicio_57: | ||
assumes "¬(p ∧ q)" | assumes "¬(p ∧ q)" | ||
shows "¬p ∨ ¬q" | shows "¬p ∨ ¬q" | ||
− | + | proof - | |
+ | have 1: "¬p ∨ p" by (rule excluded_middle) | ||
+ | moreover | ||
+ | { assume 2: "¬p" | ||
+ | have 3: "¬p ∨ ¬q" using 2 by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 4: "p" | ||
+ | have 5: "¬q ∨ q" by (rule excluded_middle) | ||
+ | moreover | ||
+ | { assume 6: "¬q" | ||
+ | have 7: "¬p ∨ ¬q" using 6 by (rule disjI2)} | ||
+ | moreover | ||
+ | { assume 8: "q" | ||
+ | have 9: "p ∧ q" using 4 8 by (rule conjI) | ||
+ | have 10: "False" using assms(1) 9 by (rule notE) | ||
+ | have 11: "¬p ∨ ¬q" using 10 by (rule FalseE)} | ||
+ | ultimately have "¬p ∨ ¬q" by (rule disjE)} | ||
+ | ultimately show "¬p ∨ ¬q" by (rule disjE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 629: | Línea 1240: | ||
⊢ (p ⟶ q) ∨ (q ⟶ p) | ⊢ (p ⟶ q) ∨ (q ⟶ p) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- Francisco Javier Carmona | ||
lemma ejercicio_58: | lemma ejercicio_58: | ||
"(p ⟶ q) ∨ (q ⟶ p)" | "(p ⟶ q) ∨ (q ⟶ p)" | ||
− | + | proof - | |
+ | have "¬p ∨ p" by (rule excluded_middle) | ||
+ | moreover | ||
+ | { assume "¬p" | ||
+ | { assume "p" | ||
+ | with `¬p` have "False" by (rule notE) | ||
+ | hence "q" by (rule FalseE)} | ||
+ | hence "p ⟶ q" by (rule impI) | ||
+ | hence "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1)} | ||
+ | moreover | ||
+ | { assume 1: "p" | ||
+ | { assume "q" | ||
+ | have "p" using 1 by this} | ||
+ | hence "q ⟶ p" by (rule impI) | ||
+ | hence "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)} | ||
+ | ultimately show "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjE) | ||
+ | qed | ||
end | end | ||
</source> | </source> |
Revisión actual del 14:27 16 jul 2018
header {* R3: Deducción natural proposicional *}
theory R3
imports Main
begin
text {*
---------------------------------------------------------------------
El objetivo de esta relación es demostrar cada uno de los ejercicios
usando sólo las reglas básicas de deducción natural de la lógica
proposicional (sin usar el método auto).
Las reglas básicas de la deducción natural son las siguientes:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· notnotI: P ⟹ ¬¬ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· mt: ⟦F ⟶ G; ¬G⟧ ⟹ ¬F
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
---------------------------------------------------------------------
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación. *}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
section {* Implicaciones *}
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
p ⟶ q, p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_1:
assumes "p ⟶ q"
"p"
shows "q"
proof -
show "q" using assms(1) assms(2) by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
p ⟶ q, q ⟶ r, p ⊢ r
------------------------------------------------------------------ *}
lemma ejercicio_2:
assumes "p ⟶ q"
"q ⟶ r"
"p"
shows "r"
proof - have 1: "q" using assms(1) assms(3) by (rule mp)
show "r" using assms(2) 1 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
------------------------------------------------------------------ *}
lemma ejercicio_3:
assumes "p ⟶ (q ⟶ r)"
"p ⟶ q"
"p"
shows "r"
proof -
have 1:"q⟶r" using assms(1) assms(3) by (rule mp)
have 2:"q" using assms(2) assms(3) by (rule mp)
show "r" using 1 2 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
p ⟶ q, q ⟶ r ⊢ p ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_4:
assumes "p ⟶ q"
"q ⟶ r"
shows "p ⟶ r"
proof -
{assume 1: "p"
have 2: "q" using assms(1) 1 by (rule mp)
have 3: "r" using assms(2) 2 by (rule mp)}
then show "p⟶r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_5:
assumes "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof-
{assume 1: "q"
{assume 2: "p"
have 3:"q⟶r" using assms(1) 2 by (rule mp)
have "r" using 3 1 by (rule mp)}
hence "p⟶r" by (rule impI)}
then show "q⟶(p⟶r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_6:
assumes "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof-
{assume 1: "p⟶q"
{assume 2: "p"
have 3: "q⟶r" using assms(1) 2 by (rule mp)
have 4: "q" using 1 2 by (rule mp)
have 5: "r" using 3 4 by (rule mp)}
hence "p⟶r" by (rule impI)}
then show "(p⟶q)⟶(p⟶r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
p ⊢ q ⟶ p
------------------------------------------------------------------ *}
lemma ejercicio_7:
assumes "p"
shows "q ⟶ p"
proof-
{assume 1: "q"
note `p`}
thus "q⟶p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
⊢ p ⟶ (q ⟶ p)
------------------------------------------------------------------ *}
lemma ejercicio_8:
"p ⟶ (q ⟶ p)"
proof-
{assume "p"
{assume "q"
note `p`}
hence "q⟶p" by (rule impI)}
thus "p⟶q⟶p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_9:
assumes "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof-
{assume 1: "q⟶r"
{assume 2:"p"
have 3: "q" using assms(1) 2 by (rule mp)
have 4: "r" using 1 3 by (rule mp)}
hence "p⟶r" by (rule impI)}
thus "(q⟶r)⟶(p⟶r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s))
------------------------------------------------------------------ *}
lemma ejercicio_10:
assumes "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof -
{assume 1: "r"
{assume 2: "q"
{assume 3: "p"
have 4: "q ⟶ (r ⟶ s)" using assms(1) 3 by (rule mp)
have 5: "r⟶s" using 4 2 by (rule mp)
have 6: "s" using 5 1 by (rule mp)}
hence "p⟶s" by (rule impI)}
hence "q⟶(p⟶s)" by (rule impI)}
thus "r⟶(q⟶(p⟶s))" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
------------------------------------------------------------------ *}
lemma ejercicio_11:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof-
{assume 1: "p⟶(q⟶r)"
{ assume 2: "p⟶q"
{assume 3: "p"
have 4: "q⟶r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
have 6: "r" using 4 5 by (rule mp)}
hence "p⟶r" by (rule impI)}
hence "(p⟶q)⟶(p⟶r)" by (rule impI)}
thus "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_12:
assumes "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof-
{assume 1: "p"
{assume 2: "q"
{assume 3:"p"
note `q`}
hence 4:"p⟶q" by (rule impI)
have 5: "r" using assms(1) 4 by (rule mp)}
hence "q⟶r" by (rule impI)}
thus "p⟶(q⟶r)" by (rule impI)
qed
section {* Conjunciones *}
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
p, q ⊢ p ∧ q
------------------------------------------------------------------ *}
lemma ejercicio_13:
assumes "p"
"q"
shows "p ∧ q"
proof-
show "p∧q" using assms(1) assms(2) by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
p ∧ q ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_14:
assumes "p ∧ q"
shows "p"
proof-
show "p" using assms(1) by (rule conjunct1)
qed
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
p ∧ q ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_15:
assumes "p ∧ q"
shows "q"
proof-
show "q" using assms(1) by (rule conjunct2)
qed
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r
------------------------------------------------------------------ *}
lemma ejercicio_16:
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
proof -
have 1: "p" using assms(1) by (rule conjunct1)
have 2: "q ∧ r" using assms(1) by (rule conjunct2)
have 3: "q" using 2 by (rule conjunct1)
have 4: "r" using 2 by (rule conjunct2)
have 5: "p ∧ q" using 1 3 by (rule conjI)
show "(p ∧ q) ∧ r" using 5 4 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
(p ∧ q) ∧ r ⊢ p ∧ (q ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_17:
assumes "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
proof-
have 1: "p ∧ q" using assms(1) by (rule conjunct1)
have 2: "r" using assms(1) by (rule conjunct2)
have 3: "p" using 1 by (rule conjunct1)
have 4: "q" using 1 by (rule conjunct2)
have 5: "q ∧ r" using 4 2 by (rule conjI)
show "p ∧(q ∧ r)" using 3 5 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
p ∧ q ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_18:
assumes "p ∧ q"
shows "p ⟶ q"
proof-
{assume "p"
have "q" using assms(1) by (rule conjunct2)}
thus "p⟶q" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r
------------------------------------------------------------------ *}
lemma ejercicio_19:
assumes "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
proof-
{assume 1: "p"
have 2: "p⟶q" using assms(1) by (rule conjunct1)
have 3: "p⟶r" using assms(1) by (rule conjunct2)
have 4: "q" using 2 1 by (rule mp)
have 5: "r" using 3 1 by (rule mp)
have 6: "q ∧ r" using 4 5 by (rule conjI)}
thus "p⟶(q ∧ r)" by(rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_20:
assumes "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof (rule conjI)
{ assume 1: "p"
have 2: "q ∧ r" using assms(1) 1 by (rule mp)
have 3: "q" using 2 by (rule conjunct1)}
thus "p ⟶ q" by (rule impI)
next
{ assume 1: "p"
have 2: "q ∧ r" using assms(1) 1 by (rule mp)
have 3: "r" using 2 by (rule conjunct2)}
thus "p ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_21:
assumes "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof -
{ assume 1: "p ∧ q"
have 2: "p" using 1 by (rule conjunct1)
have 3: "q ⟶ r" using assms(1) 2 by (rule mp)
have 4: "q" using 1 by (rule conjunct2)
have 5: "r" using 3 4 by (rule mp)}
thus "(p ∧ q) ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_22:
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof -
{ assume 1: "p"
{assume 2: "q"
have 3: "p ∧ q" using 1 2 by (rule conjI)
have 4: "r" using assms(1) 3 by (rule mp)}
then have 5: "q ⟶ r" by (rule impI)}
thus "p ⟶ (q ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_23:
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof -
{ assume 1: "p ∧q"
{assume 2: "p"
have 3: "q" using 1 by (rule conjunct2)}
hence 4: "p ⟶ q" by (rule impI)
have 5: "r" using assms(1) 4 by (rule mp)}
thus "p ∧ q ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_24:
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof -
{ assume 1: "p ⟶ q"
have 2: "p" using assms(1) by (rule conjunct1)
have 3: "q" using 1 2 by (rule mp)
have 4: "q ⟶ r" using assms(1) by (rule conjunct2)
have 5: "r" using 4 3 by (rule mp)}
thus "(p ⟶ q) ⟶ r" by (rule impI)
qed
section {* Disyunciones *}
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
p ⊢ p ∨ q
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_25:
assumes "p"
shows "p ∨ q"
proof -
show "p ∨ q" using assms(1) by (rule disjI1)
qed
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
q ⊢ p ∨ q
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_26:
assumes "q"
shows "p ∨ q"
proof -
show "p ∨ q" using assms(1) by (rule disjI2)
qed
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar
p ∨ q ⊢ q ∨ p
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_27:
assumes "p ∨ q"
shows "q ∨ p"
proof -
have "p ∨ q" using assms(1) by this
moreover
{ assume 1: "p"
have 2: "q ∨ p" using 1 by (rule disjI2)}
moreover
{ assume 1: "q"
have 2: "q ∨ p" using 1 by (rule disjI1)}
ultimately show "q ∨ p" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_28:
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
proof -
{ assume 1: "p ∨ q"
moreover
{ assume 2: "p"
have 3: "p ∨ r" using 2 by (rule disjI1)}
moreover
{ assume 4: "q"
have 5: "r" using assms(1) 4 by (rule mp)
have 6: "p ∨ r" using 5 by (rule disjI2)}
ultimately have "p ∨r" by (rule disjE)}
thus "p ∨ q ⟶ p ∨ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar
p ∨ p ⊢ p
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_29:
assumes "p ∨ p"
shows "p"
proof -
have "p ∨ p" using assms(1) by this
moreover
{ assume 1: "p"
have 2: "p" using 1 by this}
moreover
{ assume 3: "p"
have 4: "p" using 3 by this}
ultimately show "p" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar
p ⊢ p ∨ p
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_30:
assumes "p"
shows "p ∨ p"
proof -
show "p ∨ p" using assms(1) by (rule disjI1)
qed
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar
p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_31:
assumes "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r"
proof -
have "p ∨ (q ∨ r)" using assms(1) by this
moreover
{ assume 1: "p"
have 2: "p ∨ q" using 1 by (rule disjI1)
have 3: "(p ∨ q) ∨ r" using 2 by (rule disjI1)}
moreover
{ assume 4: "q ∨ r"
moreover
{ assume 5: "q"
have 6: "p ∨ q" using 5 by (rule disjI2)
have 7: "(p ∨ q) ∨ r" using 6 by (rule disjI1)}
moreover
{ assume 8: "r"
have 9: "(p ∨ q) ∨ r" using 8 by (rule disjI2)}
ultimately have "(p ∨ q) ∨ r" by (rule disjE)}
ultimately show "(p ∨ q) ∨ r" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_32:
assumes "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
proof -
have "(p ∨ q) ∨ r" using assms(1) by this
moreover
{ assume 1: "p ∨ q"
moreover
{ assume 2: "p"
have 3: "p ∨ (q ∨ r)" using 2 by (rule disjI1)}
moreover
{ assume 4: "q"
have 5: "q ∨ r" using 4 by (rule disjI1)
have 6: "p ∨ (q ∨ r)" using 5 by (rule disjI2)}
ultimately have "p ∨ (q ∨ r)" by (rule disjE)}
moreover
{ assume 7: "r"
have 8: "q ∨ r" using 7 by (rule disjI2)
have 9: "p ∨ (q ∨ r)" using 8 by (rule disjI2)}
ultimately show "p ∨ (q ∨ r)" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_33:
assumes "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
proof -
have 1: "p" using assms(1) by (rule conjunct1)
have 2: "q ∨ r" using assms(1) by (rule conjunct2)
moreover
{ assume 3: "q"
have 4: "p ∧ q" using 1 3 by (rule conjI)
have 5: "(p ∧ q) ∨ (p ∧ r)" using 4 by (rule disjI1)}
moreover
{ assume 6: "r"
have 7: "p ∧ r" using 1 6 by (rule conjI)
have 8: "(p ∧ q) ∨ (p ∧ r)" using 7 by (rule disjI2)}
ultimately show "(p ∧ q) ∨ (p ∧ r)" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_34:
assumes "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
proof -
have "(p ∧ q) ∨ (p ∧ r)" using assms(1) by this
moreover
{ assume 1: "p ∧ q"
have 2: "q" using 1 by (rule conjunct2)
have 3: "q ∨ r" using 2 by (rule disjI1)
have 4: "p" using 1 by (rule conjunct1)
have 5: "p ∧ (q ∨ r)" using 4 3 by (rule conjI)}
moreover
{ assume 6: "p ∧ r"
have 7: "r" using 6 by (rule conjunct2)
have 8: "q ∨ r" using 7 by (rule disjI2)
have 9: "p" using 6 by (rule conjunct1)
have 10: "p ∧ (q ∨ r)" using 9 8 by (rule conjI)}
ultimately show "p ∧ (q ∨ r)" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_35:
assumes "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
proof -
have "p ∨ (q ∧ r)" using assms(1) by this
moreover
{ assume 1: "p"
have 2: "p ∨ q" using 1 by (rule disjI1)
have 3: "p ∨ r" using 1 by (rule disjI1)
have 4: "(p ∨ q) ∧ (p ∨ r)" using 2 3 by (rule conjI)}
moreover
{ assume 5: "q ∧ r"
have 6: "q" using 5 by (rule conjunct1)
have 7: "p ∨ q" using 6 by (rule disjI2)
have 8: "r" using 5 by (rule conjunct2)
have 9: "p ∨ r" using 8 by (rule disjI2)
have 10: "(p ∨ q) ∧ (p ∨ r)" using 7 9 by (rule conjI)}
ultimately show "(p ∨ q) ∧ (p ∨ r)" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_36:
assumes "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
proof -
have "(p ∨ q)" using assms(1) by (rule conjunct1)
moreover
{ assume 1: "p"
have 2: "p ∨ (q ∧ r)" using 1 by (rule disjI1)}
moreover
{ assume 3: "q"
have 4: "p ∨ r" using assms(1) by (rule conjunct2)
moreover
{ assume 5: "p"
have 6: "p ∨ (q ∧ r)" using 5 by (rule disjI1)}
moreover
{ assume 7: "r"
have 8: "q ∧ r" using 3 7 by (rule conjI)
have 9: "p ∨ (q ∧ r)" using 8 by (rule disjI2)}
ultimately have "p ∨ (q ∧ r)" by (rule disjE)}
ultimately show "p ∨ (q ∧ r)" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_37:
assumes "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
proof -
{ assume 1: "p ∨ q"
moreover
{ assume 2: "p"
have 3: "p ⟶ r" using assms(1) by (rule conjunct1)
have 4: "r" using 3 2 by (rule mp)}
moreover
{ assume 5: "q"
have 6: "q ⟶ r" using assms(1) by (rule conjunct2)
have 7: "r" using 6 5 by (rule mp)}
ultimately have "r" by (rule disjE)}
thus "(p ∨ q) ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 38. Demostrar
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_38:
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
proof (rule conjI)
{ assume 1: "p"
have 2: "p ∨ q" using 1 by (rule disjI1)
have 3: "r" using assms(1) 2 by (rule mp)}
thus "p ⟶ r" by (rule impI)
next
{ assume 4: "q"
have 5: "p ∨ q" using 4 by (rule disjI2)
have 6: "r" using assms(1) 5 by (rule mp)}
thus "q ⟶ r" by (rule impI)
qed
section {* Negaciones *}
text {* ---------------------------------------------------------------
Ejercicio 39. Demostrar
p ⊢ ¬¬p
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_39:
assumes "p"
shows "¬¬p"
proof -
show "¬¬p" using assms(1) by (rule notnotI)
qed
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_40:
assumes "¬p"
shows "p ⟶ q"
proof -
{ assume 1: "p"
have 2: "False" using assms(1) 1 by (rule notE)
have 3: "q" using 2 by (rule FalseE)}
thus "p ⟶ q" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 41. Demostrar
p ⟶ q ⊢ ¬q ⟶ ¬p
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_41:
assumes "p ⟶ q"
shows "¬q ⟶ ¬p"
proof -
{assume 1: "¬q"
have 2: "¬p" using assms(1) 1 by (rule mt)}
thus "¬q ⟶ ¬p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p∨q, ¬q ⊢ p
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_42:
assumes "p∨q"
"¬q"
shows "p"
proof -
have "p ∨ q" using assms(1) by this
moreover
{ assume 1: "p"
have 2: "p" using 1 by this}
moreover
{ assume 3: "q"
have 4: "False" using assms(2) 3 by (rule notE)
have 5: "p" using 4 by (rule FalseE)}
ultimately show "p" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p ∨ q, ¬p ⊢ q
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_43:
assumes "p ∨ q"
"¬p"
shows "q"
proof -
have "p ∨ q" using assms(1) by this
moreover
{ assume 1: "p"
have 2: "False" using assms(2) 1 by (rule notE)
have 3: "q" using 2 by (rule FalseE)}
moreover
{ assume 4: "q"
have 5: "q" using 4 by this}
ultimately show "q" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
p ∨ q ⊢ ¬(¬p ∧ ¬q)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_44:
assumes "p ∨ q"
shows "¬(¬p ∧ ¬q)"
proof (rule ccontr)
assume 1: "¬¬(¬p ∧ ¬q)"
have 2: "¬p ∧ ¬q" using 1 by (rule notnotD)
have 3: "p ∨ q" using assms(1) by this
moreover
{ assume 4: "p"
have 5: "¬p" using 2 by (rule conjunct1)
have 6: "False" using 5 4 by (rule notE)}
moreover
{ assume 7: "q"
have 8: "¬q" using 2 by (rule conjunct2)
have 9: "False" using 8 7 by (rule notE)}
ultimately show "False" by (rule disjE)
qed
-- Miguel Peña Gallardo
lemma ejercicio_44:
assumes "p ∨ q"
shows "¬(¬p ∧ ¬q)"
proof-
{assume 1:"¬¬(¬p ∧ ¬q)"
have 2: "(¬p ∧ ¬q)" using 1 by (rule notnotD)
have 3: "¬p" using 2 by (rule conjunct1)
have 4: "¬q" using 2 by (rule conjunct2)
have "p∨q" using assms(1) by this
moreover
{assume 5: "p"
have 6: "False" using 3 5 by (rule notE)}
moreover
{assume 7: "q"
have 8: "False" using 4 7 by (rule notE)}
ultimately have "False" by (rule disjE)}
then show "¬(¬p ∧¬q)" by (rule ccontr)
qed
text {* ---------------------------------------------------------------
Ejercicio 45. Demostrar
p ∧ q ⊢ ¬(¬p ∨ ¬q)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_45:
assumes "p ∧ q"
shows "¬(¬p ∨ ¬q)"
proof (rule ccontr)
assume 1: "¬¬(¬p ∨ ¬q)"
have 2: "¬p ∨ ¬q" using 1 by (rule notnotD)
moreover
{assume 3: "¬p"
have 4: "p" using assms(1) by (rule conjunct1)
have 5: "False" using 3 4 by (rule notE)}
moreover
{ assume 6: "¬q"
have 7: "q" using assms(1) by (rule conjunct2)
have 8: "False" using 6 7 by (rule notE)}
ultimately show "False" by (rule disjE)
qed
--Miguel Peña Gallardo
lemma ejercicio_45:
assumes "p ∧ q"
shows "¬(¬p ∨ ¬q)"
proof-
have 1: "p" using assms(1) by (rule conjunct1)
have 2: "q" using assms(1) by (rule conjunct2)
{assume 3: "¬¬(¬p∨¬q)"
have 4: "¬p ∨¬q" using 3 by (rule notnotD)
have "¬p ∨¬q" using 4 by this
moreover
{assume 5: "¬p"
have 6: "False" using 5 1 by (rule notE)}
moreover
{assume 7: "¬q"
have 8: "False" using 7 2 by (rule notE)}
ultimately have "False" by (rule disjE)}
then show "¬(¬p∨¬q)" by (rule ccontr)
qed
text {* ---------------------------------------------------------------
Ejercicio 46. Demostrar
¬(p ∨ q) ⊢ ¬p ∧ ¬q
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_46:
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof (rule conjI)
{assume 1: "¬¬p"
have 2: "p" using 1 by (rule notnotD)
have 3: "p ∨ q" using 2 by (rule disjI1)
have 4: "False" using assms(1) 3 by (rule notE)}
thus 5: "¬p" by (rule ccontr)
next
{ assume 6: "¬¬q"
have 7: "q" using 6 by (rule notnotD)
have 8: "p ∨ q" using 7 by (rule disjI2)
have 9: "False" using assms(1) 8 by (rule notE)}
thus 10: "¬q" by (rule ccontr)
qed
text {* ---------------------------------------------------------------
Ejercicio 47. Demostrar
¬p ∧ ¬q ⊢ ¬(p ∨ q)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_47:
assumes "¬p ∧ ¬q"
shows "¬(p ∨ q)"
proof (rule ccontr)
assume 1: "¬¬(p ∨ q)"
have 2: "p ∨ q" using 1 by (rule notnotD)
moreover
{ assume 3: "p"
have 4: "¬p" using assms(1) by (rule conjunct1)
have 5: "False" using 4 3 by (rule notE)}
moreover
{ assume 6: "q"
have 7: "¬q" using assms(1) by (rule conjunct2)
have 8: "False" using 7 6 by (rule notE)}
ultimately show "False" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 48. Demostrar
¬p ∨ ¬q ⊢ ¬(p ∧ q)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_48:
assumes "¬p ∨ ¬q"
shows "¬(p ∧ q)"
proof (rule ccontr)
assume 1: "¬¬(p ∧ q)"
have 2: "(p ∧ q)" using 1 by (rule notnotD)
have 3: "¬p ∨ ¬q" using assms(1) by this
moreover
{ assume 4: "¬p"
have 5: "p" using 2 by (rule conjunct1)
have 6: "False" using 4 5 by (rule notE)}
moreover
{ assume 7: "¬q"
have 8: "q" using 2 by (rule conjunct2)
have 9: "False" using 7 8 by (rule notE)}
ultimately show "False" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 49. Demostrar
⊢ ¬(p ∧ ¬p)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_49:
"¬(p ∧ ¬p)"
proof -
{assume 1: "¬¬(p ∧ ¬p)"
have 2: "p ∧ ¬p" using 1 by (rule notnotD)
have 3: "p" using 2 by (rule conjunct1)
have 4: "¬p" using 2 by (rule conjunct2)
have 5: "False" using 4 3 by (rule notE)}
thus "¬(p ∧ ¬p)" by (rule ccontr)
qed
text {* ---------------------------------------------------------------
Ejercicio 50. Demostrar
p ∧ ¬p ⊢ q
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_50:
assumes "p ∧ ¬p"
shows "q"
proof -
have 1: "p" using assms(1) by (rule conjunct1)
have 2: "¬p" using assms(1) by (rule conjunct2)
have 3: "False" using 2 1 by (rule notE)
show 4: "q" using 3 by (rule FalseE)
qed
text {* ---------------------------------------------------------------
Ejercicio 51. Demostrar
¬¬p ⊢ p
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_51:
assumes "¬¬p"
shows "p"
proof -
show "p" using assms(1) by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 52. Demostrar
⊢ p ∨ ¬p
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_52:
"p ∨ ¬p"
proof -
have 1: "¬p ∨ p" by (rule excluded_middle)
moreover
{ assume 2: "¬p"
have 3: "p ∨ ¬p" using 2 by (rule disjI2)}
moreover
{ assume 4: "p"
have 5: "p ∨ ¬p" using 4 by (rule disjI1)}
ultimately show "p ∨ ¬p" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 53. Demostrar
⊢ ((p ⟶ q) ⟶ p) ⟶ p
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_53:
"((p ⟶ q) ⟶ p) ⟶ p"
proof -
{assume 1: "(p ⟶ q) ⟶ p"
{ assume 3: "¬p"
have 4: "¬(p ⟶ q)" using 1 3 by (rule mt)
{ assume 5: "p"
have 6: "False" using 3 5 by (rule notE)
have 7: "q" using 6 by (rule FalseE)}
hence 8: "p ⟶ q" by (rule impI)
have 9: "False" using 4 8 by (rule notE)}
hence 10: "p" by (rule ccontr)}
thus 11: "((p ⟶ q) ⟶ p) ⟶ p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 54. Demostrar
¬q ⟶ ¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_54:
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
proof (rule impI)
assume 1: "p"
have 2: "¬q ∨ q" by (rule excluded_middle)
moreover
{ assume 3: "¬q"
have 4: "¬p" using assms(1) 3 by (rule mp)
have 5: "False" using 4 1 by (rule notE)
have 6: "q" using 5 by (rule FalseE)}
moreover
{ assume 7: "q"
have 8: "q" using 7 by this}
ultimately show "q" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 55. Demostrar
¬(¬p ∧ ¬q) ⊢ p ∨ q
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_55:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof -
have 1: "¬p ∨ p" by (rule excluded_middle)
moreover
{ assume 2: "¬p"
have 3: "¬q ∨ q" by (rule excluded_middle)
moreover
{ assume 4: "¬q"
have 5: "¬p ∧ ¬ q" using 2 4 by (rule conjI)
have 6: "False" using assms(1) 5 by (rule notE)
have 7: "p ∨ q" using 6 by (rule FalseE)}
moreover
{ assume 8: "q"
have 9: "p ∨ q" using 8 by (rule disjI2)}
ultimately have "p ∨ q" by (rule disjE)}
moreover
{ assume 10: "p"
have 11: "p ∨ q" using 10 by (rule disjI1)}
ultimately show "p ∨ q" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 56. Demostrar
¬(¬p ∨ ¬q) ⊢ p ∧ q
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_56:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof (rule conjI)
{ assume 1: "¬p"
have 2: "¬p ∨ ¬q" using 1 by (rule disjI1)
have 3: "False" using assms(1) 2 by (rule notE)}
thus 4: "p" by (rule ccontr)
next
{ assume 5: "¬q"
have 6: "¬p ∨ ¬q" using 5 by (rule disjI2)
have 7: "False" using assms(1) 6 by (rule notE)}
thus 8: "q" by (rule ccontr)
qed
text {* ---------------------------------------------------------------
Ejercicio 57. Demostrar
¬(p ∧ q) ⊢ ¬p ∨ ¬q
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_57:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof -
have 1: "¬p ∨ p" by (rule excluded_middle)
moreover
{ assume 2: "¬p"
have 3: "¬p ∨ ¬q" using 2 by (rule disjI1)}
moreover
{ assume 4: "p"
have 5: "¬q ∨ q" by (rule excluded_middle)
moreover
{ assume 6: "¬q"
have 7: "¬p ∨ ¬q" using 6 by (rule disjI2)}
moreover
{ assume 8: "q"
have 9: "p ∧ q" using 4 8 by (rule conjI)
have 10: "False" using assms(1) 9 by (rule notE)
have 11: "¬p ∨ ¬q" using 10 by (rule FalseE)}
ultimately have "¬p ∨ ¬q" by (rule disjE)}
ultimately show "¬p ∨ ¬q" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 58. Demostrar
⊢ (p ⟶ q) ∨ (q ⟶ p)
------------------------------------------------------------------ *}
-- Francisco Javier Carmona
lemma ejercicio_58:
"(p ⟶ q) ∨ (q ⟶ p)"
proof -
have "¬p ∨ p" by (rule excluded_middle)
moreover
{ assume "¬p"
{ assume "p"
with `¬p` have "False" by (rule notE)
hence "q" by (rule FalseE)}
hence "p ⟶ q" by (rule impI)
hence "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1)}
moreover
{ assume 1: "p"
{ assume "q"
have "p" using 1 by this}
hence "q ⟶ p" by (rule impI)
hence "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)}
ultimately show "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjE)
qed
end