Acciones

Relación 3

De Lógica matemática y fundamentos (2012-13)

header {* R3: Deducción natural proposicional *}

theory R3
imports Main 
begin

text {*
  --------------------------------------------------------------------- 
  El objetivo de esta relación es demostrar cada uno de los ejercicios
  usando sólo las reglas básicas de deducción natural de la lógica
  proposicional (sin usar el método auto).

  Las reglas básicas de la deducción natural son las siguientes:
  · conjI:      ⟦P; Q⟧ ⟹ P ∧ Q
  · conjunct1:  P ∧ Q ⟹ P
  · conjunct2:  P ∧ Q ⟹ Q  
  · notnotD:    ¬¬ P ⟹ P
  · notnotI:    P ⟹ ¬¬ P
  · mp:         ⟦P ⟶ Q; P⟧ ⟹ Q 
  · mt:         ⟦F ⟶ G; ¬G⟧ ⟹ ¬F 
  · impI:       (P ⟹ Q) ⟹ P ⟶ Q
  · disjI1:     P ⟹ P ∨ Q
  · disjI2:     Q ⟹ P ∨ Q
  · disjE:      ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R 
  · FalseE:     False ⟹ P
  · notE:       ⟦¬P; P⟧ ⟹ R
  · notI:       (P ⟹ False) ⟹ ¬P
  · iffI:       ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
  · iffD1:      ⟦Q = P; Q⟧ ⟹ P 
  · iffD2:      ⟦P = Q; Q⟧ ⟹ P
  · ccontr:     (¬P ⟹ False) ⟹ P
  --------------------------------------------------------------------- 
*}

text {*
  Se usarán las reglas notnotI y mt que demostramos a continuación. *}

lemma notnotI: "P ⟹ ¬¬ P"
by auto

lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto

section {* Implicaciones *}

text {* --------------------------------------------------------------- 
  Ejercicio 1. Demostrar
       p ⟶ q, p ⊢ q
  ------------------------------------------------------------------ *}

-- "Pedro G. Ros"
lemma ejercicio_1a:
  assumes 1: "p ⟶ q" and
          2: "p"
  shows "q"
proof -
   show 3: "q" using 1 2 by (rule mp) 
qed

-- "Isabel Duarte"
lemma ejercicio_1b:
  assumes "p ⟶ q"
          "p"
  shows "q"
proof -
  show "q" using assms(1,2) by (rule mp)
qed
 
text {* --------------------------------------------------------------- 
  Ejercicio 2. Demostrar
     p ⟶ q, q ⟶ r, p ⊢ r
  ------------------------------------------------------------------ *}

-- "Pedro G. Ros"
lemma ejercicio_2a:
  assumes 1:"p ⟶ q" and
          2:"q ⟶ r" and
          3:"p" 
  shows "r"
proof -
  have 4: "q" using 1 3 by (rule mp)
  show 5: "r" using 2 4 by (rule mp) 
qed

-- "Isabel Duarte"
lemma ejercicio_2b:
  assumes "p ⟶ q"
          "q ⟶ r"
          "p" 
  shows "r"
proof -
  have "q" using assms(1,3) ..
  with `q ⟶ r` show "r" ..
qed

 
text {* --------------------------------------------------------------- 
  Ejercicio 3. Demostrar
     p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
  ------------------------------------------------------------------ *}
 
-- "Pedro G. Ros"
lemma ejercicio_3a:
  assumes 1: "p ⟶ (q ⟶ r)" and
          2: "p ⟶ q"       and
          3: "p"           
  shows "r"
proof -
   have 4: "q ⟶ r" using 1 3 by (rule mp)
   have 5: "q" using 2 3 by (rule mp)
   show 6: "r" using 4 5 by (rule mp)
qed

-- "Isabel Duarte"
lemma ejercicio_3b:
  assumes "p ⟶ (q ⟶ r)" 
          "p ⟶ q"
          "p"           
  shows "r"
proof -
  have "q ⟶ r" using assms(1,3) ..
  have "q" using assms(2,3) ..
  with `q ⟶ r` show "r" ..
qed
 

text {* --------------------------------------------------------------- 
  Ejercicio 4. Demostrar
     p ⟶ q, q ⟶ r ⊢ p ⟶ r
  ------------------------------------------------------------------ *}
 
-- "Pedro G. Ros"
lemma ejercicio_4a:
  assumes 1: "p ⟶ q" and
          2: "q ⟶ r" 
  shows "p ⟶ r"
proof -
  {assume 3:"p" 
    have 4: "q" using 1 3 by (rule mp)
    have 5: "r" using 2 4 by (rule mp)}
  thus "p ⟶ r" by (rule impI)
qed


lemma ejercicio_4d:
  assumes "p ⟶ q" and
          "q ⟶ r" 
  shows "p ⟶ r"
  using assms by auto


text {* --------------------------------------------------------------- 
  Ejercicio 5. Demostrar
     p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
  ------------------------------------------------------------------ *}

-- "Isabel Duarte"
lemma ejercicio_5a:
  assumes 1: "p ⟶ (q ⟶ r)" 
  shows   "q ⟶ (p ⟶ r)"
proof -
  {assume 3: "q"
    {assume 4: "p"
      have  "q ⟶ r" using 1 4 ..
      hence 5: "r" using 3 ..}
    hence 6: "p ⟶ r" by (rule impI)}
  thus "q ⟶ (p ⟶ r)" by (rule impI)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 6. Demostrar
     p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
  ------------------------------------------------------------------ *}

-- "José Mª Contreras"
lemma ejercicio_6a:
  assumes 1: "p ⟶ (q ⟶ r)" 
  shows   "(p ⟶ q) ⟶ (p ⟶ r)"
proof -
 {assume 2: "p ⟶ q"
   {assume 3: "p"
    have 4: "q ⟶ r" using 1 3 ..
    have 5: "q" using 2 3 ..
    have "r"  using 4 5 ..}
   hence "p ⟶ r" by (rule impI)}
 thus "(p ⟶ q) ⟶ (p ⟶ r)" by (rule impI)
qed 

text {* --------------------------------------------------------------- 
  Ejercicio 7. Demostrar
     p ⊢ q ⟶ p
  ------------------------------------------------------------------ *}

-- "Pedro G. Ros Reina"
lemma ejercicio_7:
  assumes "p"  
  shows   "q ⟶ p"
proof -
 {assume 1: "q"}
   show "q⟶ p" using assms(1) by (rule impI)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 8. Demostrar
     ⊢ p ⟶ (q ⟶ p)
  ------------------------------------------------------------------ *}

-- "Pedro G. Ros"
lemma ejercicio_8:
  "p ⟶ (q ⟶ p)"
proof -
 {assume 1: "p"
   hence 2: "q ⟶ p" by (rule impI)}
 thus "p ⟶q⟶p" by (rule impI)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 9. Demostrar
     p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
  ------------------------------------------------------------------ *}


-- Carmen Martinez Navarro, Erlinda Menendez Perez 


lemma ejercicio_9:
  assumes  1: "p ⟶ q"
  shows "(q ⟶ r) ⟶  (p ⟶ r)"
proof- 
   {assume 2: "q ⟶ r"
     {assume 3: "p"
       have 4: "q" using 1 3 by (rule mp)
       have 5: "r" using 2 4 by (rule mp)}
     hence 6: "p ⟶ r" by (rule impI)}
   thus "(q ⟶ r) ⟶ (p ⟶ r)" by (rule impI)
qed


text {* --------------------------------------------------------------- 
  Ejercicio 10. Demostrar
     p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s))
  ------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_10:
  assumes "p ⟶ (q ⟶ (r ⟶ s))" 
  shows   "r ⟶ (q ⟶ (p ⟶ s))"
proof 
  assume "r"
  show  "q⟶ (p⟶ s)" 
  proof 
    assume "q"
    show "p⟶ s"
    proof
      assume "p"
      with assms have "q⟶ r⟶ s" ..
      hence "r⟶ s" using `q` ..
      thus "s" using `r`..
    qed
  qed    
qed

text {* --------------------------------------------------------------- 
  Ejercicio 11. Demostrar
     ⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
  ------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_11a:
  "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
lemma ejercicio_11:
shows  "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof
  assume 1: "p ⟶ (q ⟶ r)"
  show 2: "(p ⟶ q) ⟶ (p ⟶ r)"
  proof 
    assume 3: "p⟶ q"
    show 4: "p⟶ r" 
    proof 
      assume 5: "p"
      have 6: "q" using 3 5 by (rule mp)
      have 7:"q⟶ r" using 1 5 by (rule mp)
      show  8: "r" using 7 6 ..
    qed
  qed          
qed


text {* --------------------------------------------------------------- 
  Ejercicio 12. Demostrar
     (p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
  ------------------------------------------------------------------ *}
-- "Pedro Ros"
lemma ejercicio_12a:
  assumes "(p ⟶ q) ⟶ r" 
  shows   "p ⟶ (q ⟶ r)"
proof -
  have 1: "(p⟶ q)⟶ r" using assms by this
  {assume 2: "p"
    {assume 3: "q"
      {assume 4: "p"
        have 5: "q" using 3 by this}
      hence 6: "p⟶ q"  ..
      have 7: "r" using assms 6 ..}
    hence 8: "q⟶ r" ..}
  thus 9: "p⟶ (q⟶ r)" ..
qed


section {* Conjunciones *}

text {* --------------------------------------------------------------- 
  Ejercicio 13. Demostrar
     p, q ⊢  p ∧ q
  ------------------------------------------------------------------ *}

-- "Pedro G. Ros Reina"

lemma ejercicio_13:
  assumes 1:"p" and
          2:"q" 
  shows "p ∧ q"
proof -
show "p ∧ q" using 1 2 by (rule conjI)
qed
text {* --------------------------------------------------------------- 
  Ejercicio 14. Demostrar
     p ∧ q ⊢ p
  ------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_14:
  assumes "p ∧ q"  
  shows   "p"
proof -
show "p" using assms by (rule conjunct1)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 15. Demostrar
     p ∧ q ⊢ q
  ------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_15:
  assumes "p ∧ q" 
  shows   "q"
proof -
show "q" using assms by (rule conjunct2)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 16. Demostrar
     p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r
  ------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_16:
  assumes "p ∧ (q ∧ r)"
  shows   "(p ∧ q)∧ r"
proof -
have 1: "p" using assms by (rule conjunct1)
have 2: "(q ∧ r)" using assms by (rule conjunct2)
have 3: "q" using 2 by (rule conjunct1)
have 4: "r" using 2 by (rule conjunct2)
have 5: "(p∧q)" using 1 3 by (rule conjI)
show 6: "(p∧q) ∧ r" using 5 4 by (rule conjI)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 17. Demostrar
     (p ∧ q) ∧ r ⊢ p ∧ (q ∧ r)
  ------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_17:
  assumes "(p∧ q) ∧ r" 
  shows   "p ∧ (q∧ r)"
proof -
have 1: "r" using assms by (rule conjunct2)
have 2: "(p∧q)" using assms by (rule conjunct1)
have 3: "p" using 2 by (rule conjunct1)
have 4: "q" using 2 by (rule conjunct2)
have 5: "(q∧r)" using 4 1 by (rule conjI)
show 6: "p∧(q∧r)" using 3 5 by (rule conjI)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 18. Demostrar
     p ∧ q ⊢ p ⟶ q
  ------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_18:
  assumes "p ∧ q" 
  shows   "p ⟶ q"
proof -
have 1: "q" using assms by (rule conjunct2)
show "p⟶ q" using 1 by (rule impI)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 19. Demostrar
     (p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r   
  ------------------------------------------------------------------ *}

--Carmen Martinez Navarro , Erlinda Menendez Perez



lemma ejercicio_19:
  assumes  1: "(p ⟶ q) ∧ (p ⟶ r)" 
  shows "p ⟶  (q ∧ r)"
proof (rule impI)
   assume 2: "p"
   have 3: "p ⟶ q" using assms by (rule conjunct1)
   have 4: "q" using 3 2 by (rule mp)
   have 5: "p ⟶ r" using assms by (rule conjunct2)
   have 6: "r" using 5 2 by (rule mp)
   show "q ∧ r" using 4 6 by (rule conjI)
qed




text {* --------------------------------------------------------------- 
  Ejercicio 20. Demostrar
     p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
  ------------------------------------------------------------------ *}

-- "Jesús Horno Cobo"

lemma ejercicio_20:
  assumes 1:"p ⟶ q ∧ r" 
  shows   "(p ⟶ q) ∧ (p ⟶ r)"
proof -
  { assume 3: "p"
    have 4: "q ∧ r" using 1 3 by (rule mp)
    have 5: "q" using 4 by (rule conjunct1) }
  hence 6: "p ⟶ q" by (rule impI)
  { assume 7: "p"
    have 8: "q ∧ r" using 1 7 by (rule mp)
    have 9: "r" using 8 by (rule conjunct2) }
  hence 10: "p ⟶ r" by (rule impI)
 show "(p ⟶ q) ∧ (p ⟶ r)" using 6 10 by (rule conjI)
qed


text {* --------------------------------------------------------------- 
  Ejercicio 21. Demostrar
     p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r
  ------------------------------------------------------------------ *}

-- "Pedro G. Ros"
lemma ejercicio_21a:
  assumes 1:"p ⟶ (q ⟶ r)" 
  shows   "p ∧ q ⟶ r"
proof
  assume 2:"p∧q"
  show "r" 
  proof -
    have 3: "p" using 2 by (rule conjunct1)
    have 4: "q" using 2 ..
    have 5: "(q⟶ r)" using 1 3 ..
    show 6: "r" using 5 4 ..
  qed
qed

text {* --------------------------------------------------------------- 
  Ejercicio 22. Demostrar
     p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r)
  ------------------------------------------------------------------ *}

-- "Pedro G. Ros"
lemma ejercicio_22a:
  assumes "p ∧ q ⟶ r" 
  shows   "p ⟶ (q ⟶ r)"
proof
  assume "p"
  show "q⟶ r"
  proof
    assume "q"
    have "p∧q" using `p` `q` ..
    show "r" using assms `p∧q`..
  qed
qed
text {* --------------------------------------------------------------- 
  Ejercicio 23. Demostrar
     (p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r
  ------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_23a:
  assumes 1:"(p ⟶ q) ⟶ r" 
  shows   "p ∧ q ⟶ r" 
proof 
  assume 2:"p∧q"
  hence 3:"p"  ..
  have 4:"q" using 2 ..
  hence 5: "p⟶ q" ..
  show"r" using 1 5 by (rule mp)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 24. Demostrar
     p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
  ------------------------------------------------------------------ *}
-- "Pedro Ros"
lemma ejercicio_24a:
  assumes "p ∧ (q ⟶ r)" 
  shows   "(p ⟶ q) ⟶ r"
proof 
  assume 0:"p⟶ q"
  show "r"
  proof -
    have 1: "p" using assms .. 
    have 2: "q" using 0 1 ..
    have 3: "q⟶ r" using assms ..
    show 3: "r" using 3 2 ..
  qed
qed

section {* Disyunciones *}

text {* --------------------------------------------------------------- 
  Ejercicio 25. Demostrar
     p ⊢ p ∨ q
  ------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_25:
  assumes "p"
  shows   "p ∨ q"
proof -
show "p∨q" using assms by (rule disjI1)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 26. Demostrar
     q ⊢ p ∨ q
  ------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_26:
  assumes "q"
  shows   "p ∨ q"
proof -
show "p∨q" using assms by (rule disjI2)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 27. Demostrar
     p ∨ q ⊢ q ∨ p
  ------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_27:
  assumes "p ∨ q"
  shows   "q ∨ p"
proof - 
have "p ∨ q" using assms by this
  moreover
  { assume 2: "p"
    have "q ∨ p" using 2 by (rule disjI2) }
  moreover
  { assume 3: "q"
    have "q ∨ p" using 3 by (rule disjI1) }
  ultimately show "q ∨ p" by (rule disjE) 
qed  

text {* --------------------------------------------------------------- 
  Ejercicio 28. Demostrar
     q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
  ------------------------------------------------------------------ *}
-- "Pedro Ros"
lemma ejercicio_28a:
  assumes "q ⟶ r" 
  shows   "p ∨ q ⟶ p ∨ r"
proof 
  assume 1: "p∨q"
  moreover
  {assume "p"
    hence "p∨r" by (rule disjI1)}
  moreover
  {assume "q"
    have "r" using assms `q`..
    hence "p∨r" ..}
  ultimately
  show "p∨r" ..
qed 

text {* --------------------------------------------------------------- 
  Ejercicio 29. Demostrar
     p ∨ p ⊢ p
  ------------------------------------------------------------------ *}

-- "Pedro Ros"
lemma ejercicio_29a:
  assumes "p ∨ p"
  shows   "p"
 
proof-
have "p∨p" using assms by this
  moreover
  {assume "p"
    hence "p" by this}
  moreover
  {assume "p"
    hence "p" by this}
  ultimately
  show "p" ..
qed
 
text {* --------------------------------------------------------------- 
  Ejercicio 30. Demostrar
     p ⊢ p ∨ p
  ------------------------------------------------------------------ *}
-- "Pedro Ros"
lemma ejercicio_30a:
  assumes "p" 
  shows   "p ∨ p"
proof -
show "p∨p" using assms ..


text {* --------------------------------------------------------------- 
  Ejercicio 31. Demostrar
     p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r
  ------------------------------------------------------------------ *}

-- "Pedro G. Ros"
lemma ejercicio_31a:
  assumes "p ∨ (q ∨ r)" 
  shows   "(p ∨ q) ∨ r"
proof -
  have 1: "p ∨ (q ∨ r)" using assms by this
  moreover
  {assume "p"
    hence "(p∨q)" ..
    hence "(p∨q)∨r" ..}
  moreover
  {assume "(q∨r)"
    moreover
    {assume "q"
      hence "(p∨q)"..
      hence "(p∨q)∨r" ..}
    moreover
    {assume "r"
      hence "(p∨q)∨r" ..}
    ultimately
    have "(p∨q)∨r"..}
  ultimately
  show "(p∨q)∨r" ..
qed
 
text {* --------------------------------------------------------------- 
  Ejercicio 32. Demostrar
     (p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
  ------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_32:
  assumes "(p ∨ q) ∨ r" 
  shows   "p ∨ (q ∨ r)"
using assms(1)
proof
  assume "p∨q"
  thus "p∨q∨r" 
    proof
    assume "p"
    thus "p∨q∨r" ..
    next
    assume "q"
    hence "q∨r" ..
    thus "p∨q∨r" ..
    qed
next
  assume "r"
  hence "q∨r" ..
  thus "p∨q∨r" ..
qed
 
text {* --------------------------------------------------------------- 
  Ejercicio 33. Demostrar
     p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)
  ------------------------------------------------------------------ *}
-- "Pedro"
lemma ejercicio_33a:
  assumes "p ∧ (q ∨ r)" 
  shows   "(p ∧ q) ∨ (p ∧ r)"
proof -
  have 1: "p" using assms ..
  have 2: "q∨r" using assms ..
  moreover
  {assume 3: "q"
    have "(p∧q)" using 1 3 ..
    hence "(p ∧ q) ∨ (p ∧ r)" ..}
  moreover
  {assume 4: "r"
    have "p∧r" using 1 4 ..
    hence "(p ∧ q) ∨ (p ∧ r)" ..}
  ultimately
  show "(p ∧ q) ∨ (p ∧ r)" ..
qed
 
 
text {* --------------------------------------------------------------- 
  Ejercicio 34. Demostrar
     (p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)
  ------------------------------------------------------------------ *}
 -- "Pedro Ros"
lemma ejercicio_34a:
  assumes "(p ∧ q) ∨ (p ∧ r)" 
  shows   "p ∧ (q ∨ r)"
proof -
  have 1: "(p ∧ q) ∨ (p ∧ r)" using assms by this
  moreover
  {assume "(p ∧ q)"
    hence "p" ..
    have "q" using `p ∧ q` ..
    hence "(q∨r)"..
    have "p∧(q∨r)" using `p``(q∨r)`..}
  moreover
  {assume "(p∧r)"
    hence "p" ..
    have "r" using `p ∧ r` ..
    hence "(q∨r)"..
    have "p∧(q∨r)" using `p``(q∨r)`..}
  ultimately
  show "p ∧ (q ∨ r)" ..
qed
 
text {* --------------------------------------------------------------- 
  Ejercicio 35. Demostrar
     p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r)
  ------------------------------------------------------------------ *}
-- "Pedro Ros"
lemma ejercicio_35a:
  assumes "p ∨ (q ∧ r)" 
  shows   "(p ∨ q) ∧ (p ∨ r)"
proof -
  have 1: "p ∨ (q ∧ r)" using assms by this
  moreover
  {assume "p"
    hence 2: "(p∨q)" ..
    have 3: "(p∨r)" using `p` ..
    have 4: "(p ∨ q) ∧ (p ∨ r)" using 2 3 ..}
  moreover
  {assume 5:"(q∧r)"
    hence 6: "q" ..
    have 7: "r" using 5 ..
    have 8: "p∨q" using 6 ..
    have 9: "p∨r" using 7 ..
    have "(p ∨ q) ∧ (p ∨ r)"using 8 9 ..}
  ultimately
  show "(p ∨ q) ∧ (p ∨ r)" ..
qed

text {* --------------------------------------------------------------- 
  Ejercicio 36. Demostrar
     (p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
  ------------------------------------------------------------------ *}

-- "Raúl Montes Pajuelo"

lemma ejercicio_36:
  assumes "(p ∨ q) ∧ (p ∨ r)"
  shows   "p ∨ (q ∧ r)"
proof -
  have "p∨q" using assms..
  moreover
    {assume "p"
     hence "p∨(q∧r)"..}
  moreover
    {assume "q"
     have "p∨r" using assms..
     moreover
     {assume "p"
      hence "p∨(q∧r)"..}
     moreover
     {assume "r"
      with `q` have "q∧r"..
      hence "p∨(q∧r)"..}
     ultimately have "p∨(q∧r)"..}
  ultimately show "p∨(q∧r)"..
qed

text {* --------------------------------------------------------------- 
  Ejercicio 37. Demostrar
     (p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
  ------------------------------------------------------------------ *}


--Erlinda Menendez Perez , Carmen Martinez Navarro




lemma ejercicio_37:
  assumes "(p ⟶ r) ∧ (q ⟶ r)" 
  shows   "p ∨ q ⟶ r"
proof (rule impI)
  assume 1: "p ∨ q"
  thus "r"
    proof (rule disjE)
      assume 2:"p"
         have 3: "p ⟶ r" using assms by (rule conjunct1)
         show "r" using 3 2 by (rule mp)
      next
      assume 5:"q"
         have 6: "q ⟶ r" using assms by (rule conjunct2)
         show "r" using 6 5 by (rule mp)
    qed
qed



text {* --------------------------------------------------------------- 
  Ejercicio 38. Demostrar
     p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
  ------------------------------------------------------------------ *}

-- "Raúl Montes Pajuelo"

lemma ejercicio_38:
  assumes "p ∨ q ⟶ r" 
  shows   "(p ⟶ r) ∧ (q ⟶ r)"
proof -
  {assume 1: "p"
    have 2:"p ∨ q" using 1 ..
    have 3: "r" using assms 2 ..} 
   hence 4: "p⟶r" ..
  {assume 5: "q"
    have 6: "p ∨ q" using 5 ..
    have 7: "r" using assms 6 ..}
  hence 8: "q⟶r" ..
  show "(p⟶r)∧(q⟶r)" using 4 8 ..
qed

section {* Negaciones *}

text {* --------------------------------------------------------------- 
  Ejercicio 39. Demostrar
     p ⊢ ¬¬p
  ------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_39:
  assumes "p"
  shows   "¬¬p"
proof -
show "¬¬p" using assms by (rule notnotI)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 40. Demostrar
     ¬p ⊢ p ⟶ q
  ------------------------------------------------------------------ *}

-- "Raúl Montes Pajuelo"

lemma ejercicio_40:
  assumes "¬p" 
  shows   "p ⟶ q"
proof (rule impI)
  {assume 1: "p"
    show "q" using assms 1 by (rule notE)}
qed

text {* --------------------------------------------------------------- 
  Ejercicio 41. Demostrar
     p ⟶ q ⊢ ¬q ⟶ ¬p
  ------------------------------------------------------------------ *}

-- "Raúl Montes Pajuelo"

lemma ejercicio_41:
  assumes "p ⟶ q"
  shows   "¬q ⟶ ¬p"
proof (rule impI)
  {assume "¬q"
   with assms show "¬p"  by (rule mt) }
qed

text {* --------------------------------------------------------------- 
  Ejercicio 42. Demostrar
     p∨q, ¬q ⊢ p
  ------------------------------------------------------------------ *}

-- "Raúl Montes Pajuelo"

lemma ejercicio_42:
  assumes "p∨q"
          "¬q" 
  shows   "p"
proof -
  note `p∨q`
  moreover
  {assume "p"
    hence "p" by this}
  moreover
  {assume "q"
    with assms (2) have "p" ..}
  ultimately show "p" ..
qed

text {* --------------------------------------------------------------- 
  Ejercicio 43. Demostrar
     p ∨ q, ¬p ⊢ q
  ------------------------------------------------------------------ *}

lemma ejercicio_43:
  assumes "p ∨ q"
          "¬p" 
  shows   "q"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 44. Demostrar
     p ∨ q ⊢ ¬(¬p ∧ ¬q)
  ------------------------------------------------------------------ *}

lemma ejercicio_44:
  assumes "p ∨ q" 
  shows   "¬(¬p ∧ ¬q)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 45. Demostrar
     p ∧ q ⊢ ¬(¬p ∨ ¬q)
  ------------------------------------------------------------------ *}

lemma ejercicio_45:
  assumes "p ∧ q" 
  shows   "¬(¬p ∨ ¬q)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 46. Demostrar
     ¬(p ∨ q) ⊢ ¬p ∧ ¬q
  ------------------------------------------------------------------ *}

lemma ejercicio_46:
  assumes "¬(p ∨ q)" 
  shows   "¬p ∧ ¬q"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 47. Demostrar
     ¬p ∧ ¬q ⊢ ¬(p ∨ q)
  ------------------------------------------------------------------ *}

lemma ejercicio_47:
  assumes "¬p ∧ ¬q" 
  shows   "¬(p ∨ q)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 48. Demostrar
     ¬p ∨ ¬q ⊢ ¬(p ∧ q)
  ------------------------------------------------------------------ *}

lemma ejercicio_48:
  assumes "¬p ∨ ¬q"
  shows   "¬(p ∧ q)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 49. Demostrar
     ⊢ ¬(p ∧ ¬p)
  ------------------------------------------------------------------ *}

lemma ejercicio_49:
  "¬(p ∧ ¬p)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 50. Demostrar
     p ∧ ¬p ⊢ q
  ------------------------------------------------------------------ *}

lemma ejercicio_50:
  assumes "p ∧ ¬p" 
  shows   "q"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 51. Demostrar
     ¬¬p ⊢ p
  ------------------------------------------------------------------ *}

lemma ejercicio_51:
  assumes "¬¬p"
  shows   "p"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 52. Demostrar
     ⊢ p ∨ ¬p
  ------------------------------------------------------------------ *}

lemma ejercicio_52:
  "p ∨ ¬p"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 53. Demostrar
     ⊢ ((p ⟶ q) ⟶ p) ⟶ p
  ------------------------------------------------------------------ *}

-- "Raúl montes Pajuelo"

lemma ejercicio_53:
  "((p ⟶ q) ⟶ p) ⟶ p"
proof (rule impI)
  assume "(p⟶q)⟶p"
  show "p"
  proof (rule ccontr)
    note `(p⟶q)⟶p`
    assume "¬p"
    with `(p⟶q)⟶p` have "¬(p⟶q)" by (rule mt)
    {assume "p"
     with `¬p` have "q" by (rule notE)}
    hence "p⟶q" by (rule impI)
    with `¬(p⟶q)` show False by (rule notE)
  qed
qed

text {* --------------------------------------------------------------- 
  Ejercicio 54. Demostrar
     ¬q ⟶ ¬p ⊢ p ⟶ q
  ------------------------------------------------------------------ *}

lemma ejercicio_54:
  assumes "¬q ⟶ ¬p"
  shows   "p ⟶ q"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 55. Demostrar
     ¬(¬p ∧ ¬q) ⊢ p ∨ q
  ------------------------------------------------------------------ *}

lemma ejercicio_55:
  assumes "¬(¬p ∧ ¬q)"
  shows   "p ∨ q"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 56. Demostrar
     ¬(¬p ∨ ¬q) ⊢ p ∧ q
  ------------------------------------------------------------------ *}

-- "Raúl Montes Pajuelo"

lemma ejercicio_56:
  assumes "¬(¬p ∨ ¬q)" 
  shows   "p ∧ q"
proof(rule conjI)
  show "p"
  proof(rule ccontr)
   {assume "¬p"
    hence "¬p∨¬q"..
    with assms show False..}
  qed
  show "q"
  proof(rule ccontr)
   {assume "¬q"
    hence "¬p∨¬q"..
    with assms show False..}
  qed
qed

text {* --------------------------------------------------------------- 
  Ejercicio 57. Demostrar
     ¬(p ∧ q) ⊢ ¬p ∨ ¬q
  ------------------------------------------------------------------ *}

-- "Raúl Montes Pajuelo"

lemma ejercicio_57:
  assumes "¬(p ∧ q)"
  shows   "¬p ∨ ¬q"
proof -
  have "¬p∨p"..
  moreover
   {assume "¬p"
    hence "¬p∨¬q"..}
  moreover
   {assume "p"
    have "¬q∨q"..
    moreover
    {assume "¬q"
     hence "¬p∨¬q"..}
    moreover
    {assume "q"
     with `p`have "p∧q"..
     with `¬(p∧q)` have "¬p∨¬q"..}
    ultimately have "¬p∨¬q"..}
  ultimately show "¬p∨¬q"..
qed

text {* --------------------------------------------------------------- 
  Ejercicio 58. Demostrar
     ⊢ (p ⟶ q) ∨ (q ⟶ p)
  ------------------------------------------------------------------ *}

-- "Raúl Montes Pajuelo"

lemma ejercicio_58:
  "(p ⟶ q) ∨ (q ⟶ p)"
proof -
  have  "¬p ∨ p" ..
  moreover
  {assume "¬p"
    {assume "p"
     with `¬p` have "q" ..}
   hence "p⟶q" ..
   hence "(p⟶q)∨(q⟶p)" ..}
  moreover
  {assume "p"
    {assume "q"
     note `p`}
   hence "q⟶p"..
   hence "(p⟶q)∨(q⟶p)"..}
  ultimately show "(p⟶q)∨(q⟶p)" ..
qed

end