Diferencia entre revisiones de «Relación 3»
De Lógica matemática y fundamentos (2012-13)
(No se muestran 91 ediciones intermedias de 12 usuarios) | |||
Línea 50: | Línea 50: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma | + | -- "Pedro G. Ros" |
− | assumes 1: "p | + | lemma ejercicio_1a: |
+ | assumes 1: "p ⟶ q" and | ||
2: "p" | 2: "p" | ||
shows "q" | shows "q" | ||
+ | proof - | ||
+ | show 3: "q" using 1 2 by (rule mp) | ||
+ | qed | ||
+ | -- "Isabel Duarte" | ||
+ | lemma ejercicio_1b: | ||
+ | assumes "p ⟶ q" | ||
+ | "p" | ||
+ | shows "q" | ||
proof - | proof - | ||
− | + | show "q" using assms(1,2) by (rule mp) | |
qed | qed | ||
+ | |||
+ | -- "Pedro G. Ros" | ||
+ | lemma ejercicio_1c: | ||
+ | assumes 1: "p ⟶ q" and | ||
+ | 2: "p" | ||
+ | shows "q" | ||
+ | using assms .. | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 63: | Línea 80: | ||
p ⟶ q, q ⟶ r, p ⊢ r | p ⟶ q, q ⟶ r, p ⊢ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma | + | |
− | assumes 1:"p | + | -- "Pedro G. Ros" |
− | 2:"q | + | lemma ejercicio_2a: |
+ | assumes 1:"p ⟶ q" and | ||
+ | 2:"q ⟶ r" and | ||
3:"p" | 3:"p" | ||
shows "r" | shows "r" | ||
Línea 73: | Línea 92: | ||
qed | qed | ||
+ | -- "Isabel Duarte" | ||
+ | lemma ejercicio_2b: | ||
+ | assumes "p ⟶ q" | ||
+ | "q ⟶ r" | ||
+ | "p" | ||
+ | shows "r" | ||
+ | proof - | ||
+ | have "q" using assms(1,3) .. | ||
+ | with `q ⟶ r` show "r" .. | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 3. Demostrar | Ejercicio 3. Demostrar | ||
p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r | p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
− | lemma | + | -- "Pedro G. Ros" |
− | assumes 1: "p | + | lemma ejercicio_3a: |
− | 2: "p | + | assumes 1: "p ⟶ (q ⟶ r)" and |
+ | 2: "p ⟶ q" and | ||
3: "p" | 3: "p" | ||
shows "r" | shows "r" | ||
proof - | proof - | ||
− | have 4: "q | + | have 4: "q ⟶ r" using 1 3 by (rule mp) |
have 5: "q" using 2 3 by (rule mp) | have 5: "q" using 2 3 by (rule mp) | ||
show 6: "r" using 4 5 by (rule mp) | show 6: "r" using 4 5 by (rule mp) | ||
qed | qed | ||
+ | |||
+ | -- "Isabel Duarte" | ||
+ | lemma ejercicio_3b: | ||
+ | assumes "p ⟶ (q ⟶ r)" | ||
+ | "p ⟶ q" | ||
+ | "p" | ||
+ | shows "r" | ||
+ | proof - | ||
+ | have "q ⟶ r" using assms(1,3) .. | ||
+ | have "q" using assms(2,3) .. | ||
+ | with `q ⟶ r` show "r" .. | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 94: | Línea 138: | ||
p ⟶ q, q ⟶ r ⊢ p ⟶ r | p ⟶ q, q ⟶ r ⊢ p ⟶ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Pedro G. Ros" | ||
+ | lemma ejercicio_4a: | ||
+ | assumes 1: "p ⟶ q" and | ||
+ | 2: "q ⟶ r" | ||
+ | shows "p ⟶ r" | ||
+ | proof - | ||
+ | {assume 3:"p" | ||
+ | have 4: "q" using 1 3 by (rule mp) | ||
+ | have 5: "r" using 2 4 by (rule mp)} | ||
+ | thus "p ⟶ r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_4d: | ||
+ | assumes "p ⟶ q" and | ||
+ | "q ⟶ r" | ||
+ | shows "p ⟶ r" | ||
+ | using assms by auto | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 111: | Línea 164: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma | + | -- "Isabel Duarte" |
− | assumes "p ⟶ (q ⟶ r)" | + | lemma ejercicio_5a: |
+ | assumes 1: "p ⟶ (q ⟶ r)" | ||
shows "q ⟶ (p ⟶ r)" | shows "q ⟶ (p ⟶ r)" | ||
− | + | proof - | |
+ | {assume 3: "q" | ||
+ | {assume 4: "p" | ||
+ | have "q ⟶ r" using 1 4 .. | ||
+ | hence 5: "r" using 3 ..} | ||
+ | hence 6: "p ⟶ r" by (rule impI)} | ||
+ | thus "q ⟶ (p ⟶ r)" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 121: | Línea 182: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma | + | -- "José Mª Contreras" |
− | assumes "p ⟶ (q ⟶ r)" | + | lemma ejercicio_6a: |
+ | assumes 1: "p ⟶ (q ⟶ r)" | ||
shows "(p ⟶ q) ⟶ (p ⟶ r)" | shows "(p ⟶ q) ⟶ (p ⟶ r)" | ||
− | + | proof - | |
+ | {assume 2: "p ⟶ q" | ||
+ | {assume 3: "p" | ||
+ | have 4: "q ⟶ r" using 1 3 .. | ||
+ | have 5: "q" using 2 3 .. | ||
+ | have "r" using 4 5 ..} | ||
+ | hence "p ⟶ r" by (rule impI)} | ||
+ | thus "(p ⟶ q) ⟶ (p ⟶ r)" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 131: | Línea 201: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | -- "Pedro G. Ros Reina" | ||
lemma ejercicio_7: | lemma ejercicio_7: | ||
assumes "p" | assumes "p" | ||
shows "q ⟶ p" | shows "q ⟶ p" | ||
− | + | proof - | |
+ | {assume 1: "q"} | ||
+ | show "q⟶ p" using assms(1) by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 141: | Línea 215: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | -- "Pedro G. Ros" | ||
lemma ejercicio_8: | lemma ejercicio_8: | ||
"p ⟶ (q ⟶ p)" | "p ⟶ (q ⟶ p)" | ||
− | + | proof - | |
+ | {assume 1: "p" | ||
+ | hence 2: "q ⟶ p" by (rule impI)} | ||
+ | thus "p ⟶q⟶p" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 149: | Línea 228: | ||
p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r) | p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | |||
+ | -- "Carmen Martinez Navarro, Erlinda Menendez Perez" | ||
+ | |||
lemma ejercicio_9: | lemma ejercicio_9: | ||
− | assumes "p ⟶ q" | + | assumes 1: "p ⟶ q" |
− | shows | + | shows "(q ⟶ r) ⟶ (p ⟶ r)" |
− | + | proof- | |
+ | {assume 2: "q ⟶ r" | ||
+ | {assume 3: "p" | ||
+ | have 4: "q" using 1 3 by (rule mp) | ||
+ | have 5: "r" using 2 4 by (rule mp)} | ||
+ | hence 6: "p ⟶ r" by (rule impI)} | ||
+ | thus "(q ⟶ r) ⟶ (p ⟶ r)" by (rule impI) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 159: | Línea 250: | ||
p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s)) | p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s)) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro G. Ros" | |
lemma ejercicio_10: | lemma ejercicio_10: | ||
assumes "p ⟶ (q ⟶ (r ⟶ s))" | assumes "p ⟶ (q ⟶ (r ⟶ s))" | ||
shows "r ⟶ (q ⟶ (p ⟶ s))" | shows "r ⟶ (q ⟶ (p ⟶ s))" | ||
− | + | proof | |
+ | assume "r" | ||
+ | show "q⟶ (p⟶ s)" | ||
+ | proof | ||
+ | assume "q" | ||
+ | show "p⟶ s" | ||
+ | proof | ||
+ | assume "p" | ||
+ | with assms have "q⟶ r⟶ s" .. | ||
+ | hence "r⟶ s" using `q` .. | ||
+ | thus "s" using `r`.. | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 169: | Línea 273: | ||
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r)) | ⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r)) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | -- "Pedro G. Ros" | ||
− | lemma | + | lemma ejercicio_11a: |
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | ||
− | + | proof | |
+ | assume 1: "p ⟶ (q ⟶ r)" | ||
+ | show 2: "(p ⟶ q) ⟶ (p ⟶ r)" | ||
+ | proof | ||
+ | assume 3: "p⟶ q" | ||
+ | show 4: "p⟶ r" | ||
+ | proof | ||
+ | assume 5: "p" | ||
+ | have 6: "q" using 3 5 by (rule mp) | ||
+ | have 7:"q⟶ r" using 1 5 by (rule mp) | ||
+ | show 8: "r" using 7 6 .. | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | |||
+ | -- "Reme Sillero" | ||
+ | |||
+ | lemma ejercicio_11b: | ||
+ | "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | ||
+ | proof (rule impI) | ||
+ | assume "p ⟶ (q ⟶ r)" | ||
+ | show "(p ⟶ q) ⟶ (p ⟶ r)" | ||
+ | proof (rule impI) | ||
+ | assume "p ⟶ q" | ||
+ | show "p ⟶ r" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | with `p ⟶ q` have "q" .. | ||
+ | have "q ⟶ r" using `p⟶ (q ⟶ r)` `p` .. | ||
+ | show "r" using `q ⟶ r` `q` .. | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 178: | Línea 317: | ||
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r) | (p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro Ros" | |
− | lemma | + | lemma ejercicio_12a: |
assumes "(p ⟶ q) ⟶ r" | assumes "(p ⟶ q) ⟶ r" | ||
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
− | + | proof - | |
+ | have 1: "(p⟶ q)⟶ r" using assms by this | ||
+ | {assume 2: "p" | ||
+ | {assume 3: "q" | ||
+ | {assume 4: "p" | ||
+ | have 5: "q" using 3 by this} | ||
+ | hence 6: "p⟶ q" .. | ||
+ | have 7: "r" using assms 6 ..} | ||
+ | hence 8: "q⟶ r" ..} | ||
+ | thus 9: "p⟶ (q⟶ r)" .. | ||
+ | qed | ||
+ | |||
section {* Conjunciones *} | section {* Conjunciones *} | ||
Línea 190: | Línea 340: | ||
p, q ⊢ p ∧ q | p, q ⊢ p ∧ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Pedro G. Ros Reina" | ||
lemma ejercicio_13: | lemma ejercicio_13: | ||
assumes 1:"p" and | assumes 1:"p" and | ||
2:"q" | 2:"q" | ||
− | shows "p | + | shows "p ∧ q" |
proof - | proof - | ||
− | show "p | + | show "p ∧ q" using 1 2 by (rule conjI) |
qed | qed | ||
+ | |||
+ | -- "Pedro G. Ros" | ||
+ | lemma ejercicio_13b: | ||
+ | assumes 1:"p" and | ||
+ | 2:"q" | ||
+ | shows "p ∧ q" | ||
+ | using assms .. | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 14. Demostrar | Ejercicio 14. Demostrar | ||
p ∧ q ⊢ p | p ∧ q ⊢ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro G. Ros Reina" | |
lemma ejercicio_14: | lemma ejercicio_14: | ||
− | assumes "p | + | assumes "p ∧ q" |
shows "p" | shows "p" | ||
proof - | proof - | ||
show "p" using assms by (rule conjunct1) | show "p" using assms by (rule conjunct1) | ||
qed | qed | ||
+ | |||
+ | -- "Pedro G. Ros Reina" | ||
+ | lemma ejercicio_14b: | ||
+ | assumes "p ∧ q" | ||
+ | shows "p" | ||
+ | using assms .. | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 15. Demostrar | Ejercicio 15. Demostrar | ||
p ∧ q ⊢ q | p ∧ q ⊢ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro G. Ros Reina" | |
lemma ejercicio_15: | lemma ejercicio_15: | ||
− | assumes "p | + | assumes "p ∧ q" |
shows "q" | shows "q" | ||
proof - | proof - | ||
show "q" using assms by (rule conjunct2) | show "q" using assms by (rule conjunct2) | ||
qed | qed | ||
+ | |||
+ | |||
+ | -- "Pedro G. Ros Reina" | ||
+ | lemma ejercicio_15b: | ||
+ | assumes "p ∧ q" | ||
+ | shows "q" | ||
+ | using assms .. | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 16. Demostrar | Ejercicio 16. Demostrar | ||
p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r | p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro G. Ros Reina" | |
lemma ejercicio_16: | lemma ejercicio_16: | ||
− | assumes "p | + | assumes "p ∧ (q ∧ r)" |
− | shows "(p | + | shows "(p ∧ q)∧ r" |
proof - | proof - | ||
have 1: "p" using assms by (rule conjunct1) | have 1: "p" using assms by (rule conjunct1) | ||
− | have 2: "(q | + | have 2: "(q ∧ r)" using assms by (rule conjunct2) |
have 3: "q" using 2 by (rule conjunct1) | have 3: "q" using 2 by (rule conjunct1) | ||
have 4: "r" using 2 by (rule conjunct2) | have 4: "r" using 2 by (rule conjunct2) | ||
− | have 5: "( | + | have 5: "(p∧q)" using 1 3 by (rule conjI) |
− | show 6: "( | + | show 6: "(p∧q) ∧ r" using 5 4 by (rule conjI) |
qed | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 17. Demostrar | Ejercicio 17. Demostrar | ||
(p ∧ q) ∧ r ⊢ p ∧ (q ∧ r) | (p ∧ q) ∧ r ⊢ p ∧ (q ∧ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro G. Ros Reina" | |
lemma ejercicio_17: | lemma ejercicio_17: | ||
− | assumes "( | + | assumes "(p∧ q) ∧ r" |
− | shows "p | + | shows "p ∧ (q∧ r)" |
proof - | proof - | ||
have 1: "r" using assms by (rule conjunct2) | have 1: "r" using assms by (rule conjunct2) | ||
− | have 2: "( | + | have 2: "(p∧q)" using assms by (rule conjunct1) |
have 3: "p" using 2 by (rule conjunct1) | have 3: "p" using 2 by (rule conjunct1) | ||
have 4: "q" using 2 by (rule conjunct2) | have 4: "q" using 2 by (rule conjunct2) | ||
− | have 5: "( | + | have 5: "(q∧r)" using 4 1 by (rule conjI) |
− | show 6: " | + | show 6: "p∧(q∧r)" using 3 5 by (rule conjI) |
qed | qed | ||
Línea 257: | Línea 433: | ||
p ∧ q ⊢ p ⟶ q | p ∧ q ⊢ p ⟶ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro G. Ros Reina" | |
lemma ejercicio_18: | lemma ejercicio_18: | ||
− | assumes "p | + | assumes "p ∧ q" |
− | shows "p | + | shows "p ⟶ q" |
proof - | proof - | ||
have 1: "q" using assms by (rule conjunct2) | have 1: "q" using assms by (rule conjunct2) | ||
− | show " | + | show "p⟶ q" using 1 by (rule impI) |
qed | qed | ||
+ | |||
+ | |||
+ | -- "Reme Sillero" | ||
+ | lemma ejercicio_18a: | ||
+ | assumes "p ∧ q" | ||
+ | shows "p ⟶ q" | ||
+ | proof | ||
+ | assume "p" | ||
+ | show "q" using assms .. | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 270: | Línea 456: | ||
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r | (p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Carmen Martinez Navarro , Erlinda Menendez Perez" | ||
+ | |||
+ | |||
lemma ejercicio_19: | lemma ejercicio_19: | ||
− | assumes "(p ⟶ q) ∧ (p ⟶ r)" | + | assumes 1: "(p ⟶ q) ∧ (p ⟶ r)" |
− | shows | + | shows "p ⟶ (q ∧ r)" |
− | + | proof (rule impI) | |
+ | assume 2: "p" | ||
+ | have 3: "p ⟶ q" using assms by (rule conjunct1) | ||
+ | have 4: "q" using 3 2 by (rule mp) | ||
+ | have 5: "p ⟶ r" using assms by (rule conjunct2) | ||
+ | have 6: "r" using 5 2 by (rule mp) | ||
+ | show "q ∧ r" using 4 6 by (rule conjI) | ||
+ | qed | ||
+ | |||
+ | |||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 280: | Línea 480: | ||
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r) | p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Jesús Horno Cobo" | ||
lemma ejercicio_20: | lemma ejercicio_20: | ||
+ | assumes 1:"p ⟶ q ∧ r" | ||
+ | shows "(p ⟶ q) ∧ (p ⟶ r)" | ||
+ | proof - | ||
+ | { assume 3: "p" | ||
+ | have 4: "q ∧ r" using 1 3 by (rule mp) | ||
+ | have 5: "q" using 4 by (rule conjunct1) } | ||
+ | hence 6: "p ⟶ q" by (rule impI) | ||
+ | { assume 7: "p" | ||
+ | have 8: "q ∧ r" using 1 7 by (rule mp) | ||
+ | have 9: "r" using 8 by (rule conjunct2) } | ||
+ | hence 10: "p ⟶ r" by (rule impI) | ||
+ | show "(p ⟶ q) ∧ (p ⟶ r)" using 6 10 by (rule conjI) | ||
+ | qed | ||
+ | |||
+ | |||
+ | |||
+ | -- "Antonio Jesús Molero" | ||
+ | lemma ejercicio_20a: | ||
assumes "p ⟶ q ∧ r" | assumes "p ⟶ q ∧ r" | ||
shows "(p ⟶ q) ∧ (p ⟶ r)" | shows "(p ⟶ q) ∧ (p ⟶ r)" | ||
− | + | proof (rule conjI) | |
+ | show "p ⟶ q" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | with `p ⟶ q ∧ r` have "q ∧ r" .. | ||
+ | thus "q" .. | ||
+ | qed | ||
+ | show "p ⟶ r" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | with `p ⟶ q ∧ r` have "q ∧ r" .. | ||
+ | thus "r" .. | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 291: | Línea 526: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma | + | -- "Pedro G. Ros" |
− | assumes "p ⟶ (q ⟶ r)" | + | lemma ejercicio_21a: |
+ | assumes 1:"p ⟶ (q ⟶ r)" | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
− | + | proof | |
+ | assume 2:"p∧q" | ||
+ | show "r" | ||
+ | proof - | ||
+ | have 3: "p" using 2 by (rule conjunct1) | ||
+ | have 4: "q" using 2 .. | ||
+ | have 5: "(q⟶ r)" using 1 3 .. | ||
+ | show 6: "r" using 5 4 .. | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 301: | Línea 546: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma | + | -- "Pedro G. Ros" |
+ | lemma ejercicio_22a: | ||
assumes "p ∧ q ⟶ r" | assumes "p ∧ q ⟶ r" | ||
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
− | + | proof | |
− | + | assume "p" | |
+ | show "q⟶ r" | ||
+ | proof | ||
+ | assume "q" | ||
+ | have "p∧q" using `p` `q` .. | ||
+ | show "r" using assms `p∧q`.. | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 23. Demostrar | Ejercicio 23. Demostrar | ||
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r | (p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro G. Ros" | |
− | lemma | + | lemma ejercicio_23a: |
− | assumes "(p ⟶ q) ⟶ r" | + | assumes 1:"(p ⟶ q) ⟶ r" |
− | shows "p ∧ q ⟶ r" | + | shows "p ∧ q ⟶ r" |
− | + | proof | |
+ | assume 2:"p∧q" | ||
+ | hence 3:"p" .. | ||
+ | have 4:"q" using 2 .. | ||
+ | hence 5: "p⟶ q" .. | ||
+ | show"r" using 1 5 by (rule mp) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 320: | Línea 579: | ||
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r | p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro Ros" | |
− | lemma | + | lemma ejercicio_24a: |
assumes "p ∧ (q ⟶ r)" | assumes "p ∧ (q ⟶ r)" | ||
shows "(p ⟶ q) ⟶ r" | shows "(p ⟶ q) ⟶ r" | ||
− | + | proof | |
+ | assume 0:"p⟶ q" | ||
+ | show "r" | ||
+ | proof - | ||
+ | have 1: "p" using assms .. | ||
+ | have 2: "q" using 0 1 .. | ||
+ | have 3: "q⟶ r" using assms .. | ||
+ | show 3: "r" using 3 2 .. | ||
+ | qed | ||
+ | qed | ||
section {* Disyunciones *} | section {* Disyunciones *} | ||
Línea 332: | Línea 600: | ||
p ⊢ p ∨ q | p ⊢ p ∨ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro G. Ros Reina" | |
lemma ejercicio_25: | lemma ejercicio_25: | ||
assumes "p" | assumes "p" | ||
− | shows "p | + | shows "p ∨ q" |
proof - | proof - | ||
− | show " | + | show "p∨q" using assms by (rule disjI1) |
qed | qed | ||
+ | |||
+ | -- "Pedro G. Ros Reina" | ||
+ | lemma ejercicio_25b: | ||
+ | assumes "p" | ||
+ | shows "p ∨ q" | ||
+ | using assms .. | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 26. Demostrar | Ejercicio 26. Demostrar | ||
q ⊢ p ∨ q | q ⊢ p ∨ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro G. Ros Reina" | |
lemma ejercicio_26: | lemma ejercicio_26: | ||
assumes "q" | assumes "q" | ||
− | shows "p | + | shows "p ∨ q" |
proof - | proof - | ||
− | show " | + | show "p∨q" using assms by (rule disjI2) |
qed | qed | ||
− | + | ||
+ | -- "Pedro G. Ros Reina" | ||
+ | lemma ejercicio_26b: | ||
+ | assumes "q" | ||
+ | shows "p ∨ q" | ||
+ | using assms .. | ||
+ | |||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 27. Demostrar | Ejercicio 27. Demostrar | ||
p ∨ q ⊢ q ∨ p | p ∨ q ⊢ q ∨ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro G. Ros Reina" | |
lemma ejercicio_27: | lemma ejercicio_27: | ||
− | assumes "p | + | assumes "p ∨ q" |
− | shows "q | + | shows "q ∨ p" |
proof - | proof - | ||
− | have "p | + | have "p ∨ q" using assms by this |
moreover | moreover | ||
{ assume 2: "p" | { assume 2: "p" | ||
− | have "q | + | have "q ∨ p" using 2 by (rule disjI2) } |
moreover | moreover | ||
{ assume 3: "q" | { assume 3: "q" | ||
− | have "q | + | have "q ∨ p" using 3 by (rule disjI1) } |
− | ultimately show "q | + | ultimately show "q ∨ p" by (rule disjE) |
qed | qed | ||
Línea 374: | Línea 656: | ||
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r | q ⟶ r ⊢ p ∨ q ⟶ p ∨ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro Ros" | |
− | lemma | + | lemma ejercicio_28a: |
assumes "q ⟶ r" | assumes "q ⟶ r" | ||
shows "p ∨ q ⟶ p ∨ r" | shows "p ∨ q ⟶ p ∨ r" | ||
− | + | proof | |
+ | assume 1: "p∨q" | ||
+ | moreover | ||
+ | {assume "p" | ||
+ | hence "p∨r" by (rule disjI1)} | ||
+ | moreover | ||
+ | {assume "q" | ||
+ | have "r" using assms `q`.. | ||
+ | hence "p∨r" ..} | ||
+ | ultimately | ||
+ | show "p∨r" .. | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 385: | Línea 678: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma | + | -- "Pedro Ros" |
+ | lemma ejercicio_29a: | ||
assumes "p ∨ p" | assumes "p ∨ p" | ||
shows "p" | shows "p" | ||
− | + | proof- | |
+ | have "p∨p" using assms by this | ||
+ | moreover | ||
+ | {assume "p" | ||
+ | hence "p" by this} | ||
+ | moreover | ||
+ | {assume "p" | ||
+ | hence "p" by this} | ||
+ | ultimately | ||
+ | show "p" .. | ||
+ | qed | ||
+ | |||
+ | -- "Pedro Ros" | ||
+ | lemma ejercicio_29b: | ||
+ | assumes "p ∨ p" | ||
+ | shows "p" | ||
+ | using assms .. | ||
+ | |||
+ | |||
+ | -- "Antonio Jesús Molero" | ||
+ | lemma ejercicio_29c: | ||
+ | assumes "p ∨ p" | ||
+ | shows "p" | ||
+ | using assms | ||
+ | proof (rule disjE) | ||
+ | assume "p" | ||
+ | thus "p" by this | ||
+ | next | ||
+ | assume "p" | ||
+ | thus "p" by this | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 394: | Línea 719: | ||
p ⊢ p ∨ p | p ⊢ p ∨ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | -- "Pedro Ros" | ||
+ | lemma ejercicio_30a: | ||
+ | assumes "p" | ||
+ | shows "p ∨ p" | ||
+ | proof - | ||
+ | show "p∨p" using assms .. | ||
+ | qed | ||
− | lemma | + | -- "Pedro Ros" |
+ | lemma ejercicio_30b: | ||
assumes "p" | assumes "p" | ||
shows "p ∨ p" | shows "p ∨ p" | ||
− | + | using assms .. | |
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 405: | Línea 738: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | lemma | + | -- "Pedro G. Ros" |
+ | lemma ejercicio_31a: | ||
assumes "p ∨ (q ∨ r)" | assumes "p ∨ (q ∨ r)" | ||
shows "(p ∨ q) ∨ r" | shows "(p ∨ q) ∨ r" | ||
− | + | proof - | |
− | + | have 1: "p ∨ (q ∨ r)" using assms by this | |
+ | moreover | ||
+ | {assume "p" | ||
+ | hence "(p∨q)" .. | ||
+ | hence "(p∨q)∨r" ..} | ||
+ | moreover | ||
+ | {assume "(q∨r)" | ||
+ | moreover | ||
+ | {assume "q" | ||
+ | hence "(p∨q)".. | ||
+ | hence "(p∨q)∨r" ..} | ||
+ | moreover | ||
+ | {assume "r" | ||
+ | hence "(p∨q)∨r" ..} | ||
+ | ultimately | ||
+ | have "(p∨q)∨r"..} | ||
+ | ultimately | ||
+ | show "(p∨q)∨r" .. | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 32. Demostrar | Ejercicio 32. Demostrar | ||
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r) | (p ∨ q) ∨ r ⊢ p ∨ (q ∨ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro G. Ros" | |
lemma ejercicio_32: | lemma ejercicio_32: | ||
assumes "(p ∨ q) ∨ r" | assumes "(p ∨ q) ∨ r" | ||
shows "p ∨ (q ∨ r)" | shows "p ∨ (q ∨ r)" | ||
− | + | using assms(1) | |
− | + | proof | |
+ | assume "p∨q" | ||
+ | thus "p∨q∨r" | ||
+ | proof | ||
+ | assume "p" | ||
+ | thus "p∨q∨r" .. | ||
+ | next | ||
+ | assume "q" | ||
+ | hence "q∨r" .. | ||
+ | thus "p∨q∨r" .. | ||
+ | qed | ||
+ | next | ||
+ | assume "r" | ||
+ | hence "q∨r" .. | ||
+ | thus "p∨q∨r" .. | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 33. Demostrar | Ejercicio 33. Demostrar | ||
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r) | p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro" | |
− | lemma | + | lemma ejercicio_33a: |
assumes "p ∧ (q ∨ r)" | assumes "p ∧ (q ∨ r)" | ||
shows "(p ∧ q) ∨ (p ∧ r)" | shows "(p ∧ q) ∨ (p ∧ r)" | ||
− | + | proof - | |
− | + | have 1: "p" using assms .. | |
+ | have 2: "q∨r" using assms .. | ||
+ | moreover | ||
+ | {assume 3: "q" | ||
+ | have "(p∧q)" using 1 3 .. | ||
+ | hence "(p ∧ q) ∨ (p ∧ r)" ..} | ||
+ | moreover | ||
+ | {assume 4: "r" | ||
+ | have "p∧r" using 1 4 .. | ||
+ | hence "(p ∧ q) ∨ (p ∧ r)" ..} | ||
+ | ultimately | ||
+ | show "(p ∧ q) ∨ (p ∧ r)" .. | ||
+ | qed | ||
+ | |||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 34. Demostrar | Ejercicio 34. Demostrar | ||
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r) | (p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro Ros" | |
− | lemma | + | lemma ejercicio_34a: |
assumes "(p ∧ q) ∨ (p ∧ r)" | assumes "(p ∧ q) ∨ (p ∧ r)" | ||
shows "p ∧ (q ∨ r)" | shows "p ∧ (q ∨ r)" | ||
− | + | proof - | |
− | + | have 1: "(p ∧ q) ∨ (p ∧ r)" using assms by this | |
+ | moreover | ||
+ | {assume "(p ∧ q)" | ||
+ | hence "p" .. | ||
+ | have "q" using `p ∧ q` .. | ||
+ | hence "(q∨r)".. | ||
+ | have "p∧(q∨r)" using `p``(q∨r)`..} | ||
+ | moreover | ||
+ | {assume "(p∧r)" | ||
+ | hence "p" .. | ||
+ | have "r" using `p ∧ r` .. | ||
+ | hence "(q∨r)".. | ||
+ | have "p∧(q∨r)" using `p``(q∨r)`..} | ||
+ | ultimately | ||
+ | show "p ∧ (q ∨ r)" .. | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 35. Demostrar | Ejercicio 35. Demostrar | ||
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r) | p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | -- "Pedro Ros" | |
− | lemma | + | lemma ejercicio_35a: |
assumes "p ∨ (q ∧ r)" | assumes "p ∨ (q ∧ r)" | ||
shows "(p ∨ q) ∧ (p ∨ r)" | shows "(p ∨ q) ∧ (p ∨ r)" | ||
− | + | proof - | |
+ | have 1: "p ∨ (q ∧ r)" using assms by this | ||
+ | moreover | ||
+ | {assume "p" | ||
+ | hence 2: "(p∨q)" .. | ||
+ | have 3: "(p∨r)" using `p` .. | ||
+ | have 4: "(p ∨ q) ∧ (p ∨ r)" using 2 3 ..} | ||
+ | moreover | ||
+ | {assume 5:"(q∧r)" | ||
+ | hence 6: "q" .. | ||
+ | have 7: "r" using 5 .. | ||
+ | have 8: "p∨q" using 6 .. | ||
+ | have 9: "p∨r" using 7 .. | ||
+ | have "(p ∨ q) ∧ (p ∨ r)"using 8 9 ..} | ||
+ | ultimately | ||
+ | show "(p ∨ q) ∧ (p ∨ r)" .. | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 454: | Línea 869: | ||
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r) | (p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_36: | lemma ejercicio_36: | ||
assumes "(p ∨ q) ∧ (p ∨ r)" | assumes "(p ∨ q) ∧ (p ∨ r)" | ||
shows "p ∨ (q ∧ r)" | shows "p ∨ (q ∧ r)" | ||
− | + | proof - | |
+ | have "p∨q" using assms.. | ||
+ | moreover | ||
+ | {assume "p" | ||
+ | hence "p∨(q∧r)"..} | ||
+ | moreover | ||
+ | {assume "q" | ||
+ | have "p∨r" using assms.. | ||
+ | moreover | ||
+ | {assume "p" | ||
+ | hence "p∨(q∧r)"..} | ||
+ | moreover | ||
+ | {assume "r" | ||
+ | with `q` have "q∧r".. | ||
+ | hence "p∨(q∧r)"..} | ||
+ | ultimately have "p∨(q∧r)"..} | ||
+ | ultimately show "p∨(q∧r)".. | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 464: | Línea 898: | ||
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r | (p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | |||
+ | -- "Erlinda Menendez Perez , Carmen Martinez Navarro" | ||
+ | |||
+ | |||
+ | |||
lemma ejercicio_37: | lemma ejercicio_37: | ||
assumes "(p ⟶ r) ∧ (q ⟶ r)" | assumes "(p ⟶ r) ∧ (q ⟶ r)" | ||
shows "p ∨ q ⟶ r" | shows "p ∨ q ⟶ r" | ||
− | + | proof (rule impI) | |
+ | assume 1: "p ∨ q" | ||
+ | thus "r" | ||
+ | proof (rule disjE) | ||
+ | assume 2:"p" | ||
+ | have 3: "p ⟶ r" using assms by (rule conjunct1) | ||
+ | show "r" using 3 2 by (rule mp) | ||
+ | next | ||
+ | assume 5:"q" | ||
+ | have 6: "q ⟶ r" using assms by (rule conjunct2) | ||
+ | show "r" using 6 5 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 474: | Línea 928: | ||
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r) | p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_38: | lemma ejercicio_38: | ||
assumes "p ∨ q ⟶ r" | assumes "p ∨ q ⟶ r" | ||
shows "(p ⟶ r) ∧ (q ⟶ r)" | shows "(p ⟶ r) ∧ (q ⟶ r)" | ||
− | + | proof - | |
+ | {assume 1: "p" | ||
+ | have 2:"p ∨ q" using 1 .. | ||
+ | have 3: "r" using assms 2 ..} | ||
+ | hence 4: "p⟶r" .. | ||
+ | {assume 5: "q" | ||
+ | have 6: "p ∨ q" using 5 .. | ||
+ | have 7: "r" using assms 6 ..} | ||
+ | hence 8: "q⟶r" .. | ||
+ | show "(p⟶r)∧(q⟶r)" using 4 8 .. | ||
+ | qed | ||
section {* Negaciones *} | section {* Negaciones *} | ||
Línea 486: | Línea 952: | ||
p ⊢ ¬¬p | p ⊢ ¬¬p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | -- "Pedro G. Ros Reina" | ||
lemma ejercicio_39: | lemma ejercicio_39: | ||
assumes "p" | assumes "p" | ||
− | shows " | + | shows "¬¬p" |
proof - | proof - | ||
− | show " | + | show "¬¬p" using assms by (rule notnotI) |
+ | qed | ||
+ | |||
+ | -- "Pedro G. Ros Reina" | ||
+ | lemma ejercicio_39b: | ||
+ | assumes "p" | ||
+ | shows "¬¬p" | ||
+ | using assms by (rule notnotI) | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
+ | |||
+ | lemma ejercicio_39c: | ||
+ | assumes "p" | ||
+ | shows "¬¬p" | ||
+ | proof (rule notI) | ||
+ | assume "¬p" | ||
+ | show False using `¬p` assms.. | ||
qed | qed | ||
Línea 497: | Línea 980: | ||
¬p ⊢ p ⟶ q | ¬p ⊢ p ⟶ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_40: | lemma ejercicio_40: | ||
assumes "¬p" | assumes "¬p" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | proof (rule impI) | |
+ | {assume 1: "p" | ||
+ | show "q" using assms 1 by (rule notE)} | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 507: | Línea 995: | ||
p ⟶ q ⊢ ¬q ⟶ ¬p | p ⟶ q ⊢ ¬q ⟶ ¬p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_41: | lemma ejercicio_41: | ||
assumes "p ⟶ q" | assumes "p ⟶ q" | ||
shows "¬q ⟶ ¬p" | shows "¬q ⟶ ¬p" | ||
− | + | proof (rule impI) | |
+ | {assume "¬q" | ||
+ | with assms show "¬p" by (rule mt) } | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 517: | Línea 1010: | ||
p∨q, ¬q ⊢ p | p∨q, ¬q ⊢ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_42: | lemma ejercicio_42: | ||
Línea 522: | Línea 1017: | ||
"¬q" | "¬q" | ||
shows "p" | shows "p" | ||
− | + | proof - | |
+ | note `p∨q` | ||
+ | moreover | ||
+ | {assume "p" | ||
+ | hence "p" by this} | ||
+ | moreover | ||
+ | {assume "q" | ||
+ | with assms (2) have "p" ..} | ||
+ | ultimately show "p" .. | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
− | Ejercicio | + | Ejercicio 43. Demostrar |
p ∨ q, ¬p ⊢ q | p ∨ q, ¬p ⊢ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_43: | lemma ejercicio_43: | ||
Línea 533: | Línea 1039: | ||
"¬p" | "¬p" | ||
shows "q" | shows "q" | ||
− | + | proof - | |
+ | note `p∨q` | ||
+ | moreover | ||
+ | {assume "p" | ||
+ | with assms (2) have False.. | ||
+ | hence "q"..} | ||
+ | moreover | ||
+ | {assume "q" | ||
+ | hence "q" .} | ||
+ | ultimately show "q".. | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
− | Ejercicio | + | Ejercicio 44. Demostrar |
p ∨ q ⊢ ¬(¬p ∧ ¬q) | p ∨ q ⊢ ¬(¬p ∧ ¬q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_44: | lemma ejercicio_44: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
shows "¬(¬p ∧ ¬q)" | shows "¬(¬p ∧ ¬q)" | ||
− | + | proof - | |
+ | {assume "¬p∧¬q" | ||
+ | note `p∨q` | ||
+ | moreover | ||
+ | {have "¬p" using `¬p∧¬q`by (rule conjunct1) | ||
+ | assume "p" | ||
+ | with `¬p`have False by (rule notE)} | ||
+ | moreover | ||
+ | {have "¬q" using `¬p∧¬q`by (rule conjunct2) | ||
+ | assume "q" | ||
+ | with `¬q`have False by (rule notE)} | ||
+ | ultimately have False by (rule disjE)} | ||
+ | thus "¬(¬p∧¬q)" by (rule notI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 549: | Línea 1080: | ||
p ∧ q ⊢ ¬(¬p ∨ ¬q) | p ∧ q ⊢ ¬(¬p ∨ ¬q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_45: | lemma ejercicio_45: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "¬(¬p ∨ ¬q)" | shows "¬(¬p ∨ ¬q)" | ||
− | + | proof (rule notI) | |
+ | assume "¬p∨¬q" | ||
+ | show False | ||
+ | proof (rule disjE) | ||
+ | {show "¬p∨¬q" using `¬p∨¬q`. | ||
+ | next | ||
+ | show "¬p⟹False" | ||
+ | proof - | ||
+ | {assume "¬p" | ||
+ | have "p" using assms.. | ||
+ | with `¬p`show False..} | ||
+ | qed | ||
+ | next | ||
+ | show "¬q⟹False" | ||
+ | proof - | ||
+ | {assume "¬q" | ||
+ | have "q" using assms.. | ||
+ | with `¬q`show False..} | ||
+ | qed} | ||
+ | qed | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 559: | Línea 1113: | ||
¬(p ∨ q) ⊢ ¬p ∧ ¬q | ¬(p ∨ q) ⊢ ¬p ∧ ¬q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_46: | lemma ejercicio_46: | ||
assumes "¬(p ∨ q)" | assumes "¬(p ∨ q)" | ||
shows "¬p ∧ ¬q" | shows "¬p ∧ ¬q" | ||
− | + | proof (rule conjI) | |
+ | show "¬p" | ||
+ | proof (rule notI) | ||
+ | {assume "p" | ||
+ | hence "p∨q".. | ||
+ | with assms show False..} | ||
+ | qed | ||
+ | next | ||
+ | show "¬q" | ||
+ | proof (rule notI) | ||
+ | {assume "q" | ||
+ | hence "p∨q".. | ||
+ | with assms show False..} | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 569: | Línea 1139: | ||
¬p ∧ ¬q ⊢ ¬(p ∨ q) | ¬p ∧ ¬q ⊢ ¬(p ∨ q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_47: | lemma ejercicio_47: | ||
assumes "¬p ∧ ¬q" | assumes "¬p ∧ ¬q" | ||
shows "¬(p ∨ q)" | shows "¬(p ∨ q)" | ||
− | + | proof (rule notI) | |
+ | assume "p∨q" | ||
+ | show False | ||
+ | proof (rule disjE) | ||
+ | {show "p∨q" using `p∨q` . | ||
+ | next | ||
+ | show "p⟹False" | ||
+ | proof - | ||
+ | {have "¬p" using assms.. | ||
+ | assume "p" | ||
+ | with `¬p`show False..} | ||
+ | qed | ||
+ | next | ||
+ | show "q⟹False" | ||
+ | proof - | ||
+ | {have "¬q" using assms.. | ||
+ | assume "q" | ||
+ | with `¬q`show False..} | ||
+ | qed} | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 579: | Línea 1171: | ||
¬p ∨ ¬q ⊢ ¬(p ∧ q) | ¬p ∨ ¬q ⊢ ¬(p ∧ q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_48: | lemma ejercicio_48: | ||
assumes "¬p ∨ ¬q" | assumes "¬p ∨ ¬q" | ||
shows "¬(p ∧ q)" | shows "¬(p ∧ q)" | ||
− | + | proof (rule disjE) | |
+ | show "¬p∨¬q" using assms . | ||
+ | next | ||
+ | show "¬p⟹¬(p∧q)" | ||
+ | proof - | ||
+ | {assume "¬p" | ||
+ | show "¬(p∧q)" | ||
+ | proof (rule notI) | ||
+ | {assume "p∧q" | ||
+ | hence "p".. | ||
+ | with `¬p`show False..} | ||
+ | qed} | ||
+ | qed | ||
+ | next | ||
+ | show "¬q⟹¬(p∧q)" | ||
+ | proof - | ||
+ | {assume "¬q" | ||
+ | show "¬(p∧q)" | ||
+ | proof (rule notI) | ||
+ | {assume "p∧q" | ||
+ | hence "q".. | ||
+ | with `¬q`show False..} | ||
+ | qed} | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | -- "Pedro Ros" | ||
+ | lemma ejercicio_48b: | ||
+ | assumes "¬p ∨ ¬q" | ||
+ | shows "¬(p ∧ q)" | ||
+ | proof (rule disjE) | ||
+ | show "¬p ∨ ¬q" using assms . | ||
+ | next | ||
+ | assume 1: "¬p" | ||
+ | show "¬(p∧q)" | ||
+ | proof | ||
+ | assume "p∧q" | ||
+ | hence 2: "p" .. | ||
+ | show "False" using 1 2 .. | ||
+ | qed | ||
+ | next | ||
+ | assume 1: "¬q" | ||
+ | show "¬(p∧q)" | ||
+ | proof | ||
+ | assume "p∧q" | ||
+ | hence 2: "q" .. | ||
+ | show "False" using 1 2 .. | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 589: | Línea 1231: | ||
⊢ ¬(p ∧ ¬p) | ⊢ ¬(p ∧ ¬p) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_49: | lemma ejercicio_49: | ||
"¬(p ∧ ¬p)" | "¬(p ∧ ¬p)" | ||
− | + | proof (rule notI) | |
+ | assume "p∧¬p" | ||
+ | hence "¬p".. | ||
+ | have "p" using `p∧¬p`.. | ||
+ | with `¬p`show False.. | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 598: | Línea 1247: | ||
p ∧ ¬p ⊢ q | p ∧ ¬p ⊢ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_50: | lemma ejercicio_50: | ||
assumes "p ∧ ¬p" | assumes "p ∧ ¬p" | ||
shows "q" | shows "q" | ||
− | + | proof (rule notE) | |
+ | show "p" using assms .. | ||
+ | show "¬p" using assms .. | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 608: | Línea 1262: | ||
¬¬p ⊢ p | ¬¬p ⊢ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_51: | lemma ejercicio_51: | ||
assumes "¬¬p" | assumes "¬¬p" | ||
shows "p" | shows "p" | ||
− | + | proof (rule ccontr) | |
+ | assume "¬p" | ||
+ | with `¬¬p` show False.. | ||
+ | qed | ||
+ | |||
+ | -- "Pedro Ros" | ||
+ | lemma ejercicio_51b: | ||
+ | assumes "¬¬p" | ||
+ | shows "p" | ||
+ | using assms by (rule notnotD) | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 618: | Línea 1283: | ||
⊢ p ∨ ¬p | ⊢ p ∨ ¬p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_52: | lemma ejercicio_52: | ||
"p ∨ ¬p" | "p ∨ ¬p" | ||
− | + | proof (rule ccontr) | |
+ | {assume "¬(p∨¬p)" | ||
+ | have "p" | ||
+ | proof (rule ccontr) | ||
+ | {assume "¬p" | ||
+ | hence "p∨¬p".. | ||
+ | with `¬(p∨¬p)` show False..} | ||
+ | qed | ||
+ | hence "p∨¬p".. | ||
+ | with `¬(p∨¬p)` show False..} | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 627: | Línea 1304: | ||
⊢ ((p ⟶ q) ⟶ p) ⟶ p | ⊢ ((p ⟶ q) ⟶ p) ⟶ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_53: | lemma ejercicio_53: | ||
"((p ⟶ q) ⟶ p) ⟶ p" | "((p ⟶ q) ⟶ p) ⟶ p" | ||
− | + | proof (rule impI) | |
+ | assume "(p⟶q)⟶p" | ||
+ | show "p" | ||
+ | proof (rule ccontr) | ||
+ | note `(p⟶q)⟶p` | ||
+ | assume "¬p" | ||
+ | with `(p⟶q)⟶p` have "¬(p⟶q)" by (rule mt) | ||
+ | {assume "p" | ||
+ | with `¬p` have "q" by (rule notE)} | ||
+ | hence "p⟶q" by (rule impI) | ||
+ | with `¬(p⟶q)` show False by (rule notE) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 636: | Línea 1327: | ||
¬q ⟶ ¬p ⊢ p ⟶ q | ¬q ⟶ ¬p ⊢ p ⟶ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_54: | lemma ejercicio_54: | ||
assumes "¬q ⟶ ¬p" | assumes "¬q ⟶ ¬p" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | proof (rule impI) | |
+ | {assume "p" | ||
+ | hence "¬¬p" by (rule notnotI) | ||
+ | with `¬q⟶¬p` have "¬¬q" by (rule mt) | ||
+ | show "q" | ||
+ | proof (rule ccontr) | ||
+ | {assume "¬q" | ||
+ | with `¬¬q` show False..} | ||
+ | qed} | ||
+ | qed | ||
+ | |||
+ | -- "Pedro Ros" | ||
+ | lemma ejercicio_54b: | ||
+ | assumes "¬q ⟶ ¬p" | ||
+ | shows "p ⟶ q" | ||
+ | proof | ||
+ | assume "p" | ||
+ | hence "¬¬p" by (rule notnotI) | ||
+ | with assms have "¬¬q" by (rule mt) | ||
+ | thus q by (rule notnotD) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 646: | Línea 1360: | ||
¬(¬p ∧ ¬q) ⊢ p ∨ q | ¬(¬p ∧ ¬q) ⊢ p ∨ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_55: | lemma ejercicio_55: | ||
assumes "¬(¬p ∧ ¬q)" | assumes "¬(¬p ∧ ¬q)" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | proof (rule disjE) | |
+ | show "¬p∨p".. | ||
+ | show "¬p⟹p∨q" | ||
+ | proof - | ||
+ | {assume "¬p" | ||
+ | have "q" | ||
+ | proof (rule ccontr) | ||
+ | {assume "¬q" | ||
+ | with `¬p` have "¬p∧¬q".. | ||
+ | with assms show False..} | ||
+ | qed | ||
+ | then show "p∨q"..} | ||
+ | qed | ||
+ | show "p⟹p∨q" | ||
+ | proof - | ||
+ | {assume "p" | ||
+ | then show "p∨q"..} | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | -- "Pedro Ros" | ||
+ | lemma ejercicio_55b: | ||
+ | assumes "¬(¬p ∧ ¬q)" | ||
+ | shows "p ∨ q" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬(p ∨ q)" | ||
+ | hence " ¬p ∧ ¬q" by (rule ejercicio_46) | ||
+ | with assms show "False" .. | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 656: | Línea 1400: | ||
¬(¬p ∨ ¬q) ⊢ p ∧ q | ¬(¬p ∨ ¬q) ⊢ p ∧ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_56: | lemma ejercicio_56: | ||
assumes "¬(¬p ∨ ¬q)" | assumes "¬(¬p ∨ ¬q)" | ||
shows "p ∧ q" | shows "p ∧ q" | ||
− | + | proof(rule conjI) | |
+ | show "p" | ||
+ | proof(rule ccontr) | ||
+ | {assume "¬p" | ||
+ | hence "¬p∨¬q".. | ||
+ | with assms show False..} | ||
+ | qed | ||
+ | show "q" | ||
+ | proof(rule ccontr) | ||
+ | {assume "¬q" | ||
+ | hence "¬p∨¬q".. | ||
+ | with assms show False..} | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 666: | Línea 1425: | ||
¬(p ∧ q) ⊢ ¬p ∨ ¬q | ¬(p ∧ q) ⊢ ¬p ∨ ¬q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_57: | lemma ejercicio_57: | ||
assumes "¬(p ∧ q)" | assumes "¬(p ∧ q)" | ||
shows "¬p ∨ ¬q" | shows "¬p ∨ ¬q" | ||
− | + | proof - | |
+ | have "¬p∨p".. | ||
+ | moreover | ||
+ | {assume "¬p" | ||
+ | hence "¬p∨¬q"..} | ||
+ | moreover | ||
+ | {assume "p" | ||
+ | have "¬q∨q".. | ||
+ | moreover | ||
+ | {assume "¬q" | ||
+ | hence "¬p∨¬q"..} | ||
+ | moreover | ||
+ | {assume "q" | ||
+ | with `p`have "p∧q".. | ||
+ | with `¬(p∧q)` have "¬p∨¬q"..} | ||
+ | ultimately have "¬p∨¬q"..} | ||
+ | ultimately show "¬p∨¬q".. | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 676: | Línea 1454: | ||
⊢ (p ⟶ q) ∨ (q ⟶ p) | ⊢ (p ⟶ q) ∨ (q ⟶ p) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
lemma ejercicio_58: | lemma ejercicio_58: | ||
"(p ⟶ q) ∨ (q ⟶ p)" | "(p ⟶ q) ∨ (q ⟶ p)" | ||
− | + | proof - | |
+ | have "¬p ∨ p" .. | ||
+ | moreover | ||
+ | {assume "¬p" | ||
+ | {assume "p" | ||
+ | with `¬p` have "q" ..} | ||
+ | hence "p⟶q" .. | ||
+ | hence "(p⟶q)∨(q⟶p)" ..} | ||
+ | moreover | ||
+ | {assume "p" | ||
+ | {assume "q" | ||
+ | note `p`} | ||
+ | hence "q⟶p".. | ||
+ | hence "(p⟶q)∨(q⟶p)"..} | ||
+ | ultimately show "(p⟶q)∨(q⟶p)" .. | ||
+ | qed | ||
+ | |||
+ | -- "Raúl Montes Pajuelo: Voy a añadir algunos ejercicios de examen más. Creo que es interesante tenerlos aquí resueltos" | ||
+ | |||
+ | text {* --------------------------------------------------------------- | ||
+ | Ejercicio 59: Examen de Septiembre del 2006. Demostrar | ||
+ | (p ⟶ r) ∨ (q ⟶ s) ⊢ (p ∧ q) ⟶ (r ∨ s) | ||
+ | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
+ | |||
+ | lemma ejercicio_59: | ||
+ | assumes "(p ⟶ r) ∨ (q ⟶ s)" | ||
+ | shows "(p ∧ q) ⟶ (r ∨ s)" | ||
+ | proof | ||
+ | assume "p ∧ q" | ||
+ | show "r ∨ s" | ||
+ | proof (rule disjE) | ||
+ | show "(p ⟶ r) ∨ (q ⟶ s)" using assms. | ||
+ | next | ||
+ | show "p ⟶ r ⟹ r ∨ s" | ||
+ | proof - | ||
+ | assume "p ⟶ r" | ||
+ | have "p" using `p ∧ q`.. | ||
+ | with `p ⟶ r`have "r".. | ||
+ | thus "r ∨ s".. | ||
+ | qed | ||
+ | next | ||
+ | show "q ⟶ s ⟹ (r ∨ s)" | ||
+ | proof - | ||
+ | assume "q ⟶ s" | ||
+ | have "q" using `p ∧ q`.. | ||
+ | with `q ⟶ s`have "s".. | ||
+ | thus "r ∨ s".. | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | text {* --------------------------------------------------------------- | ||
+ | Ejercicio 60: Examen de Junio del 2005. Demostrar | ||
+ | p ∧ ¬(q ⟶ r) ⊢ (p ∧ q) ∧ ¬r | ||
+ | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
+ | |||
+ | lemma ejercicio_60: | ||
+ | assumes "p ∧ ¬(q ⟶ r)" | ||
+ | shows "(p ∧ q) ∧ ¬r" | ||
+ | proof (rule conjI) | ||
+ | have "p" using assms.. | ||
+ | have "¬(q ⟶ r)" using assms.. | ||
+ | have "q" | ||
+ | proof (rule ccontr) | ||
+ | assume "¬q" | ||
+ | have "q ⟶ r" | ||
+ | proof | ||
+ | assume "q" | ||
+ | with `¬q` have False.. | ||
+ | thus "r".. | ||
+ | qed | ||
+ | with `¬(q ⟶ r)` show False.. | ||
+ | qed | ||
+ | with `p` show "p ∧ q".. | ||
+ | show "¬r" | ||
+ | proof (rule notI) | ||
+ | assume "r" | ||
+ | have "q ⟶ r" | ||
+ | proof | ||
+ | assume "q" | ||
+ | show "r" using `r`. | ||
+ | qed | ||
+ | with `¬(q ⟶ r)`show False.. | ||
+ | qed | ||
+ | qed | ||
+ | |||
+ | text {* --------------------------------------------------------------- | ||
+ | Ejercicio 61: Examen de Diciembre del 2005. Demostrar | ||
+ | ⊢(p ⟶ ¬q) ∧ (p ⟶ ¬r)⟶(p ⟶ ¬(q ∨ r)) | ||
+ | ------------------------------------------------------------------ *} | ||
+ | |||
+ | -- "Raúl Montes Pajuelo" | ||
+ | |||
+ | lemma ejercicio_61: | ||
+ | "(p ⟶ ¬q) ∧ (p ⟶ ¬r)⟶(p ⟶ ¬(q ∨ r))" | ||
+ | proof (rule impI) | ||
+ | assume "(p ⟶ ¬q) ∧ (p ⟶ ¬r)" | ||
+ | show "(p ⟶ ¬(q ∨ r))" | ||
+ | proof (rule impI) | ||
+ | assume "p" | ||
+ | show "¬(q ∨ r)" | ||
+ | proof (rule notI) | ||
+ | assume "q ∨ r" | ||
+ | thus False | ||
+ | proof | ||
+ | assume "q" | ||
+ | hence "¬¬q" by (rule notnotI) | ||
+ | have "p ⟶ ¬q" using `(p ⟶ ¬q) ∧ (p ⟶ ¬r)`.. | ||
+ | have "¬p" using `p ⟶ ¬q` `¬¬q` by (rule mt) | ||
+ | show False using `¬p` `p`.. | ||
+ | next | ||
+ | assume "r" | ||
+ | hence "¬¬r" by (rule notnotI) | ||
+ | have "p ⟶ ¬r" using `(p ⟶ ¬q) ∧ (p ⟶ ¬r)`.. | ||
+ | have "¬p" using `p ⟶ ¬r` `¬¬r` by (rule mt) | ||
+ | show False using `¬p` `p`.. | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
+ | qed | ||
end | end | ||
</source> | </source> |
Revisión actual del 20:10 20 mar 2013
header {* R3: Deducción natural proposicional *}
theory R3
imports Main
begin
text {*
---------------------------------------------------------------------
El objetivo de esta relación es demostrar cada uno de los ejercicios
usando sólo las reglas básicas de deducción natural de la lógica
proposicional (sin usar el método auto).
Las reglas básicas de la deducción natural son las siguientes:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· notnotI: P ⟹ ¬¬ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· mt: ⟦F ⟶ G; ¬G⟧ ⟹ ¬F
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
---------------------------------------------------------------------
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación. *}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
section {* Implicaciones *}
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
p ⟶ q, p ⊢ q
------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_1a:
assumes 1: "p ⟶ q" and
2: "p"
shows "q"
proof -
show 3: "q" using 1 2 by (rule mp)
qed
-- "Isabel Duarte"
lemma ejercicio_1b:
assumes "p ⟶ q"
"p"
shows "q"
proof -
show "q" using assms(1,2) by (rule mp)
qed
-- "Pedro G. Ros"
lemma ejercicio_1c:
assumes 1: "p ⟶ q" and
2: "p"
shows "q"
using assms ..
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
p ⟶ q, q ⟶ r, p ⊢ r
------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_2a:
assumes 1:"p ⟶ q" and
2:"q ⟶ r" and
3:"p"
shows "r"
proof -
have 4: "q" using 1 3 by (rule mp)
show 5: "r" using 2 4 by (rule mp)
qed
-- "Isabel Duarte"
lemma ejercicio_2b:
assumes "p ⟶ q"
"q ⟶ r"
"p"
shows "r"
proof -
have "q" using assms(1,3) ..
with `q ⟶ r` show "r" ..
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_3a:
assumes 1: "p ⟶ (q ⟶ r)" and
2: "p ⟶ q" and
3: "p"
shows "r"
proof -
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "q" using 2 3 by (rule mp)
show 6: "r" using 4 5 by (rule mp)
qed
-- "Isabel Duarte"
lemma ejercicio_3b:
assumes "p ⟶ (q ⟶ r)"
"p ⟶ q"
"p"
shows "r"
proof -
have "q ⟶ r" using assms(1,3) ..
have "q" using assms(2,3) ..
with `q ⟶ r` show "r" ..
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
p ⟶ q, q ⟶ r ⊢ p ⟶ r
------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_4a:
assumes 1: "p ⟶ q" and
2: "q ⟶ r"
shows "p ⟶ r"
proof -
{assume 3:"p"
have 4: "q" using 1 3 by (rule mp)
have 5: "r" using 2 4 by (rule mp)}
thus "p ⟶ r" by (rule impI)
qed
lemma ejercicio_4d:
assumes "p ⟶ q" and
"q ⟶ r"
shows "p ⟶ r"
using assms by auto
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
-- "Isabel Duarte"
lemma ejercicio_5a:
assumes 1: "p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
proof -
{assume 3: "q"
{assume 4: "p"
have "q ⟶ r" using 1 4 ..
hence 5: "r" using 3 ..}
hence 6: "p ⟶ r" by (rule impI)}
thus "q ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
-- "José Mª Contreras"
lemma ejercicio_6a:
assumes 1: "p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
proof -
{assume 2: "p ⟶ q"
{assume 3: "p"
have 4: "q ⟶ r" using 1 3 ..
have 5: "q" using 2 3 ..
have "r" using 4 5 ..}
hence "p ⟶ r" by (rule impI)}
thus "(p ⟶ q) ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
p ⊢ q ⟶ p
------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_7:
assumes "p"
shows "q ⟶ p"
proof -
{assume 1: "q"}
show "q⟶ p" using assms(1) by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
⊢ p ⟶ (q ⟶ p)
------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_8:
"p ⟶ (q ⟶ p)"
proof -
{assume 1: "p"
hence 2: "q ⟶ p" by (rule impI)}
thus "p ⟶q⟶p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
-- "Carmen Martinez Navarro, Erlinda Menendez Perez"
lemma ejercicio_9:
assumes 1: "p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
proof-
{assume 2: "q ⟶ r"
{assume 3: "p"
have 4: "q" using 1 3 by (rule mp)
have 5: "r" using 2 4 by (rule mp)}
hence 6: "p ⟶ r" by (rule impI)}
thus "(q ⟶ r) ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s))
------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_10:
assumes "p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
proof
assume "r"
show "q⟶ (p⟶ s)"
proof
assume "q"
show "p⟶ s"
proof
assume "p"
with assms have "q⟶ r⟶ s" ..
hence "r⟶ s" using `q` ..
thus "s" using `r`..
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_11a:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof
assume 1: "p ⟶ (q ⟶ r)"
show 2: "(p ⟶ q) ⟶ (p ⟶ r)"
proof
assume 3: "p⟶ q"
show 4: "p⟶ r"
proof
assume 5: "p"
have 6: "q" using 3 5 by (rule mp)
have 7:"q⟶ r" using 1 5 by (rule mp)
show 8: "r" using 7 6 ..
qed
qed
qed
-- "Reme Sillero"
lemma ejercicio_11b:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
proof (rule impI)
assume "p ⟶ (q ⟶ r)"
show "(p ⟶ q) ⟶ (p ⟶ r)"
proof (rule impI)
assume "p ⟶ q"
show "p ⟶ r"
proof (rule impI)
assume "p"
with `p ⟶ q` have "q" ..
have "q ⟶ r" using `p⟶ (q ⟶ r)` `p` ..
show "r" using `q ⟶ r` `q` ..
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
-- "Pedro Ros"
lemma ejercicio_12a:
assumes "(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof -
have 1: "(p⟶ q)⟶ r" using assms by this
{assume 2: "p"
{assume 3: "q"
{assume 4: "p"
have 5: "q" using 3 by this}
hence 6: "p⟶ q" ..
have 7: "r" using assms 6 ..}
hence 8: "q⟶ r" ..}
thus 9: "p⟶ (q⟶ r)" ..
qed
section {* Conjunciones *}
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
p, q ⊢ p ∧ q
------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_13:
assumes 1:"p" and
2:"q"
shows "p ∧ q"
proof -
show "p ∧ q" using 1 2 by (rule conjI)
qed
-- "Pedro G. Ros"
lemma ejercicio_13b:
assumes 1:"p" and
2:"q"
shows "p ∧ q"
using assms ..
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
p ∧ q ⊢ p
------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_14:
assumes "p ∧ q"
shows "p"
proof -
show "p" using assms by (rule conjunct1)
qed
-- "Pedro G. Ros Reina"
lemma ejercicio_14b:
assumes "p ∧ q"
shows "p"
using assms ..
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
p ∧ q ⊢ q
------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_15:
assumes "p ∧ q"
shows "q"
proof -
show "q" using assms by (rule conjunct2)
qed
-- "Pedro G. Ros Reina"
lemma ejercicio_15b:
assumes "p ∧ q"
shows "q"
using assms ..
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r
------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_16:
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q)∧ r"
proof -
have 1: "p" using assms by (rule conjunct1)
have 2: "(q ∧ r)" using assms by (rule conjunct2)
have 3: "q" using 2 by (rule conjunct1)
have 4: "r" using 2 by (rule conjunct2)
have 5: "(p∧q)" using 1 3 by (rule conjI)
show 6: "(p∧q) ∧ r" using 5 4 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
(p ∧ q) ∧ r ⊢ p ∧ (q ∧ r)
------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_17:
assumes "(p∧ q) ∧ r"
shows "p ∧ (q∧ r)"
proof -
have 1: "r" using assms by (rule conjunct2)
have 2: "(p∧q)" using assms by (rule conjunct1)
have 3: "p" using 2 by (rule conjunct1)
have 4: "q" using 2 by (rule conjunct2)
have 5: "(q∧r)" using 4 1 by (rule conjI)
show 6: "p∧(q∧r)" using 3 5 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
p ∧ q ⊢ p ⟶ q
------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_18:
assumes "p ∧ q"
shows "p ⟶ q"
proof -
have 1: "q" using assms by (rule conjunct2)
show "p⟶ q" using 1 by (rule impI)
qed
-- "Reme Sillero"
lemma ejercicio_18a:
assumes "p ∧ q"
shows "p ⟶ q"
proof
assume "p"
show "q" using assms ..
qed
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r
------------------------------------------------------------------ *}
-- "Carmen Martinez Navarro , Erlinda Menendez Perez"
lemma ejercicio_19:
assumes 1: "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ (q ∧ r)"
proof (rule impI)
assume 2: "p"
have 3: "p ⟶ q" using assms by (rule conjunct1)
have 4: "q" using 3 2 by (rule mp)
have 5: "p ⟶ r" using assms by (rule conjunct2)
have 6: "r" using 5 2 by (rule mp)
show "q ∧ r" using 4 6 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
------------------------------------------------------------------ *}
-- "Jesús Horno Cobo"
lemma ejercicio_20:
assumes 1:"p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof -
{ assume 3: "p"
have 4: "q ∧ r" using 1 3 by (rule mp)
have 5: "q" using 4 by (rule conjunct1) }
hence 6: "p ⟶ q" by (rule impI)
{ assume 7: "p"
have 8: "q ∧ r" using 1 7 by (rule mp)
have 9: "r" using 8 by (rule conjunct2) }
hence 10: "p ⟶ r" by (rule impI)
show "(p ⟶ q) ∧ (p ⟶ r)" using 6 10 by (rule conjI)
qed
-- "Antonio Jesús Molero"
lemma ejercicio_20a:
assumes "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
proof (rule conjI)
show "p ⟶ q"
proof (rule impI)
assume "p"
with `p ⟶ q ∧ r` have "q ∧ r" ..
thus "q" ..
qed
show "p ⟶ r"
proof (rule impI)
assume "p"
with `p ⟶ q ∧ r` have "q ∧ r" ..
thus "r" ..
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_21a:
assumes 1:"p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
proof
assume 2:"p∧q"
show "r"
proof -
have 3: "p" using 2 by (rule conjunct1)
have 4: "q" using 2 ..
have 5: "(q⟶ r)" using 1 3 ..
show 6: "r" using 5 4 ..
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_22a:
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
proof
assume "p"
show "q⟶ r"
proof
assume "q"
have "p∧q" using `p` `q` ..
show "r" using assms `p∧q`..
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_23a:
assumes 1:"(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
proof
assume 2:"p∧q"
hence 3:"p" ..
have 4:"q" using 2 ..
hence 5: "p⟶ q" ..
show"r" using 1 5 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
------------------------------------------------------------------ *}
-- "Pedro Ros"
lemma ejercicio_24a:
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
proof
assume 0:"p⟶ q"
show "r"
proof -
have 1: "p" using assms ..
have 2: "q" using 0 1 ..
have 3: "q⟶ r" using assms ..
show 3: "r" using 3 2 ..
qed
qed
section {* Disyunciones *}
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
p ⊢ p ∨ q
------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_25:
assumes "p"
shows "p ∨ q"
proof -
show "p∨q" using assms by (rule disjI1)
qed
-- "Pedro G. Ros Reina"
lemma ejercicio_25b:
assumes "p"
shows "p ∨ q"
using assms ..
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
q ⊢ p ∨ q
------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_26:
assumes "q"
shows "p ∨ q"
proof -
show "p∨q" using assms by (rule disjI2)
qed
-- "Pedro G. Ros Reina"
lemma ejercicio_26b:
assumes "q"
shows "p ∨ q"
using assms ..
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar
p ∨ q ⊢ q ∨ p
------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_27:
assumes "p ∨ q"
shows "q ∨ p"
proof -
have "p ∨ q" using assms by this
moreover
{ assume 2: "p"
have "q ∨ p" using 2 by (rule disjI2) }
moreover
{ assume 3: "q"
have "q ∨ p" using 3 by (rule disjI1) }
ultimately show "q ∨ p" by (rule disjE)
qed
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
------------------------------------------------------------------ *}
-- "Pedro Ros"
lemma ejercicio_28a:
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
proof
assume 1: "p∨q"
moreover
{assume "p"
hence "p∨r" by (rule disjI1)}
moreover
{assume "q"
have "r" using assms `q`..
hence "p∨r" ..}
ultimately
show "p∨r" ..
qed
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar
p ∨ p ⊢ p
------------------------------------------------------------------ *}
-- "Pedro Ros"
lemma ejercicio_29a:
assumes "p ∨ p"
shows "p"
proof-
have "p∨p" using assms by this
moreover
{assume "p"
hence "p" by this}
moreover
{assume "p"
hence "p" by this}
ultimately
show "p" ..
qed
-- "Pedro Ros"
lemma ejercicio_29b:
assumes "p ∨ p"
shows "p"
using assms ..
-- "Antonio Jesús Molero"
lemma ejercicio_29c:
assumes "p ∨ p"
shows "p"
using assms
proof (rule disjE)
assume "p"
thus "p" by this
next
assume "p"
thus "p" by this
qed
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar
p ⊢ p ∨ p
------------------------------------------------------------------ *}
-- "Pedro Ros"
lemma ejercicio_30a:
assumes "p"
shows "p ∨ p"
proof -
show "p∨p" using assms ..
qed
-- "Pedro Ros"
lemma ejercicio_30b:
assumes "p"
shows "p ∨ p"
using assms ..
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar
p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r
------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_31a:
assumes "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r"
proof -
have 1: "p ∨ (q ∨ r)" using assms by this
moreover
{assume "p"
hence "(p∨q)" ..
hence "(p∨q)∨r" ..}
moreover
{assume "(q∨r)"
moreover
{assume "q"
hence "(p∨q)"..
hence "(p∨q)∨r" ..}
moreover
{assume "r"
hence "(p∨q)∨r" ..}
ultimately
have "(p∨q)∨r"..}
ultimately
show "(p∨q)∨r" ..
qed
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
------------------------------------------------------------------ *}
-- "Pedro G. Ros"
lemma ejercicio_32:
assumes "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
using assms(1)
proof
assume "p∨q"
thus "p∨q∨r"
proof
assume "p"
thus "p∨q∨r" ..
next
assume "q"
hence "q∨r" ..
thus "p∨q∨r" ..
qed
next
assume "r"
hence "q∨r" ..
thus "p∨q∨r" ..
qed
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)
------------------------------------------------------------------ *}
-- "Pedro"
lemma ejercicio_33a:
assumes "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
proof -
have 1: "p" using assms ..
have 2: "q∨r" using assms ..
moreover
{assume 3: "q"
have "(p∧q)" using 1 3 ..
hence "(p ∧ q) ∨ (p ∧ r)" ..}
moreover
{assume 4: "r"
have "p∧r" using 1 4 ..
hence "(p ∧ q) ∨ (p ∧ r)" ..}
ultimately
show "(p ∧ q) ∨ (p ∧ r)" ..
qed
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)
------------------------------------------------------------------ *}
-- "Pedro Ros"
lemma ejercicio_34a:
assumes "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
proof -
have 1: "(p ∧ q) ∨ (p ∧ r)" using assms by this
moreover
{assume "(p ∧ q)"
hence "p" ..
have "q" using `p ∧ q` ..
hence "(q∨r)"..
have "p∧(q∨r)" using `p``(q∨r)`..}
moreover
{assume "(p∧r)"
hence "p" ..
have "r" using `p ∧ r` ..
hence "(q∨r)"..
have "p∧(q∨r)" using `p``(q∨r)`..}
ultimately
show "p ∧ (q ∨ r)" ..
qed
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r)
------------------------------------------------------------------ *}
-- "Pedro Ros"
lemma ejercicio_35a:
assumes "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
proof -
have 1: "p ∨ (q ∧ r)" using assms by this
moreover
{assume "p"
hence 2: "(p∨q)" ..
have 3: "(p∨r)" using `p` ..
have 4: "(p ∨ q) ∧ (p ∨ r)" using 2 3 ..}
moreover
{assume 5:"(q∧r)"
hence 6: "q" ..
have 7: "r" using 5 ..
have 8: "p∨q" using 6 ..
have 9: "p∨r" using 7 ..
have "(p ∨ q) ∧ (p ∨ r)"using 8 9 ..}
ultimately
show "(p ∨ q) ∧ (p ∨ r)" ..
qed
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_36:
assumes "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
proof -
have "p∨q" using assms..
moreover
{assume "p"
hence "p∨(q∧r)"..}
moreover
{assume "q"
have "p∨r" using assms..
moreover
{assume "p"
hence "p∨(q∧r)"..}
moreover
{assume "r"
with `q` have "q∧r"..
hence "p∨(q∧r)"..}
ultimately have "p∨(q∧r)"..}
ultimately show "p∨(q∧r)"..
qed
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
------------------------------------------------------------------ *}
-- "Erlinda Menendez Perez , Carmen Martinez Navarro"
lemma ejercicio_37:
assumes "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
proof (rule impI)
assume 1: "p ∨ q"
thus "r"
proof (rule disjE)
assume 2:"p"
have 3: "p ⟶ r" using assms by (rule conjunct1)
show "r" using 3 2 by (rule mp)
next
assume 5:"q"
have 6: "q ⟶ r" using assms by (rule conjunct2)
show "r" using 6 5 by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 38. Demostrar
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_38:
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
proof -
{assume 1: "p"
have 2:"p ∨ q" using 1 ..
have 3: "r" using assms 2 ..}
hence 4: "p⟶r" ..
{assume 5: "q"
have 6: "p ∨ q" using 5 ..
have 7: "r" using assms 6 ..}
hence 8: "q⟶r" ..
show "(p⟶r)∧(q⟶r)" using 4 8 ..
qed
section {* Negaciones *}
text {* ---------------------------------------------------------------
Ejercicio 39. Demostrar
p ⊢ ¬¬p
------------------------------------------------------------------ *}
-- "Pedro G. Ros Reina"
lemma ejercicio_39:
assumes "p"
shows "¬¬p"
proof -
show "¬¬p" using assms by (rule notnotI)
qed
-- "Pedro G. Ros Reina"
lemma ejercicio_39b:
assumes "p"
shows "¬¬p"
using assms by (rule notnotI)
-- "Raúl Montes Pajuelo"
lemma ejercicio_39c:
assumes "p"
shows "¬¬p"
proof (rule notI)
assume "¬p"
show False using `¬p` assms..
qed
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_40:
assumes "¬p"
shows "p ⟶ q"
proof (rule impI)
{assume 1: "p"
show "q" using assms 1 by (rule notE)}
qed
text {* ---------------------------------------------------------------
Ejercicio 41. Demostrar
p ⟶ q ⊢ ¬q ⟶ ¬p
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_41:
assumes "p ⟶ q"
shows "¬q ⟶ ¬p"
proof (rule impI)
{assume "¬q"
with assms show "¬p" by (rule mt) }
qed
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p∨q, ¬q ⊢ p
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_42:
assumes "p∨q"
"¬q"
shows "p"
proof -
note `p∨q`
moreover
{assume "p"
hence "p" by this}
moreover
{assume "q"
with assms (2) have "p" ..}
ultimately show "p" ..
qed
text {* ---------------------------------------------------------------
Ejercicio 43. Demostrar
p ∨ q, ¬p ⊢ q
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_43:
assumes "p ∨ q"
"¬p"
shows "q"
proof -
note `p∨q`
moreover
{assume "p"
with assms (2) have False..
hence "q"..}
moreover
{assume "q"
hence "q" .}
ultimately show "q"..
qed
text {* ---------------------------------------------------------------
Ejercicio 44. Demostrar
p ∨ q ⊢ ¬(¬p ∧ ¬q)
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_44:
assumes "p ∨ q"
shows "¬(¬p ∧ ¬q)"
proof -
{assume "¬p∧¬q"
note `p∨q`
moreover
{have "¬p" using `¬p∧¬q`by (rule conjunct1)
assume "p"
with `¬p`have False by (rule notE)}
moreover
{have "¬q" using `¬p∧¬q`by (rule conjunct2)
assume "q"
with `¬q`have False by (rule notE)}
ultimately have False by (rule disjE)}
thus "¬(¬p∧¬q)" by (rule notI)
qed
text {* ---------------------------------------------------------------
Ejercicio 45. Demostrar
p ∧ q ⊢ ¬(¬p ∨ ¬q)
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_45:
assumes "p ∧ q"
shows "¬(¬p ∨ ¬q)"
proof (rule notI)
assume "¬p∨¬q"
show False
proof (rule disjE)
{show "¬p∨¬q" using `¬p∨¬q`.
next
show "¬p⟹False"
proof -
{assume "¬p"
have "p" using assms..
with `¬p`show False..}
qed
next
show "¬q⟹False"
proof -
{assume "¬q"
have "q" using assms..
with `¬q`show False..}
qed}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 46. Demostrar
¬(p ∨ q) ⊢ ¬p ∧ ¬q
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_46:
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
proof (rule conjI)
show "¬p"
proof (rule notI)
{assume "p"
hence "p∨q"..
with assms show False..}
qed
next
show "¬q"
proof (rule notI)
{assume "q"
hence "p∨q"..
with assms show False..}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 47. Demostrar
¬p ∧ ¬q ⊢ ¬(p ∨ q)
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_47:
assumes "¬p ∧ ¬q"
shows "¬(p ∨ q)"
proof (rule notI)
assume "p∨q"
show False
proof (rule disjE)
{show "p∨q" using `p∨q` .
next
show "p⟹False"
proof -
{have "¬p" using assms..
assume "p"
with `¬p`show False..}
qed
next
show "q⟹False"
proof -
{have "¬q" using assms..
assume "q"
with `¬q`show False..}
qed}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 48. Demostrar
¬p ∨ ¬q ⊢ ¬(p ∧ q)
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_48:
assumes "¬p ∨ ¬q"
shows "¬(p ∧ q)"
proof (rule disjE)
show "¬p∨¬q" using assms .
next
show "¬p⟹¬(p∧q)"
proof -
{assume "¬p"
show "¬(p∧q)"
proof (rule notI)
{assume "p∧q"
hence "p"..
with `¬p`show False..}
qed}
qed
next
show "¬q⟹¬(p∧q)"
proof -
{assume "¬q"
show "¬(p∧q)"
proof (rule notI)
{assume "p∧q"
hence "q"..
with `¬q`show False..}
qed}
qed
qed
-- "Pedro Ros"
lemma ejercicio_48b:
assumes "¬p ∨ ¬q"
shows "¬(p ∧ q)"
proof (rule disjE)
show "¬p ∨ ¬q" using assms .
next
assume 1: "¬p"
show "¬(p∧q)"
proof
assume "p∧q"
hence 2: "p" ..
show "False" using 1 2 ..
qed
next
assume 1: "¬q"
show "¬(p∧q)"
proof
assume "p∧q"
hence 2: "q" ..
show "False" using 1 2 ..
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 49. Demostrar
⊢ ¬(p ∧ ¬p)
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_49:
"¬(p ∧ ¬p)"
proof (rule notI)
assume "p∧¬p"
hence "¬p"..
have "p" using `p∧¬p`..
with `¬p`show False..
qed
text {* ---------------------------------------------------------------
Ejercicio 50. Demostrar
p ∧ ¬p ⊢ q
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_50:
assumes "p ∧ ¬p"
shows "q"
proof (rule notE)
show "p" using assms ..
show "¬p" using assms ..
qed
text {* ---------------------------------------------------------------
Ejercicio 51. Demostrar
¬¬p ⊢ p
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_51:
assumes "¬¬p"
shows "p"
proof (rule ccontr)
assume "¬p"
with `¬¬p` show False..
qed
-- "Pedro Ros"
lemma ejercicio_51b:
assumes "¬¬p"
shows "p"
using assms by (rule notnotD)
text {* ---------------------------------------------------------------
Ejercicio 52. Demostrar
⊢ p ∨ ¬p
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_52:
"p ∨ ¬p"
proof (rule ccontr)
{assume "¬(p∨¬p)"
have "p"
proof (rule ccontr)
{assume "¬p"
hence "p∨¬p"..
with `¬(p∨¬p)` show False..}
qed
hence "p∨¬p"..
with `¬(p∨¬p)` show False..}
qed
text {* ---------------------------------------------------------------
Ejercicio 53. Demostrar
⊢ ((p ⟶ q) ⟶ p) ⟶ p
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_53:
"((p ⟶ q) ⟶ p) ⟶ p"
proof (rule impI)
assume "(p⟶q)⟶p"
show "p"
proof (rule ccontr)
note `(p⟶q)⟶p`
assume "¬p"
with `(p⟶q)⟶p` have "¬(p⟶q)" by (rule mt)
{assume "p"
with `¬p` have "q" by (rule notE)}
hence "p⟶q" by (rule impI)
with `¬(p⟶q)` show False by (rule notE)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 54. Demostrar
¬q ⟶ ¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_54:
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
proof (rule impI)
{assume "p"
hence "¬¬p" by (rule notnotI)
with `¬q⟶¬p` have "¬¬q" by (rule mt)
show "q"
proof (rule ccontr)
{assume "¬q"
with `¬¬q` show False..}
qed}
qed
-- "Pedro Ros"
lemma ejercicio_54b:
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
proof
assume "p"
hence "¬¬p" by (rule notnotI)
with assms have "¬¬q" by (rule mt)
thus q by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 55. Demostrar
¬(¬p ∧ ¬q) ⊢ p ∨ q
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_55:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof (rule disjE)
show "¬p∨p"..
show "¬p⟹p∨q"
proof -
{assume "¬p"
have "q"
proof (rule ccontr)
{assume "¬q"
with `¬p` have "¬p∧¬q"..
with assms show False..}
qed
then show "p∨q"..}
qed
show "p⟹p∨q"
proof -
{assume "p"
then show "p∨q"..}
qed
qed
-- "Pedro Ros"
lemma ejercicio_55b:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
proof (rule ccontr)
assume "¬(p ∨ q)"
hence " ¬p ∧ ¬q" by (rule ejercicio_46)
with assms show "False" ..
qed
text {* ---------------------------------------------------------------
Ejercicio 56. Demostrar
¬(¬p ∨ ¬q) ⊢ p ∧ q
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_56:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
proof(rule conjI)
show "p"
proof(rule ccontr)
{assume "¬p"
hence "¬p∨¬q"..
with assms show False..}
qed
show "q"
proof(rule ccontr)
{assume "¬q"
hence "¬p∨¬q"..
with assms show False..}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 57. Demostrar
¬(p ∧ q) ⊢ ¬p ∨ ¬q
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_57:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
proof -
have "¬p∨p"..
moreover
{assume "¬p"
hence "¬p∨¬q"..}
moreover
{assume "p"
have "¬q∨q"..
moreover
{assume "¬q"
hence "¬p∨¬q"..}
moreover
{assume "q"
with `p`have "p∧q"..
with `¬(p∧q)` have "¬p∨¬q"..}
ultimately have "¬p∨¬q"..}
ultimately show "¬p∨¬q"..
qed
text {* ---------------------------------------------------------------
Ejercicio 58. Demostrar
⊢ (p ⟶ q) ∨ (q ⟶ p)
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_58:
"(p ⟶ q) ∨ (q ⟶ p)"
proof -
have "¬p ∨ p" ..
moreover
{assume "¬p"
{assume "p"
with `¬p` have "q" ..}
hence "p⟶q" ..
hence "(p⟶q)∨(q⟶p)" ..}
moreover
{assume "p"
{assume "q"
note `p`}
hence "q⟶p"..
hence "(p⟶q)∨(q⟶p)"..}
ultimately show "(p⟶q)∨(q⟶p)" ..
qed
-- "Raúl Montes Pajuelo: Voy a añadir algunos ejercicios de examen más. Creo que es interesante tenerlos aquí resueltos"
text {* ---------------------------------------------------------------
Ejercicio 59: Examen de Septiembre del 2006. Demostrar
(p ⟶ r) ∨ (q ⟶ s) ⊢ (p ∧ q) ⟶ (r ∨ s)
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_59:
assumes "(p ⟶ r) ∨ (q ⟶ s)"
shows "(p ∧ q) ⟶ (r ∨ s)"
proof
assume "p ∧ q"
show "r ∨ s"
proof (rule disjE)
show "(p ⟶ r) ∨ (q ⟶ s)" using assms.
next
show "p ⟶ r ⟹ r ∨ s"
proof -
assume "p ⟶ r"
have "p" using `p ∧ q`..
with `p ⟶ r`have "r"..
thus "r ∨ s"..
qed
next
show "q ⟶ s ⟹ (r ∨ s)"
proof -
assume "q ⟶ s"
have "q" using `p ∧ q`..
with `q ⟶ s`have "s"..
thus "r ∨ s"..
qed
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 60: Examen de Junio del 2005. Demostrar
p ∧ ¬(q ⟶ r) ⊢ (p ∧ q) ∧ ¬r
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_60:
assumes "p ∧ ¬(q ⟶ r)"
shows "(p ∧ q) ∧ ¬r"
proof (rule conjI)
have "p" using assms..
have "¬(q ⟶ r)" using assms..
have "q"
proof (rule ccontr)
assume "¬q"
have "q ⟶ r"
proof
assume "q"
with `¬q` have False..
thus "r"..
qed
with `¬(q ⟶ r)` show False..
qed
with `p` show "p ∧ q"..
show "¬r"
proof (rule notI)
assume "r"
have "q ⟶ r"
proof
assume "q"
show "r" using `r`.
qed
with `¬(q ⟶ r)`show False..
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 61: Examen de Diciembre del 2005. Demostrar
⊢(p ⟶ ¬q) ∧ (p ⟶ ¬r)⟶(p ⟶ ¬(q ∨ r))
------------------------------------------------------------------ *}
-- "Raúl Montes Pajuelo"
lemma ejercicio_61:
"(p ⟶ ¬q) ∧ (p ⟶ ¬r)⟶(p ⟶ ¬(q ∨ r))"
proof (rule impI)
assume "(p ⟶ ¬q) ∧ (p ⟶ ¬r)"
show "(p ⟶ ¬(q ∨ r))"
proof (rule impI)
assume "p"
show "¬(q ∨ r)"
proof (rule notI)
assume "q ∨ r"
thus False
proof
assume "q"
hence "¬¬q" by (rule notnotI)
have "p ⟶ ¬q" using `(p ⟶ ¬q) ∧ (p ⟶ ¬r)`..
have "¬p" using `p ⟶ ¬q` `¬¬q` by (rule mt)
show False using `¬p` `p`..
next
assume "r"
hence "¬¬r" by (rule notnotI)
have "p ⟶ ¬r" using `(p ⟶ ¬q) ∧ (p ⟶ ¬r)`..
have "¬p" using `p ⟶ ¬r` `¬¬r` by (rule mt)
show False using `¬p` `p`..
qed
qed
qed
qed
end