Diferencia entre revisiones de «Relación 1»
De Demostración automática de teoremas (2014-15)
(ej52) |
(Adicionando versiones distintas de algunos ejercicios) |
||
(No se muestran 4 ediciones intermedias de otro usuario) | |||
Línea 59: | Línea 59: | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
Línea 76: | Línea 76: | ||
shows "r" | shows "r" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
have 4: "q" using 1 3 by (rule mp) | have 4: "q" using 1 3 by (rule mp) | ||
Línea 93: | Línea 93: | ||
shows "r" | shows "r" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
have 4:"q ⟶ r" using 1 3 by (rule mp) | have 4:"q ⟶ r" using 1 3 by (rule mp) | ||
Línea 109: | Línea 109: | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume 3:"p" | {assume 3:"p" | ||
Línea 125: | Línea 125: | ||
shows "q ⟶ (p ⟶ r)" | shows "q ⟶ (p ⟶ r)" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume 2: q | {assume 2: q | ||
Línea 144: | Línea 144: | ||
shows "(p ⟶ q) ⟶ (p ⟶ r)" | shows "(p ⟶ q) ⟶ (p ⟶ r)" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume 2:"p ⟶ q" | {assume 2:"p ⟶ q" | ||
Línea 164: | Línea 164: | ||
shows "q ⟶ p" | shows "q ⟶ p" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume 2:q | {assume 2:q | ||
Línea 174: | Línea 174: | ||
} | } | ||
thus "q⟶p" by (rule impI) | thus "q⟶p" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_7_1: | ||
+ | assumes "p" | ||
+ | shows "q ⟶ p" | ||
+ | (*L.E. Caraballo*) | ||
+ | proof - | ||
+ | { assume "q" | ||
+ | have "p" using assms(1) by this | ||
+ | } | ||
+ | thus "q⟶p" by (rule impI) | ||
qed | qed | ||
Línea 184: | Línea 195: | ||
"p ⟶ (q ⟶ p)" | "p ⟶ (q ⟶ p)" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume 1: p | {assume 1: p | ||
Línea 206: | Línea 217: | ||
shows "(q ⟶ r) ⟶ (p ⟶ r)" | shows "(q ⟶ r) ⟶ (p ⟶ r)" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume 2:"q⟶r" | {assume 2:"q⟶r" | ||
Línea 223: | Línea 234: | ||
shows "r ⟶ (q ⟶ (p ⟶ s))" | shows "r ⟶ (q ⟶ (p ⟶ s))" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume 2: r | {assume 2: r | ||
Línea 249: | Línea 260: | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
Línea 268: | Línea 279: | ||
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume 2:p | {assume 2:p | ||
Línea 292: | Línea 303: | ||
shows "p ∧ q" | shows "p ∧ q" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
show "p ∧ q" using 1 2 by (rule conjI) | show "p ∧ q" using 1 2 by (rule conjI) | ||
Línea 306: | Línea 317: | ||
shows "p" | shows "p" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
show p using assms(1) by (rule conjunct1) | show p using assms(1) by (rule conjunct1) | ||
Línea 320: | Línea 331: | ||
shows "q" | shows "q" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
show q using assms(1) by (rule conjunct2) | show q using assms(1) by (rule conjunct2) | ||
Línea 334: | Línea 345: | ||
shows "(p ∧ q) ∧ r" | shows "(p ∧ q) ∧ r" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
have 1: p using assms(1) by (rule conjunct1) | have 1: p using assms(1) by (rule conjunct1) | ||
Línea 353: | Línea 364: | ||
shows "p ∧ (q ∧ r)" | shows "p ∧ (q ∧ r)" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
have 1: "p & q" using assms(1) by (rule conjunct1) | have 1: "p & q" using assms(1) by (rule conjunct1) | ||
Línea 372: | Línea 383: | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume 1: p | {assume 1: p | ||
Línea 388: | Línea 399: | ||
shows "p ⟶ q ∧ r" | shows "p ⟶ q ∧ r" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
have 1: "p⟶q" using assms(1) by (rule conjunct1) | have 1: "p⟶q" using assms(1) by (rule conjunct1) | ||
Línea 411: | Línea 422: | ||
shows "(p ⟶ q) ∧ (p ⟶ r)" | shows "(p ⟶ q) ∧ (p ⟶ r)" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume 1:p | {assume 1:p | ||
Línea 435: | Línea 446: | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
Línea 456: | Línea 467: | ||
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{ assume 1: p | { assume 1: p | ||
Línea 468: | Línea 479: | ||
qed | qed | ||
+ | lemma ejercicio_22_1: | ||
+ | assumes "p ∧ q ⟶ r" | ||
+ | shows "p ⟶ (q ⟶ r)" | ||
+ | (*L.E.Caraballo*) | ||
+ | proof (rule impI) | ||
+ | assume 1: "p" | ||
+ | show "(q⟶r)" | ||
+ | proof (rule impI) | ||
+ | assume 2: "q" | ||
+ | have 3: "p∧q" using 1 2 by (rule conjI) | ||
+ | show "r" using assms 3 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 478: | Línea 502: | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume 1: "p & q" | {assume 1: "p & q" | ||
Línea 487: | Línea 511: | ||
qed | qed | ||
+ | lemma ejercicio_23_1: | ||
+ | assumes "(p ⟶ q) ⟶ r" | ||
+ | shows "p ∧ q ⟶ r" | ||
+ | (*L.E.Caraballo*) | ||
+ | proof (rule impI) | ||
+ | assume 1: "p∧q" | ||
+ | have 2: "q" using 1 by (rule conjunct2) | ||
+ | have 3: "p⟶q" using 2 by (rule ejercicio_7) | ||
+ | show "r" using assms 3 by (rule mp) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 24. Demostrar | Ejercicio 24. Demostrar | ||
Línea 496: | Línea 531: | ||
shows "(p ⟶ q) ⟶ r" | shows "(p ⟶ q) ⟶ r" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
Línea 506: | Línea 541: | ||
} | } | ||
thus "(p⟶q)⟶r" by (rule impI) | thus "(p⟶q)⟶r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_24_1: | ||
+ | assumes "p ∧ (q ⟶ r)" | ||
+ | shows "(p ⟶ q) ⟶ r" | ||
+ | (*L.E.Caraballo*) | ||
+ | proof (rule impI) | ||
+ | assume 1: "p⟶q" | ||
+ | have 2: "p" using assms by (rule conjunct1) | ||
+ | have 3: "q⟶r" using assms by (rule conjunct2) | ||
+ | have 4: "q" using 1 2 .. | ||
+ | show 5: "r" using 3 4 .. | ||
qed | qed | ||
Línea 519: | Línea 566: | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
show "p | q" using assms(1) by (rule disjI1) | show "p | q" using assms(1) by (rule disjI1) | ||
Línea 533: | Línea 580: | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
show "p | q" using assms(1) by (rule disjI2) | show "p | q" using assms(1) by (rule disjI2) | ||
Línea 550: | Línea 597: | ||
− | + | (*Solución M.Cumplido*) | |
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 571: | Línea 618: | ||
shows "p ∨ q ⟶ p ∨ r" | shows "p ∨ q ⟶ p ∨ r" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume 1: "p | q" | {assume 1: "p | q" | ||
Línea 584: | Línea 631: | ||
qed} | qed} | ||
thus "p ∨ q ⟶ p ∨ r" by (rule impI) | thus "p ∨ q ⟶ p ∨ r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_28_1: | ||
+ | assumes "q ⟶ r" | ||
+ | shows "p ∨ q ⟶ p ∨ r" | ||
+ | (*L.E.Caraballo*) | ||
+ | proof (rule impI) | ||
+ | assume 1: "p∨q" | ||
+ | show "p∨r" | ||
+ | using 1 | ||
+ | proof (rule disjE) | ||
+ | { assume "p" | ||
+ | thus "p∨r" by (rule disjI1)} | ||
+ | { assume 2: "q" | ||
+ | have "r" using assms 2 by (rule mp) | ||
+ | thus "p∨r" by (rule disjI2)} | ||
+ | qed | ||
qed | qed | ||
Línea 595: | Línea 659: | ||
shows "p" | shows "p" | ||
− | + | (*Solución M.Cumplido*) | |
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 611: | Línea 675: | ||
shows "p ∨ p" | shows "p ∨ p" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
show "p | p" using assms(1) by (rule disjI1) | show "p | p" using assms(1) by (rule disjI1) | ||
Línea 625: | Línea 689: | ||
shows "(p ∨ q) ∨ r" | shows "(p ∨ q) ∨ r" | ||
− | + | (*Solución M.Cumplido*) | |
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 656: | Línea 720: | ||
shows "p ∨ (q ∨ r)" | shows "p ∨ (q ∨ r)" | ||
− | + | (*Solución M.Cumplido*) | |
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 688: | Línea 752: | ||
shows "(p ∧ q) ∨ (p ∧ r)" | shows "(p ∧ q) ∨ (p ∧ r)" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
have 1: p using assms(1) by (rule conjunct1) | have 1: p using assms(1) by (rule conjunct1) | ||
Línea 713: | Línea 777: | ||
shows "p ∧ (q ∨ r)" | shows "p ∧ (q ∨ r)" | ||
− | + | (*Solución M.Cumplido*) | |
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 739: | Línea 803: | ||
shows "(p ∨ q) ∧ (p ∨ r)" | shows "(p ∨ q) ∧ (p ∨ r)" | ||
− | + | (*Solución M.Cumplido*) | |
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 764: | Línea 828: | ||
shows "p ∨ (q ∧ r)" | shows "p ∨ (q ∧ r)" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
have 1: "p | q" using assms(1) by (rule conjunct1) | have 1: "p | q" using assms(1) by (rule conjunct1) | ||
Línea 797: | Línea 861: | ||
shows "p ∨ q ⟶ r" | shows "p ∨ q ⟶ r" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
have 1: "p ⟶ r" using assms(1) by (rule conjunct1) | have 1: "p ⟶ r" using assms(1) by (rule conjunct1) | ||
Línea 823: | Línea 887: | ||
shows "(p ⟶ r) ∧ (q ⟶ r)" | shows "(p ⟶ r) ∧ (q ⟶ r)" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume p | {assume p | ||
Línea 850: | Línea 914: | ||
shows "¬¬p" | shows "¬¬p" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
show "¬¬p" using assms(1) by (rule notnotI) | show "¬¬p" using assms(1) by (rule notnotI) | ||
Línea 861: | Línea 925: | ||
lemma ejercicio_40: | lemma ejercicio_40: | ||
+ | |||
assumes "¬p" | assumes "¬p" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume 1: p | {assume 1: p | ||
Línea 880: | Línea 945: | ||
shows "¬q ⟶ ¬p" | shows "¬q ⟶ ¬p" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
{assume 1: "~q" | {assume 1: "~q" | ||
Línea 897: | Línea 962: | ||
shows "p" | shows "p" | ||
− | + | (*Solución M.Cumplido*) | |
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 918: | Línea 983: | ||
shows "q" | shows "q" | ||
− | + | (*Solución M.Cumplido*) | |
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 937: | Línea 1002: | ||
shows "¬(¬p ∧ ¬q)" | shows "¬(¬p ∧ ¬q)" | ||
− | + | (*Solución M.Cumplido*) | |
proof (rule notI) | proof (rule notI) | ||
assume 1:"¬p ∧ ¬q" | assume 1:"¬p ∧ ¬q" | ||
Línea 961: | Línea 1026: | ||
shows "¬(¬p ∨ ¬q)" | shows "¬(¬p ∨ ¬q)" | ||
− | + | (*Solución M.Cumplido*) | |
proof (rule notI) | proof (rule notI) | ||
assume 1: "¬p ∨ ¬q" | assume 1: "¬p ∨ ¬q" | ||
Línea 985: | Línea 1050: | ||
shows "¬p ∧ ¬q" | shows "¬p ∧ ¬q" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
have 1:"~~(~p & ~q)" | have 1:"~~(~p & ~q)" | ||
Línea 1017: | Línea 1082: | ||
shows "¬(p ∨ q)" | shows "¬(p ∨ q)" | ||
− | + | (*Solución M.Cumplido*) | |
proof(rule notI) | proof(rule notI) | ||
Línea 1042: | Línea 1107: | ||
shows "¬(p ∧ q)" | shows "¬(p ∧ q)" | ||
− | + | (*Solución M.Cumplido*) | |
proof (rule notI) | proof (rule notI) | ||
Línea 1066: | Línea 1131: | ||
"¬(p ∧ ¬p)" | "¬(p ∧ ¬p)" | ||
− | + | (*Solución M.Cumplido*) | |
proof (rule notI) | proof (rule notI) | ||
assume 1:"p & ~p" | assume 1:"p & ~p" | ||
Línea 1083: | Línea 1148: | ||
shows "q" | shows "q" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
have 1: p using assms(1) by (rule conjunct1) | have 1: p using assms(1) by (rule conjunct1) | ||
Línea 1099: | Línea 1164: | ||
shows "p" | shows "p" | ||
− | + | (*Solución M.Cumplido*) | |
proof - | proof - | ||
show p using assms(1) by (rule notnotD) | show p using assms(1) by (rule notnotD) | ||
Línea 1113: | Línea 1178: | ||
"p ∨ ¬p" | "p ∨ ¬p" | ||
− | + | (*Solución M.Cumplido*) | |
proof(rule ccontr) | proof(rule ccontr) | ||
assume 1:"~(p | ~ p)" | assume 1:"~(p | ~ p)" | ||
Línea 1129: | Línea 1194: | ||
lemma ejercicio_53: | lemma ejercicio_53: | ||
"((p ⟶ q) ⟶ p) ⟶ p" | "((p ⟶ q) ⟶ p) ⟶ p" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 1:"(p ⟶ q) ⟶ p" | ||
+ | have p | ||
+ | proof(rule ccontr) | ||
+ | assume 2:"~p" | ||
+ | {assume 3:p | ||
+ | have q using 2 3 by (rule notE)} | ||
+ | hence 4:"p⟶q" by (rule impI) | ||
+ | have 5: p using 1 4 by (rule mp) | ||
+ | show False using 2 5 by (rule notE) | ||
+ | qed | ||
+ | } | ||
+ | thus "((p ⟶ q) ⟶ p) ⟶ p" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1139: | Línea 1219: | ||
assumes "¬q ⟶ ¬p" | assumes "¬q ⟶ ¬p" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
+ | |||
+ | proof - | ||
+ | {assume 1: p | ||
+ | hence 2: "~~p" by (rule notnotI) | ||
+ | have 3: "~~q" using assms(1) 2 by (rule mt) | ||
+ | hence q by (rule notnotD)} | ||
+ | thus "p⟶q" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1145: | Línea 1235: | ||
¬(¬p ∧ ¬q) ⊢ p ∨ q | ¬(¬p ∧ ¬q) ⊢ p ∨ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_55: | lemma ejercicio_55: | ||
assumes "¬(¬p ∧ ¬q)" | assumes "¬(¬p ∧ ¬q)" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | |||
+ | (*Solución M.Cumplido*) | ||
+ | proof(rule ccontr) | ||
+ | assume "~(p | q)" | ||
+ | hence 1: "~p & ~q" by (rule ejercicio_46) | ||
+ | show False using assms(1) 1 by (rule notE) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 56. Demostrar | Ejercicio 56. Demostrar | ||
¬(¬p ∨ ¬q) ⊢ p ∧ q | ¬(¬p ∨ ¬q) ⊢ p ∧ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_56: | lemma ejercicio_56: | ||
assumes "¬(¬p ∨ ¬q)" | assumes "¬(¬p ∨ ¬q)" | ||
shows "p ∧ q" | shows "p ∧ q" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have 1: "~~p & ~~q" using assms(1) by (rule ejercicio_46) | ||
+ | have 2: "~~p" using 1 by (rule conjunct1) | ||
+ | have 3: "~~q" using 1 by (rule conjunct2) | ||
+ | have 4: p using 2 by (rule notnotD) | ||
+ | have 5: q using 3 by (rule notnotD) | ||
+ | show "p & q" using 4 5 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1165: | Línea 1270: | ||
¬(p ∧ q) ⊢ ¬p ∨ ¬q | ¬(p ∧ q) ⊢ ¬p ∨ ¬q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_57: | lemma ejercicio_57: | ||
assumes "¬(p ∧ q)" | assumes "¬(p ∧ q)" | ||
shows "¬p ∨ ¬q" | shows "¬p ∨ ¬q" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 1: "~(¬p ∨ ¬q)" | ||
+ | hence 2: "p & q" by (rule ejercicio_56)} | ||
+ | hence 3: "¬(¬p | ¬q)⟶ (p & q)" by (rule impI) | ||
+ | have 4:"¬¬(¬p | ¬q)" using 3 assms(1) by (rule mt) | ||
+ | thus "¬p ∨ ¬q" by (rule notnotD) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1175: | Línea 1288: | ||
⊢ (p ⟶ q) ∨ (q ⟶ p) | ⊢ (p ⟶ q) ∨ (q ⟶ p) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_58: | lemma ejercicio_58: | ||
"(p ⟶ q) ∨ (q ⟶ p)" | "(p ⟶ q) ∨ (q ⟶ p)" | ||
− | + | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have "q | ¬q" by (rule ejercicio_52) | ||
+ | thus "(p ⟶ q) ∨ (q ⟶ p)" | ||
+ | proof (rule disjE) | ||
+ | {assume q | ||
+ | hence "p⟶q" by (rule ejercicio_7) | ||
+ | thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1)} | ||
+ | next | ||
+ | {assume "¬q" | ||
+ | hence "¬p⟶¬q" by (rule ejercicio_7) | ||
+ | hence "q⟶p" by (rule ejercicio_54) | ||
+ | thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)} | ||
+ | qed | ||
+ | qed | ||
+ | |||
end | end | ||
</source> | </source> |
Revisión actual del 18:18 9 mar 2015
header {* R1: Deducción natural proposicional *}
theory Rel_1
imports Main
begin
text {*
---------------------------------------------------------------------
El objetivo de esta relación es demostrar cada uno de los ejercicios
usando sólo las reglas básicas de deducción natural de la lógica
proposicional (sin usar el método auto).
Las reglas básicas de la deducción natural son las siguientes:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· notnotI: P ⟹ ¬¬ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· mt: ⟦F ⟶ G; ¬G⟧ ⟹ ¬F
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
---------------------------------------------------------------------
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación. *}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
section {* Implicaciones *}
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
p ⟶ q, p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_1:
assumes 1:"p ⟶ q" and
2:"p"
shows "q"
(*Solución M.Cumplido*)
proof -
show 3: "q" using 1 2 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
p ⟶ q, q ⟶ r, p ⊢ r
------------------------------------------------------------------ *}
lemma ejercicio_2:
assumes 1:"p ⟶ q" and
2:"q ⟶ r" and
3:"p"
shows "r"
(*Solución M.Cumplido*)
proof -
have 4: "q" using 1 3 by (rule mp)
show 5: "r" using 2 4 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
------------------------------------------------------------------ *}
lemma ejercicio_3:
assumes 1:"p ⟶ (q ⟶ r)" and
2:"p ⟶ q" and
3:"p"
shows "r"
(*Solución M.Cumplido*)
proof -
have 4:"q ⟶ r" using 1 3 by (rule mp)
show "r" using 2 4 3 by (rule ejercicio_2)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
p ⟶ q, q ⟶ r ⊢ p ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_4:
assumes 1:"p ⟶ q" and
2:"q ⟶ r"
shows "p ⟶ r"
(*Solución M.Cumplido*)
proof -
{assume 3:"p"
have "r" using 1 2 3 by (rule ejercicio_2)}
thus "p ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_5:
assumes 1:"p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 2: q
{assume 3: p
have 4:"q ⟶ r" using 1 3 by (rule mp)
have r using 4 2 by (rule mp)}
hence "p ⟶ r" by (rule impI)}
thus "q ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_6:
assumes 1:"p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 2:"p ⟶ q"
{assume 3: p
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "p ⟶ r" using 2 4 by (rule ejercicio_4)
have r using 5 3 by (rule mp)}
hence "p ⟶ r" by (rule impI)}
thus "(p ⟶ q) ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
p ⊢ q ⟶ p
------------------------------------------------------------------ *}
lemma ejercicio_7:
assumes 1:"p"
shows "q ⟶ p"
(*Solución M.Cumplido*)
proof -
{assume 2:q
have 3: p
proof (rule ccontr)
assume 4:"¬p"
show False using 4 1 by (rule notE)
qed
}
thus "q⟶p" by (rule impI)
qed
lemma ejercicio_7_1:
assumes "p"
shows "q ⟶ p"
(*L.E. Caraballo*)
proof -
{ assume "q"
have "p" using assms(1) by this
}
thus "q⟶p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
⊢ p ⟶ (q ⟶ p)
------------------------------------------------------------------ *}
lemma ejercicio_8:
"p ⟶ (q ⟶ p)"
(*Solución M.Cumplido*)
proof -
{assume 1: p
{assume 2:q
have 3: p
proof (rule ccontr)
assume 4:"¬p"
show False using 4 1 by (rule notE)
qed}
hence "q⟶p" by (rule impI)}
thus "p ⟶ (q ⟶ p)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_9:
assumes 1:"p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 2:"q⟶r"
have 3:"p⟶r" using 1 2 by (rule ejercicio_4)}
thus "(q ⟶ r) ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s))
------------------------------------------------------------------ *}
lemma ejercicio_10:
assumes 1:"p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
(*Solución M.Cumplido*)
proof -
{assume 2: r
{assume 3: q
{assume 4: p
have 5: "q ⟶ (r ⟶ s)" using 1 4 by (rule mp)
have 6:"r⟶s" using 5 3 by (rule mp)
have s using 6 2 by (rule mp)
}
hence "p⟶ s" by (rule impI)
}
hence "q ⟶ (p ⟶ s)" by (rule impI)
}
thus "r ⟶ (q ⟶ (p ⟶ s))" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
------------------------------------------------------------------ *}
lemma ejercicio_11:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
(*Solución M.Cumplido*)
proof -
{assume "p ⟶ (q ⟶ r)"
hence "(p ⟶ q) ⟶ (p ⟶ r)" by (rule ejercicio_6)
}
thus "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_12:
assumes 1:"(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 2:p
{assume 3:q
hence 4:"p⟶q" by (rule ejercicio_7)
have r using 1 4 by (rule mp)
}
hence "q⟶r" by (rule impI)
}
thus "p⟶(q⟶r)" by (rule impI)
qed
section {* Conjunciones *}
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
p, q ⊢ p ∧ q
------------------------------------------------------------------ *}
lemma ejercicio_13:
assumes 1:"p" and
2:"q"
shows "p ∧ q"
(*Solución M.Cumplido*)
proof -
show "p ∧ q" using 1 2 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
p ∧ q ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_14:
assumes "p ∧ q"
shows "p"
(*Solución M.Cumplido*)
proof -
show p using assms(1) by (rule conjunct1)
qed
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
p ∧ q ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_15:
assumes "p ∧ q"
shows "q"
(*Solución M.Cumplido*)
proof -
show q using assms(1) by (rule conjunct2)
qed
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r
------------------------------------------------------------------ *}
lemma ejercicio_16:
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
(*Solución M.Cumplido*)
proof -
have 1: p using assms(1) by (rule conjunct1)
have 2: "q & r" using assms(1) by (rule conjunct2)
have 3: q using 2 by (rule conjunct1)
have 4: r using 2 by (rule conjunct2)
have 5: "p & q" using 1 3 by (rule conjI)
show "(p ∧ q) ∧ r" using 5 4 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
(p ∧ q) ∧ r ⊢ p ∧ (q ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_17:
assumes "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
(*Solución M.Cumplido*)
proof -
have 1: "p & q" using assms(1) by (rule conjunct1)
have 2: "r" using assms(1) by (rule conjunct2)
have 3: q using 1 by (rule conjunct2)
have 4: p using 1 by (rule conjunct1)
have 5: "q & r" using 3 2 by (rule conjI)
show "p ∧ (q ∧ r)" using 4 5 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
p ∧ q ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_18:
assumes "p ∧ q"
shows "p ⟶ q"
(*Solución M.Cumplido*)
proof -
{assume 1: p
have 2: q using assms(1) by (rule conjunct2)}
thus "p⟶q" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r
------------------------------------------------------------------ *}
lemma ejercicio_19:
assumes "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
(*Solución M.Cumplido*)
proof -
have 1: "p⟶q" using assms(1) by (rule conjunct1)
have 2: "p⟶r" using assms(1) by (rule conjunct2)
{assume 3: p
have 4: q using 1 3 by (rule mp)
have 5: r using 2 3 by (rule mp)
have 6: "q & r" using 4 5 by (rule conjI)
}
thus "p⟶ q & r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_20:
assumes "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 1:p
have 2:"q & r" using assms(1) 1 by (rule mp)
have 3: q using 2 by (rule conjunct1)}
hence 4: "p⟶q" by (rule impI)
{assume 5:p
have 6:"q & r" using assms(1) 5 by (rule mp)
have 7: r using 6 by (rule conjunct2)}
hence 8: "p⟶r" by (rule impI)
show "(p ⟶ q) ∧ (p ⟶ r)" using 4 8 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_21:
assumes "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
(*Solución M.Cumplido*)
proof -
{assume 1:"p & q"
have 2: p using 1 by (rule conjunct1)
have 3: "q⟶r" using assms(1) 2 by (rule mp)
have 4: q using 1 by (rule conjunct2)
have 5: r using 3 4 by (rule mp)
}
thus "p & q ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_22:
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
(*Solución M.Cumplido*)
proof -
{ assume 1: p
{assume 2: q
have 3: "p & q" using 1 2 by (rule conjI)
have 4: r using assms(1) 3 by (rule mp)
}
hence "q⟶r" by (rule impI)
}
thus "p⟶(q⟶r)" by (rule impI)
qed
lemma ejercicio_22_1:
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
(*L.E.Caraballo*)
proof (rule impI)
assume 1: "p"
show "(q⟶r)"
proof (rule impI)
assume 2: "q"
have 3: "p∧q" using 1 2 by (rule conjI)
show "r" using assms 3 by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_23:
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
(*Solución M.Cumplido*)
proof -
{assume 1: "p & q"
have 2: "p⟶ q" using 1 by (rule ejercicio_18)
have r using assms(1) 2 by (rule mp)
}
thus "p ∧ q ⟶ r" by (rule impI)
qed
lemma ejercicio_23_1:
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
(*L.E.Caraballo*)
proof (rule impI)
assume 1: "p∧q"
have 2: "q" using 1 by (rule conjunct2)
have 3: "p⟶q" using 2 by (rule ejercicio_7)
show "r" using assms 3 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_24:
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
(*Solución M.Cumplido*)
proof -
have 1: p using assms(1) by (rule conjunct1)
have 2: "q⟶r" using assms(1) by (rule conjunct2)
{assume 3: "p⟶q"
have 4: q using 3 1 by (rule mp)
have r using 2 4 by (rule mp)
}
thus "(p⟶q)⟶r" by (rule impI)
qed
lemma ejercicio_24_1:
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
(*L.E.Caraballo*)
proof (rule impI)
assume 1: "p⟶q"
have 2: "p" using assms by (rule conjunct1)
have 3: "q⟶r" using assms by (rule conjunct2)
have 4: "q" using 1 2 ..
show 5: "r" using 3 4 ..
qed
section {* Disyunciones *}
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
p ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_25:
assumes "p"
shows "p ∨ q"
(*Solución M.Cumplido*)
proof -
show "p | q" using assms(1) by (rule disjI1)
qed
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
q ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_26:
assumes "q"
shows "p ∨ q"
(*Solución M.Cumplido*)
proof -
show "p | q" using assms(1) by (rule disjI2)
qed
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar
p ∨ q ⊢ q ∨ p
------------------------------------------------------------------ *}
lemma ejercicio_27:
assumes "p ∨ q"
shows "q ∨ p"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume 1:p
show 2: "q | p" using 1 by (rule disjI2)}
next
{assume 3:q
show 4: "q | p" using 3 by (rule disjI1)}
qed
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
------------------------------------------------------------------ *}
lemma ejercicio_28:
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
(*Solución M.Cumplido*)
proof -
{assume 1: "p | q"
have 2:"p | r" using 1
proof (rule disjE)
{assume p
thus "p | r" by (rule disjI1)}
next
{assume 3: q
have r using assms(1) 3 by (rule mp)
thus "p | r" by (rule disjI2)}
qed}
thus "p ∨ q ⟶ p ∨ r" by (rule impI)
qed
lemma ejercicio_28_1:
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
(*L.E.Caraballo*)
proof (rule impI)
assume 1: "p∨q"
show "p∨r"
using 1
proof (rule disjE)
{ assume "p"
thus "p∨r" by (rule disjI1)}
{ assume 2: "q"
have "r" using assms 2 by (rule mp)
thus "p∨r" by (rule disjI2)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar
p ∨ p ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_29:
assumes "p ∨ p"
shows "p"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume p
thus p by this}
qed
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar
p ⊢ p ∨ p
------------------------------------------------------------------ *}
lemma ejercicio_30:
assumes "p"
shows "p ∨ p"
(*Solución M.Cumplido*)
proof -
show "p | p" using assms(1) by (rule disjI1)
qed
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar
p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r
------------------------------------------------------------------ *}
lemma ejercicio_31:
assumes "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume p
hence "p | q" by (rule disjI1)
thus "(p ∨ q) ∨ r" by (rule disjI1)}
next
{assume 1: "q | r"
show "(p ∨ q) ∨ r" using 1
proof (rule disjE)
{assume q
hence "p | q" by (rule disjI2)
thus "(p ∨ q) ∨ r" by (rule disjI1)}
next
{assume r
thus "(p ∨ q) ∨ r" by (rule disjI2) }
qed
}
qed
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_32:
assumes "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume r
hence "q | r" by (rule disjI2)
thus "p ∨ (q ∨ r)" by (rule disjI2)}
next
{assume 1: "p | q"
show "p ∨ (q ∨ r)" using 1
proof (rule disjE)
{assume q
hence "q | r" by (rule disjI1)
thus "p ∨ (q ∨ r)" by (rule disjI2)}
next
{assume p
thus "p ∨ (q ∨ r)" by (rule disjI1) }
qed
}
qed
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_33:
assumes "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
(*Solución M.Cumplido*)
proof -
have 1: p using assms(1) by (rule conjunct1)
have 2: "q | r" using assms(1) by (rule conjunct2)
show "(p ∧ q) ∨ (p ∧ r)" using 2
proof (rule disjE)
{assume 3: q
have 4: "p & q" using 1 3 by (rule conjI)
thus "(p ∧ q) ∨ (p ∧ r)" by (rule disjI1)}
next
{assume 5:r
have 6: "p & r" using 1 5 by (rule conjI)
thus "(p ∧ q) ∨ (p ∧ r)" by (rule disjI2)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_34:
assumes "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume 1:"p & q"
hence 2: p by (rule conjunct1)
have q using 1 by (rule conjunct2)
hence 3:"q | r" by (rule disjI1)
show "p ∧ (q ∨ r)" using 2 3 by (rule conjI)}
next
{assume 4:"p & r"
hence 5: p by (rule conjunct1)
have r using 4 by (rule conjunct2)
hence 6:"q | r" by (rule disjI2)
show "p ∧ (q ∨ r)" using 5 6 by (rule conjI)}
qed
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_35:
assumes "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume 1: p
have 2: "p | q" using 1 by (rule disjI1)
have 3: "p | r" using 1 by (rule disjI1)
show "(p ∨ q) ∧ (p ∨ r)" using 2 3 by (rule conjI) }
next
{assume 4: "q & r"
hence 5: q by (rule conjunct1)
have 6: r using 4 by (rule conjunct2)
have 7: "p | q" using 5 by (rule disjI2)
have 8: "p | r" using 6 by (rule disjI2)
show "(p ∨ q) ∧ (p ∨ r)" using 7 8 by (rule conjI)}
qed
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_36:
assumes "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
(*Solución M.Cumplido*)
proof -
have 1: "p | q" using assms(1) by (rule conjunct1)
have 2: "p | r" using assms(1) by (rule conjunct2)
have "p ∨ (q ∧ r)" using 1
proof (rule disjE)
{assume p
thus "p ∨ (q ∧ r)" by (rule disjI1)}
next
{assume 3: q
show "p ∨ (q ∧ r)" using 2
proof (rule disjE)
{assume p
thus "p ∨ (q ∧ r)" by (rule disjI1)}
next
{assume 4: r
have "q & r" using 3 4 by (rule conjI)
thus "p ∨ (q ∧ r)" by (rule disjI2)}
qed
}
qed
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_37:
assumes "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
(*Solución M.Cumplido*)
proof -
have 1: "p ⟶ r" using assms(1) by (rule conjunct1)
have 2: "q ⟶ r" using assms(1) by (rule conjunct2)
{assume 3: "p | q"
have r using 3
proof (rule disjE)
{assume 4: p
show r using 1 4 by (rule mp)}
next
{assume 5: q
show r using 2 5 by (rule mp) }
qed
}
thus "p ∨ q ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 38. Demostrar
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_38:
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume p
hence 1:"p | q" by (rule disjI1)
have r using assms(1) 1 by (rule mp)}
hence 2: "p ⟶ r" by (rule impI)
{assume q
hence 3:"p | q" by (rule disjI2)
have r using assms(1) 3 by (rule mp)}
hence 4: "q ⟶ r" by (rule impI)
show "(p ⟶ r) ∧ (q ⟶ r)" using 2 4 by (rule conjI)
qed
section {* Negaciones *}
text {* ---------------------------------------------------------------
Ejercicio 39. Demostrar
p ⊢ ¬¬p
------------------------------------------------------------------ *}
lemma ejercicio_39:
assumes "p"
shows "¬¬p"
(*Solución M.Cumplido*)
proof -
show "¬¬p" using assms(1) by (rule notnotI)
qed
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_40:
assumes "¬p"
shows "p ⟶ q"
(*Solución M.Cumplido*)
proof -
{assume 1: p
have q using assms(1) 1 by (rule notE)}
thus "p ⟶ q" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 41. Demostrar
p ⟶ q ⊢ ¬q ⟶ ¬p
------------------------------------------------------------------ *}
lemma ejercicio_41:
assumes "p ⟶ q"
shows "¬q ⟶ ¬p"
(*Solución M.Cumplido*)
proof -
{assume 1: "~q"
have "~p" using assms(1) 1 by (rule mt) }
thus "¬q ⟶ ¬p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p∨q, ¬q ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_42:
assumes "p∨q"
"¬q"
shows "p"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume p
thus p by this}
next
{assume 1:q
show p using assms(2) 1 by (rule notE)}
qed
text {* ---------------------------------------------------------------
Ejercicio 43. Demostrar
p ∨ q, ¬p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_43:
assumes "p ∨ q"
"¬p"
shows "q"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume q
thus q by this}
next
{assume 1:p
show q using assms(2) 1 by (rule notE)}
qed
text {* ---------------------------------------------------------------
Ejercicio 44. Demostrar
p ∨ q ⊢ ¬(¬p ∧ ¬q)
------------------------------------------------------------------ *}
lemma ejercicio_44:
assumes "p ∨ q"
shows "¬(¬p ∧ ¬q)"
(*Solución M.Cumplido*)
proof (rule notI)
assume 1:"¬p ∧ ¬q"
have 2: "~p" using 1 by (rule conjunct1)
have 3: "~q" using 1 by (rule conjunct2)
show False using assms(1)
proof (rule disjE)
{assume 4:p
show False using 2 4 by (rule notE)}
next
{assume 5:q
show False using 3 5 by (rule notE)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 45. Demostrar
p ∧ q ⊢ ¬(¬p ∨ ¬q)
------------------------------------------------------------------ *}
lemma ejercicio_45:
assumes "p ∧ q"
shows "¬(¬p ∨ ¬q)"
(*Solución M.Cumplido*)
proof (rule notI)
assume 1: "¬p ∨ ¬q"
show False using 1
proof (rule disjE)
{assume 2: "~p"
have 3: p using assms(1) by (rule conjunct1)
show False using 2 3 by (rule notE)}
next
{assume 4: "~q"
have 5: q using assms(1) by (rule conjunct2)
show False using 4 5 by (rule notE)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 46. Demostrar
¬(p ∨ q) ⊢ ¬p ∧ ¬q
------------------------------------------------------------------ *}
lemma ejercicio_46:
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
(*Solución M.Cumplido*)
proof -
have 1:"~~(~p & ~q)"
proof (rule notI)
assume 2: "~(~p & ~q)"
have 3:"~p"
proof (rule notI)
assume p
hence 4:"p | q" by (rule disjI1)
show False using assms(1) 4 by (rule notE)
qed
have 5:"~q"
proof (rule notI)
assume q
hence 6:"p | q" by (rule disjI2)
show False using assms(1) 6 by (rule notE)
qed
have 7: "~p & ~q" using 3 5 by (rule conjI)
show False using 2 7 by (rule notE)
qed
show "¬p ∧ ¬q" using 1 by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 47. Demostrar
¬p ∧ ¬q ⊢ ¬(p ∨ q)
------------------------------------------------------------------ *}
lemma ejercicio_47:
assumes "¬p ∧ ¬q"
shows "¬(p ∨ q)"
(*Solución M.Cumplido*)
proof(rule notI)
assume "p | q"
thus False
proof(rule disjE)
{assume 1: p
have 2:"~p" using assms(1) by (rule conjunct1)
show False using 2 1 by (rule notE)}
next
{assume 3: q
have 4: "~q" using assms(1) by (rule conjunct2)
show False using 4 3 by (rule notE)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 48. Demostrar
¬p ∨ ¬q ⊢ ¬(p ∧ q)
------------------------------------------------------------------ *}
lemma ejercicio_48:
assumes "¬p ∨ ¬q"
shows "¬(p ∧ q)"
(*Solución M.Cumplido*)
proof (rule notI)
assume 1: "p & q"
have 2: p using 1 by (rule conjunct1)
have 3: q using 1 by (rule conjunct2)
show False using assms(1)
proof (rule disjE)
{assume 4:"~p"
show False using 4 2 by (rule notE) }
next
{assume 5:"~q"
show False using 5 3 by (rule notE) }
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 49. Demostrar
⊢ ¬(p ∧ ¬p)
------------------------------------------------------------------ *}
lemma ejercicio_49:
"¬(p ∧ ¬p)"
(*Solución M.Cumplido*)
proof (rule notI)
assume 1:"p & ~p"
hence 2: p by (rule conjunct1)
have 3: "~p" using 1 by (rule conjunct2)
show False using 3 2 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 50. Demostrar
p ∧ ¬p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_50:
assumes "p ∧ ¬p"
shows "q"
(*Solución M.Cumplido*)
proof -
have 1: p using assms(1) by (rule conjunct1)
have 2: "~p" using assms(1) by (rule conjunct2)
show "q" using 2 1 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 51. Demostrar
¬¬p ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_51:
assumes "¬¬p"
shows "p"
(*Solución M.Cumplido*)
proof -
show p using assms(1) by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 52. Demostrar
⊢ p ∨ ¬p
------------------------------------------------------------------ *}
lemma ejercicio_52:
"p ∨ ¬p"
(*Solución M.Cumplido*)
proof(rule ccontr)
assume 1:"~(p | ~ p)"
hence "~p & ~~p" by (rule ejercicio_46)
hence "~p" by (rule conjunct1)
hence 2:"p | ~p" by (rule disjI2)
show False using 1 2 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 53. Demostrar
⊢ ((p ⟶ q) ⟶ p) ⟶ p
------------------------------------------------------------------ *}
lemma ejercicio_53:
"((p ⟶ q) ⟶ p) ⟶ p"
(*Solución M.Cumplido*)
proof -
{assume 1:"(p ⟶ q) ⟶ p"
have p
proof(rule ccontr)
assume 2:"~p"
{assume 3:p
have q using 2 3 by (rule notE)}
hence 4:"p⟶q" by (rule impI)
have 5: p using 1 4 by (rule mp)
show False using 2 5 by (rule notE)
qed
}
thus "((p ⟶ q) ⟶ p) ⟶ p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 54. Demostrar
¬q ⟶ ¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_54:
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
(*Solución M.Cumplido*)
proof -
{assume 1: p
hence 2: "~~p" by (rule notnotI)
have 3: "~~q" using assms(1) 2 by (rule mt)
hence q by (rule notnotD)}
thus "p⟶q" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 55. Demostrar
¬(¬p ∧ ¬q) ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_55:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
(*Solución M.Cumplido*)
proof(rule ccontr)
assume "~(p | q)"
hence 1: "~p & ~q" by (rule ejercicio_46)
show False using assms(1) 1 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 56. Demostrar
¬(¬p ∨ ¬q) ⊢ p ∧ q
------------------------------------------------------------------ *}
lemma ejercicio_56:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
(*Solución M.Cumplido*)
proof -
have 1: "~~p & ~~q" using assms(1) by (rule ejercicio_46)
have 2: "~~p" using 1 by (rule conjunct1)
have 3: "~~q" using 1 by (rule conjunct2)
have 4: p using 2 by (rule notnotD)
have 5: q using 3 by (rule notnotD)
show "p & q" using 4 5 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 57. Demostrar
¬(p ∧ q) ⊢ ¬p ∨ ¬q
------------------------------------------------------------------ *}
lemma ejercicio_57:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
(*Solución M.Cumplido*)
proof -
{assume 1: "~(¬p ∨ ¬q)"
hence 2: "p & q" by (rule ejercicio_56)}
hence 3: "¬(¬p | ¬q)⟶ (p & q)" by (rule impI)
have 4:"¬¬(¬p | ¬q)" using 3 assms(1) by (rule mt)
thus "¬p ∨ ¬q" by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 58. Demostrar
⊢ (p ⟶ q) ∨ (q ⟶ p)
------------------------------------------------------------------ *}
lemma ejercicio_58:
"(p ⟶ q) ∨ (q ⟶ p)"
(*Solución M.Cumplido*)
proof -
have "q | ¬q" by (rule ejercicio_52)
thus "(p ⟶ q) ∨ (q ⟶ p)"
proof (rule disjE)
{assume q
hence "p⟶q" by (rule ejercicio_7)
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1)}
next
{assume "¬q"
hence "¬p⟶¬q" by (rule ejercicio_7)
hence "q⟶p" by (rule ejercicio_54)
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)}
qed
qed
end