Diferencia entre revisiones de «Relación 1»
De Demostración automática de teoremas (2014-15)
(hasta el 42) |
(Adicionando versiones distintas de algunos ejercicios) |
||
(No se muestran 11 ediciones intermedias de otro usuario) | |||
Línea 51: | Línea 51: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | |||
lemma ejercicio_1: | lemma ejercicio_1: | ||
assumes 1:"p ⟶ q" and | assumes 1:"p ⟶ q" and | ||
2:"p" | 2:"p" | ||
shows "q" | shows "q" | ||
+ | |||
+ | |||
+ | (*Solución M.Cumplido*) | ||
+ | |||
proof - | proof - | ||
show 3: "q" using 1 2 by (rule mp) | show 3: "q" using 1 2 by (rule mp) | ||
Línea 69: | Línea 75: | ||
3:"p" | 3:"p" | ||
shows "r" | shows "r" | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
have 4: "q" using 1 3 by (rule mp) | have 4: "q" using 1 3 by (rule mp) | ||
Línea 84: | Línea 92: | ||
3:"p" | 3:"p" | ||
shows "r" | shows "r" | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
have 4:"q ⟶ r" using 1 3 by (rule mp) | have 4:"q ⟶ r" using 1 3 by (rule mp) | ||
Línea 98: | Línea 108: | ||
shows "p ⟶ r" | shows "p ⟶ r" | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 3:"p" | {assume 3:"p" | ||
Línea 113: | Línea 125: | ||
shows "q ⟶ (p ⟶ r)" | shows "q ⟶ (p ⟶ r)" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 2: q | {assume 2: q | ||
Línea 131: | Línea 144: | ||
shows "(p ⟶ q) ⟶ (p ⟶ r)" | shows "(p ⟶ q) ⟶ (p ⟶ r)" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 2:"p ⟶ q" | {assume 2:"p ⟶ q" | ||
Línea 150: | Línea 164: | ||
shows "q ⟶ p" | shows "q ⟶ p" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 2:q | {assume 2:q | ||
Línea 159: | Línea 174: | ||
} | } | ||
thus "q⟶p" by (rule impI) | thus "q⟶p" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_7_1: | ||
+ | assumes "p" | ||
+ | shows "q ⟶ p" | ||
+ | (*L.E. Caraballo*) | ||
+ | proof - | ||
+ | { assume "q" | ||
+ | have "p" using assms(1) by this | ||
+ | } | ||
+ | thus "q⟶p" by (rule impI) | ||
qed | qed | ||
Línea 169: | Línea 195: | ||
"p ⟶ (q ⟶ p)" | "p ⟶ (q ⟶ p)" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 1: p | {assume 1: p | ||
Línea 190: | Línea 217: | ||
shows "(q ⟶ r) ⟶ (p ⟶ r)" | shows "(q ⟶ r) ⟶ (p ⟶ r)" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 2:"q⟶r" | {assume 2:"q⟶r" | ||
Línea 206: | Línea 234: | ||
shows "r ⟶ (q ⟶ (p ⟶ s))" | shows "r ⟶ (q ⟶ (p ⟶ s))" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 2: r | {assume 2: r | ||
Línea 230: | Línea 259: | ||
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
Línea 248: | Línea 279: | ||
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 2:p | {assume 2:p | ||
Línea 271: | Línea 303: | ||
shows "p ∧ q" | shows "p ∧ q" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
show "p ∧ q" using 1 2 by (rule conjI) | show "p ∧ q" using 1 2 by (rule conjI) | ||
Línea 284: | Línea 317: | ||
shows "p" | shows "p" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
show p using assms(1) by (rule conjunct1) | show p using assms(1) by (rule conjunct1) | ||
Línea 297: | Línea 331: | ||
shows "q" | shows "q" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
show q using assms(1) by (rule conjunct2) | show q using assms(1) by (rule conjunct2) | ||
Línea 310: | Línea 345: | ||
shows "(p ∧ q) ∧ r" | shows "(p ∧ q) ∧ r" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
have 1: p using assms(1) by (rule conjunct1) | have 1: p using assms(1) by (rule conjunct1) | ||
Línea 328: | Línea 364: | ||
shows "p ∧ (q ∧ r)" | shows "p ∧ (q ∧ r)" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
have 1: "p & q" using assms(1) by (rule conjunct1) | have 1: "p & q" using assms(1) by (rule conjunct1) | ||
Línea 346: | Línea 383: | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 1: p | {assume 1: p | ||
Línea 361: | Línea 399: | ||
shows "p ⟶ q ∧ r" | shows "p ⟶ q ∧ r" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
have 1: "p⟶q" using assms(1) by (rule conjunct1) | have 1: "p⟶q" using assms(1) by (rule conjunct1) | ||
Línea 383: | Línea 422: | ||
shows "(p ⟶ q) ∧ (p ⟶ r)" | shows "(p ⟶ q) ∧ (p ⟶ r)" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 1:p | {assume 1:p | ||
Línea 406: | Línea 446: | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
Línea 426: | Línea 467: | ||
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{ assume 1: p | { assume 1: p | ||
Línea 437: | Línea 479: | ||
qed | qed | ||
+ | lemma ejercicio_22_1: | ||
+ | assumes "p ∧ q ⟶ r" | ||
+ | shows "p ⟶ (q ⟶ r)" | ||
+ | (*L.E.Caraballo*) | ||
+ | proof (rule impI) | ||
+ | assume 1: "p" | ||
+ | show "(q⟶r)" | ||
+ | proof (rule impI) | ||
+ | assume 2: "q" | ||
+ | have 3: "p∧q" using 1 2 by (rule conjI) | ||
+ | show "r" using assms 3 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 447: | Línea 502: | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 1: "p & q" | {assume 1: "p & q" | ||
Línea 455: | Línea 511: | ||
qed | qed | ||
+ | lemma ejercicio_23_1: | ||
+ | assumes "(p ⟶ q) ⟶ r" | ||
+ | shows "p ∧ q ⟶ r" | ||
+ | (*L.E.Caraballo*) | ||
+ | proof (rule impI) | ||
+ | assume 1: "p∧q" | ||
+ | have 2: "q" using 1 by (rule conjunct2) | ||
+ | have 3: "p⟶q" using 2 by (rule ejercicio_7) | ||
+ | show "r" using assms 3 by (rule mp) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 24. Demostrar | Ejercicio 24. Demostrar | ||
Línea 464: | Línea 531: | ||
shows "(p ⟶ q) ⟶ r" | shows "(p ⟶ q) ⟶ r" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
Línea 473: | Línea 541: | ||
} | } | ||
thus "(p⟶q)⟶r" by (rule impI) | thus "(p⟶q)⟶r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_24_1: | ||
+ | assumes "p ∧ (q ⟶ r)" | ||
+ | shows "(p ⟶ q) ⟶ r" | ||
+ | (*L.E.Caraballo*) | ||
+ | proof (rule impI) | ||
+ | assume 1: "p⟶q" | ||
+ | have 2: "p" using assms by (rule conjunct1) | ||
+ | have 3: "q⟶r" using assms by (rule conjunct2) | ||
+ | have 4: "q" using 1 2 .. | ||
+ | show 5: "r" using 3 4 .. | ||
qed | qed | ||
Línea 486: | Línea 566: | ||
shows "p ∨ q" | shows "p ∨ q" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
show "p | q" using assms(1) by (rule disjI1) | show "p | q" using assms(1) by (rule disjI1) | ||
Línea 499: | Línea 580: | ||
shows "p ∨ q" | shows "p ∨ q" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
show "p | q" using assms(1) by (rule disjI2) | show "p | q" using assms(1) by (rule disjI2) | ||
Línea 514: | Línea 596: | ||
shows "q ∨ p" | shows "q ∨ p" | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 534: | Línea 618: | ||
shows "p ∨ q ⟶ p ∨ r" | shows "p ∨ q ⟶ p ∨ r" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 1: "p | q" | {assume 1: "p | q" | ||
Línea 546: | Línea 631: | ||
qed} | qed} | ||
thus "p ∨ q ⟶ p ∨ r" by (rule impI) | thus "p ∨ q ⟶ p ∨ r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_28_1: | ||
+ | assumes "q ⟶ r" | ||
+ | shows "p ∨ q ⟶ p ∨ r" | ||
+ | (*L.E.Caraballo*) | ||
+ | proof (rule impI) | ||
+ | assume 1: "p∨q" | ||
+ | show "p∨r" | ||
+ | using 1 | ||
+ | proof (rule disjE) | ||
+ | { assume "p" | ||
+ | thus "p∨r" by (rule disjI1)} | ||
+ | { assume 2: "q" | ||
+ | have "r" using assms 2 by (rule mp) | ||
+ | thus "p∨r" by (rule disjI2)} | ||
+ | qed | ||
qed | qed | ||
Línea 557: | Línea 659: | ||
shows "p" | shows "p" | ||
+ | (*Solución M.Cumplido*) | ||
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 572: | Línea 675: | ||
shows "p ∨ p" | shows "p ∨ p" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
show "p | p" using assms(1) by (rule disjI1) | show "p | p" using assms(1) by (rule disjI1) | ||
Línea 585: | Línea 689: | ||
shows "(p ∨ q) ∨ r" | shows "(p ∨ q) ∨ r" | ||
+ | (*Solución M.Cumplido*) | ||
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 615: | Línea 720: | ||
shows "p ∨ (q ∨ r)" | shows "p ∨ (q ∨ r)" | ||
+ | (*Solución M.Cumplido*) | ||
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 646: | Línea 752: | ||
shows "(p ∧ q) ∨ (p ∧ r)" | shows "(p ∧ q) ∨ (p ∧ r)" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
have 1: p using assms(1) by (rule conjunct1) | have 1: p using assms(1) by (rule conjunct1) | ||
Línea 670: | Línea 777: | ||
shows "p ∧ (q ∨ r)" | shows "p ∧ (q ∨ r)" | ||
+ | (*Solución M.Cumplido*) | ||
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 695: | Línea 803: | ||
shows "(p ∨ q) ∧ (p ∨ r)" | shows "(p ∨ q) ∧ (p ∨ r)" | ||
+ | (*Solución M.Cumplido*) | ||
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 719: | Línea 828: | ||
shows "p ∨ (q ∧ r)" | shows "p ∨ (q ∧ r)" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
have 1: "p | q" using assms(1) by (rule conjunct1) | have 1: "p | q" using assms(1) by (rule conjunct1) | ||
Línea 751: | Línea 861: | ||
shows "p ∨ q ⟶ r" | shows "p ∨ q ⟶ r" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
have 1: "p ⟶ r" using assms(1) by (rule conjunct1) | have 1: "p ⟶ r" using assms(1) by (rule conjunct1) | ||
Línea 776: | Línea 887: | ||
shows "(p ⟶ r) ∧ (q ⟶ r)" | shows "(p ⟶ r) ∧ (q ⟶ r)" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume p | {assume p | ||
Línea 802: | Línea 914: | ||
shows "¬¬p" | shows "¬¬p" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
show "¬¬p" using assms(1) by (rule notnotI) | show "¬¬p" using assms(1) by (rule notnotI) | ||
Línea 812: | Línea 925: | ||
lemma ejercicio_40: | lemma ejercicio_40: | ||
+ | |||
assumes "¬p" | assumes "¬p" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 1: p | {assume 1: p | ||
Línea 830: | Línea 945: | ||
shows "¬q ⟶ ¬p" | shows "¬q ⟶ ¬p" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 1: "~q" | {assume 1: "~q" | ||
Línea 846: | Línea 962: | ||
shows "p" | shows "p" | ||
+ | (*Solución M.Cumplido*) | ||
using assms(1) | using assms(1) | ||
proof (rule disjE) | proof (rule disjE) | ||
Línea 854: | Línea 971: | ||
show p using assms(2) 1 by (rule notE)} | show p using assms(2) 1 by (rule notE)} | ||
qed | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 859: | Línea 977: | ||
p ∨ q, ¬p ⊢ q | p ∨ q, ¬p ⊢ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_43: | lemma ejercicio_43: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
"¬p" | "¬p" | ||
shows "q" | shows "q" | ||
− | |||
+ | (*Solución M.Cumplido*) | ||
+ | using assms(1) | ||
+ | proof (rule disjE) | ||
+ | {assume q | ||
+ | thus q by this} | ||
+ | next | ||
+ | {assume 1:p | ||
+ | show q using assms(2) 1 by (rule notE)} | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 44. Demostrar | Ejercicio 44. Demostrar | ||
p ∨ q ⊢ ¬(¬p ∧ ¬q) | p ∨ q ⊢ ¬(¬p ∧ ¬q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_44: | lemma ejercicio_44: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
shows "¬(¬p ∧ ¬q)" | shows "¬(¬p ∧ ¬q)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof (rule notI) | ||
+ | assume 1:"¬p ∧ ¬q" | ||
+ | have 2: "~p" using 1 by (rule conjunct1) | ||
+ | have 3: "~q" using 1 by (rule conjunct2) | ||
+ | show False using assms(1) | ||
+ | proof (rule disjE) | ||
+ | {assume 4:p | ||
+ | show False using 2 4 by (rule notE)} | ||
+ | next | ||
+ | {assume 5:q | ||
+ | show False using 3 5 by (rule notE)} | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 880: | Línea 1021: | ||
p ∧ q ⊢ ¬(¬p ∨ ¬q) | p ∧ q ⊢ ¬(¬p ∨ ¬q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_45: | lemma ejercicio_45: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "¬(¬p ∨ ¬q)" | shows "¬(¬p ∨ ¬q)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof (rule notI) | ||
+ | assume 1: "¬p ∨ ¬q" | ||
+ | show False using 1 | ||
+ | proof (rule disjE) | ||
+ | {assume 2: "~p" | ||
+ | have 3: p using assms(1) by (rule conjunct1) | ||
+ | show False using 2 3 by (rule notE)} | ||
+ | next | ||
+ | {assume 4: "~q" | ||
+ | have 5: q using assms(1) by (rule conjunct2) | ||
+ | show False using 4 5 by (rule notE)} | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 894: | Línea 1049: | ||
assumes "¬(p ∨ q)" | assumes "¬(p ∨ q)" | ||
shows "¬p ∧ ¬q" | shows "¬p ∧ ¬q" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have 1:"~~(~p & ~q)" | ||
+ | proof (rule notI) | ||
+ | assume 2: "~(~p & ~q)" | ||
+ | have 3:"~p" | ||
+ | proof (rule notI) | ||
+ | assume p | ||
+ | hence 4:"p | q" by (rule disjI1) | ||
+ | show False using assms(1) 4 by (rule notE) | ||
+ | qed | ||
+ | have 5:"~q" | ||
+ | proof (rule notI) | ||
+ | assume q | ||
+ | hence 6:"p | q" by (rule disjI2) | ||
+ | show False using assms(1) 6 by (rule notE) | ||
+ | qed | ||
+ | have 7: "~p & ~q" using 3 5 by (rule conjI) | ||
+ | show False using 2 7 by (rule notE) | ||
+ | qed | ||
+ | show "¬p ∧ ¬q" using 1 by (rule notnotD) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 904: | Línea 1081: | ||
assumes "¬p ∧ ¬q" | assumes "¬p ∧ ¬q" | ||
shows "¬(p ∨ q)" | shows "¬(p ∨ q)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | |||
+ | proof(rule notI) | ||
+ | assume "p | q" | ||
+ | thus False | ||
+ | proof(rule disjE) | ||
+ | {assume 1: p | ||
+ | have 2:"~p" using assms(1) by (rule conjunct1) | ||
+ | show False using 2 1 by (rule notE)} | ||
+ | next | ||
+ | {assume 3: q | ||
+ | have 4: "~q" using assms(1) by (rule conjunct2) | ||
+ | show False using 4 3 by (rule notE)} | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 914: | Línea 1106: | ||
assumes "¬p ∨ ¬q" | assumes "¬p ∨ ¬q" | ||
shows "¬(p ∧ q)" | shows "¬(p ∧ q)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | |||
+ | proof (rule notI) | ||
+ | assume 1: "p & q" | ||
+ | have 2: p using 1 by (rule conjunct1) | ||
+ | have 3: q using 1 by (rule conjunct2) | ||
+ | show False using assms(1) | ||
+ | proof (rule disjE) | ||
+ | {assume 4:"~p" | ||
+ | show False using 4 2 by (rule notE) } | ||
+ | next | ||
+ | {assume 5:"~q" | ||
+ | show False using 5 3 by (rule notE) } | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 920: | Línea 1127: | ||
⊢ ¬(p ∧ ¬p) | ⊢ ¬(p ∧ ¬p) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_49: | lemma ejercicio_49: | ||
"¬(p ∧ ¬p)" | "¬(p ∧ ¬p)" | ||
− | |||
+ | (*Solución M.Cumplido*) | ||
+ | proof (rule notI) | ||
+ | assume 1:"p & ~p" | ||
+ | hence 2: p by (rule conjunct1) | ||
+ | have 3: "~p" using 1 by (rule conjunct2) | ||
+ | show False using 3 2 by (rule notE) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 50. Demostrar | Ejercicio 50. Demostrar | ||
p ∧ ¬p ⊢ q | p ∧ ¬p ⊢ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_50: | lemma ejercicio_50: | ||
assumes "p ∧ ¬p" | assumes "p ∧ ¬p" | ||
shows "q" | shows "q" | ||
− | |||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have 1: p using assms(1) by (rule conjunct1) | ||
+ | have 2: "~p" using assms(1) by (rule conjunct2) | ||
+ | show "q" using 2 1 by (rule notE) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 51. Demostrar | Ejercicio 51. Demostrar | ||
¬¬p ⊢ p | ¬¬p ⊢ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_51: | lemma ejercicio_51: | ||
assumes "¬¬p" | assumes "¬¬p" | ||
shows "p" | shows "p" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | show p using assms(1) by (rule notnotD) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 952: | Línea 1177: | ||
lemma ejercicio_52: | lemma ejercicio_52: | ||
"p ∨ ¬p" | "p ∨ ¬p" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof(rule ccontr) | ||
+ | assume 1:"~(p | ~ p)" | ||
+ | hence "~p & ~~p" by (rule ejercicio_46) | ||
+ | hence "~p" by (rule conjunct1) | ||
+ | hence 2:"p | ~p" by (rule disjI2) | ||
+ | show False using 1 2 by (rule notE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 961: | Línea 1194: | ||
lemma ejercicio_53: | lemma ejercicio_53: | ||
"((p ⟶ q) ⟶ p) ⟶ p" | "((p ⟶ q) ⟶ p) ⟶ p" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 1:"(p ⟶ q) ⟶ p" | ||
+ | have p | ||
+ | proof(rule ccontr) | ||
+ | assume 2:"~p" | ||
+ | {assume 3:p | ||
+ | have q using 2 3 by (rule notE)} | ||
+ | hence 4:"p⟶q" by (rule impI) | ||
+ | have 5: p using 1 4 by (rule mp) | ||
+ | show False using 2 5 by (rule notE) | ||
+ | qed | ||
+ | } | ||
+ | thus "((p ⟶ q) ⟶ p) ⟶ p" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 971: | Línea 1219: | ||
assumes "¬q ⟶ ¬p" | assumes "¬q ⟶ ¬p" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
+ | |||
+ | proof - | ||
+ | {assume 1: p | ||
+ | hence 2: "~~p" by (rule notnotI) | ||
+ | have 3: "~~q" using assms(1) 2 by (rule mt) | ||
+ | hence q by (rule notnotD)} | ||
+ | thus "p⟶q" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 977: | Línea 1235: | ||
¬(¬p ∧ ¬q) ⊢ p ∨ q | ¬(¬p ∧ ¬q) ⊢ p ∨ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_55: | lemma ejercicio_55: | ||
assumes "¬(¬p ∧ ¬q)" | assumes "¬(¬p ∧ ¬q)" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | |||
+ | (*Solución M.Cumplido*) | ||
+ | proof(rule ccontr) | ||
+ | assume "~(p | q)" | ||
+ | hence 1: "~p & ~q" by (rule ejercicio_46) | ||
+ | show False using assms(1) 1 by (rule notE) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 56. Demostrar | Ejercicio 56. Demostrar | ||
¬(¬p ∨ ¬q) ⊢ p ∧ q | ¬(¬p ∨ ¬q) ⊢ p ∧ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_56: | lemma ejercicio_56: | ||
assumes "¬(¬p ∨ ¬q)" | assumes "¬(¬p ∨ ¬q)" | ||
shows "p ∧ q" | shows "p ∧ q" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have 1: "~~p & ~~q" using assms(1) by (rule ejercicio_46) | ||
+ | have 2: "~~p" using 1 by (rule conjunct1) | ||
+ | have 3: "~~q" using 1 by (rule conjunct2) | ||
+ | have 4: p using 2 by (rule notnotD) | ||
+ | have 5: q using 3 by (rule notnotD) | ||
+ | show "p & q" using 4 5 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 997: | Línea 1270: | ||
¬(p ∧ q) ⊢ ¬p ∨ ¬q | ¬(p ∧ q) ⊢ ¬p ∨ ¬q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_57: | lemma ejercicio_57: | ||
assumes "¬(p ∧ q)" | assumes "¬(p ∧ q)" | ||
shows "¬p ∨ ¬q" | shows "¬p ∨ ¬q" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 1: "~(¬p ∨ ¬q)" | ||
+ | hence 2: "p & q" by (rule ejercicio_56)} | ||
+ | hence 3: "¬(¬p | ¬q)⟶ (p & q)" by (rule impI) | ||
+ | have 4:"¬¬(¬p | ¬q)" using 3 assms(1) by (rule mt) | ||
+ | thus "¬p ∨ ¬q" by (rule notnotD) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 1007: | Línea 1288: | ||
⊢ (p ⟶ q) ∨ (q ⟶ p) | ⊢ (p ⟶ q) ∨ (q ⟶ p) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_58: | lemma ejercicio_58: | ||
"(p ⟶ q) ∨ (q ⟶ p)" | "(p ⟶ q) ∨ (q ⟶ p)" | ||
− | + | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have "q | ¬q" by (rule ejercicio_52) | ||
+ | thus "(p ⟶ q) ∨ (q ⟶ p)" | ||
+ | proof (rule disjE) | ||
+ | {assume q | ||
+ | hence "p⟶q" by (rule ejercicio_7) | ||
+ | thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1)} | ||
+ | next | ||
+ | {assume "¬q" | ||
+ | hence "¬p⟶¬q" by (rule ejercicio_7) | ||
+ | hence "q⟶p" by (rule ejercicio_54) | ||
+ | thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)} | ||
+ | qed | ||
+ | qed | ||
+ | |||
end | end | ||
</source> | </source> |
Revisión actual del 18:18 9 mar 2015
header {* R1: Deducción natural proposicional *}
theory Rel_1
imports Main
begin
text {*
---------------------------------------------------------------------
El objetivo de esta relación es demostrar cada uno de los ejercicios
usando sólo las reglas básicas de deducción natural de la lógica
proposicional (sin usar el método auto).
Las reglas básicas de la deducción natural son las siguientes:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· notnotI: P ⟹ ¬¬ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· mt: ⟦F ⟶ G; ¬G⟧ ⟹ ¬F
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
---------------------------------------------------------------------
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación. *}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
section {* Implicaciones *}
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
p ⟶ q, p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_1:
assumes 1:"p ⟶ q" and
2:"p"
shows "q"
(*Solución M.Cumplido*)
proof -
show 3: "q" using 1 2 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
p ⟶ q, q ⟶ r, p ⊢ r
------------------------------------------------------------------ *}
lemma ejercicio_2:
assumes 1:"p ⟶ q" and
2:"q ⟶ r" and
3:"p"
shows "r"
(*Solución M.Cumplido*)
proof -
have 4: "q" using 1 3 by (rule mp)
show 5: "r" using 2 4 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
------------------------------------------------------------------ *}
lemma ejercicio_3:
assumes 1:"p ⟶ (q ⟶ r)" and
2:"p ⟶ q" and
3:"p"
shows "r"
(*Solución M.Cumplido*)
proof -
have 4:"q ⟶ r" using 1 3 by (rule mp)
show "r" using 2 4 3 by (rule ejercicio_2)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
p ⟶ q, q ⟶ r ⊢ p ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_4:
assumes 1:"p ⟶ q" and
2:"q ⟶ r"
shows "p ⟶ r"
(*Solución M.Cumplido*)
proof -
{assume 3:"p"
have "r" using 1 2 3 by (rule ejercicio_2)}
thus "p ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_5:
assumes 1:"p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 2: q
{assume 3: p
have 4:"q ⟶ r" using 1 3 by (rule mp)
have r using 4 2 by (rule mp)}
hence "p ⟶ r" by (rule impI)}
thus "q ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_6:
assumes 1:"p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 2:"p ⟶ q"
{assume 3: p
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "p ⟶ r" using 2 4 by (rule ejercicio_4)
have r using 5 3 by (rule mp)}
hence "p ⟶ r" by (rule impI)}
thus "(p ⟶ q) ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
p ⊢ q ⟶ p
------------------------------------------------------------------ *}
lemma ejercicio_7:
assumes 1:"p"
shows "q ⟶ p"
(*Solución M.Cumplido*)
proof -
{assume 2:q
have 3: p
proof (rule ccontr)
assume 4:"¬p"
show False using 4 1 by (rule notE)
qed
}
thus "q⟶p" by (rule impI)
qed
lemma ejercicio_7_1:
assumes "p"
shows "q ⟶ p"
(*L.E. Caraballo*)
proof -
{ assume "q"
have "p" using assms(1) by this
}
thus "q⟶p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
⊢ p ⟶ (q ⟶ p)
------------------------------------------------------------------ *}
lemma ejercicio_8:
"p ⟶ (q ⟶ p)"
(*Solución M.Cumplido*)
proof -
{assume 1: p
{assume 2:q
have 3: p
proof (rule ccontr)
assume 4:"¬p"
show False using 4 1 by (rule notE)
qed}
hence "q⟶p" by (rule impI)}
thus "p ⟶ (q ⟶ p)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_9:
assumes 1:"p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 2:"q⟶r"
have 3:"p⟶r" using 1 2 by (rule ejercicio_4)}
thus "(q ⟶ r) ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s))
------------------------------------------------------------------ *}
lemma ejercicio_10:
assumes 1:"p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
(*Solución M.Cumplido*)
proof -
{assume 2: r
{assume 3: q
{assume 4: p
have 5: "q ⟶ (r ⟶ s)" using 1 4 by (rule mp)
have 6:"r⟶s" using 5 3 by (rule mp)
have s using 6 2 by (rule mp)
}
hence "p⟶ s" by (rule impI)
}
hence "q ⟶ (p ⟶ s)" by (rule impI)
}
thus "r ⟶ (q ⟶ (p ⟶ s))" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
------------------------------------------------------------------ *}
lemma ejercicio_11:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
(*Solución M.Cumplido*)
proof -
{assume "p ⟶ (q ⟶ r)"
hence "(p ⟶ q) ⟶ (p ⟶ r)" by (rule ejercicio_6)
}
thus "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_12:
assumes 1:"(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 2:p
{assume 3:q
hence 4:"p⟶q" by (rule ejercicio_7)
have r using 1 4 by (rule mp)
}
hence "q⟶r" by (rule impI)
}
thus "p⟶(q⟶r)" by (rule impI)
qed
section {* Conjunciones *}
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
p, q ⊢ p ∧ q
------------------------------------------------------------------ *}
lemma ejercicio_13:
assumes 1:"p" and
2:"q"
shows "p ∧ q"
(*Solución M.Cumplido*)
proof -
show "p ∧ q" using 1 2 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
p ∧ q ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_14:
assumes "p ∧ q"
shows "p"
(*Solución M.Cumplido*)
proof -
show p using assms(1) by (rule conjunct1)
qed
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
p ∧ q ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_15:
assumes "p ∧ q"
shows "q"
(*Solución M.Cumplido*)
proof -
show q using assms(1) by (rule conjunct2)
qed
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r
------------------------------------------------------------------ *}
lemma ejercicio_16:
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
(*Solución M.Cumplido*)
proof -
have 1: p using assms(1) by (rule conjunct1)
have 2: "q & r" using assms(1) by (rule conjunct2)
have 3: q using 2 by (rule conjunct1)
have 4: r using 2 by (rule conjunct2)
have 5: "p & q" using 1 3 by (rule conjI)
show "(p ∧ q) ∧ r" using 5 4 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
(p ∧ q) ∧ r ⊢ p ∧ (q ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_17:
assumes "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
(*Solución M.Cumplido*)
proof -
have 1: "p & q" using assms(1) by (rule conjunct1)
have 2: "r" using assms(1) by (rule conjunct2)
have 3: q using 1 by (rule conjunct2)
have 4: p using 1 by (rule conjunct1)
have 5: "q & r" using 3 2 by (rule conjI)
show "p ∧ (q ∧ r)" using 4 5 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
p ∧ q ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_18:
assumes "p ∧ q"
shows "p ⟶ q"
(*Solución M.Cumplido*)
proof -
{assume 1: p
have 2: q using assms(1) by (rule conjunct2)}
thus "p⟶q" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r
------------------------------------------------------------------ *}
lemma ejercicio_19:
assumes "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
(*Solución M.Cumplido*)
proof -
have 1: "p⟶q" using assms(1) by (rule conjunct1)
have 2: "p⟶r" using assms(1) by (rule conjunct2)
{assume 3: p
have 4: q using 1 3 by (rule mp)
have 5: r using 2 3 by (rule mp)
have 6: "q & r" using 4 5 by (rule conjI)
}
thus "p⟶ q & r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_20:
assumes "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 1:p
have 2:"q & r" using assms(1) 1 by (rule mp)
have 3: q using 2 by (rule conjunct1)}
hence 4: "p⟶q" by (rule impI)
{assume 5:p
have 6:"q & r" using assms(1) 5 by (rule mp)
have 7: r using 6 by (rule conjunct2)}
hence 8: "p⟶r" by (rule impI)
show "(p ⟶ q) ∧ (p ⟶ r)" using 4 8 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_21:
assumes "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
(*Solución M.Cumplido*)
proof -
{assume 1:"p & q"
have 2: p using 1 by (rule conjunct1)
have 3: "q⟶r" using assms(1) 2 by (rule mp)
have 4: q using 1 by (rule conjunct2)
have 5: r using 3 4 by (rule mp)
}
thus "p & q ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_22:
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
(*Solución M.Cumplido*)
proof -
{ assume 1: p
{assume 2: q
have 3: "p & q" using 1 2 by (rule conjI)
have 4: r using assms(1) 3 by (rule mp)
}
hence "q⟶r" by (rule impI)
}
thus "p⟶(q⟶r)" by (rule impI)
qed
lemma ejercicio_22_1:
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
(*L.E.Caraballo*)
proof (rule impI)
assume 1: "p"
show "(q⟶r)"
proof (rule impI)
assume 2: "q"
have 3: "p∧q" using 1 2 by (rule conjI)
show "r" using assms 3 by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_23:
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
(*Solución M.Cumplido*)
proof -
{assume 1: "p & q"
have 2: "p⟶ q" using 1 by (rule ejercicio_18)
have r using assms(1) 2 by (rule mp)
}
thus "p ∧ q ⟶ r" by (rule impI)
qed
lemma ejercicio_23_1:
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
(*L.E.Caraballo*)
proof (rule impI)
assume 1: "p∧q"
have 2: "q" using 1 by (rule conjunct2)
have 3: "p⟶q" using 2 by (rule ejercicio_7)
show "r" using assms 3 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_24:
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
(*Solución M.Cumplido*)
proof -
have 1: p using assms(1) by (rule conjunct1)
have 2: "q⟶r" using assms(1) by (rule conjunct2)
{assume 3: "p⟶q"
have 4: q using 3 1 by (rule mp)
have r using 2 4 by (rule mp)
}
thus "(p⟶q)⟶r" by (rule impI)
qed
lemma ejercicio_24_1:
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
(*L.E.Caraballo*)
proof (rule impI)
assume 1: "p⟶q"
have 2: "p" using assms by (rule conjunct1)
have 3: "q⟶r" using assms by (rule conjunct2)
have 4: "q" using 1 2 ..
show 5: "r" using 3 4 ..
qed
section {* Disyunciones *}
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
p ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_25:
assumes "p"
shows "p ∨ q"
(*Solución M.Cumplido*)
proof -
show "p | q" using assms(1) by (rule disjI1)
qed
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
q ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_26:
assumes "q"
shows "p ∨ q"
(*Solución M.Cumplido*)
proof -
show "p | q" using assms(1) by (rule disjI2)
qed
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar
p ∨ q ⊢ q ∨ p
------------------------------------------------------------------ *}
lemma ejercicio_27:
assumes "p ∨ q"
shows "q ∨ p"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume 1:p
show 2: "q | p" using 1 by (rule disjI2)}
next
{assume 3:q
show 4: "q | p" using 3 by (rule disjI1)}
qed
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
------------------------------------------------------------------ *}
lemma ejercicio_28:
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
(*Solución M.Cumplido*)
proof -
{assume 1: "p | q"
have 2:"p | r" using 1
proof (rule disjE)
{assume p
thus "p | r" by (rule disjI1)}
next
{assume 3: q
have r using assms(1) 3 by (rule mp)
thus "p | r" by (rule disjI2)}
qed}
thus "p ∨ q ⟶ p ∨ r" by (rule impI)
qed
lemma ejercicio_28_1:
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
(*L.E.Caraballo*)
proof (rule impI)
assume 1: "p∨q"
show "p∨r"
using 1
proof (rule disjE)
{ assume "p"
thus "p∨r" by (rule disjI1)}
{ assume 2: "q"
have "r" using assms 2 by (rule mp)
thus "p∨r" by (rule disjI2)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar
p ∨ p ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_29:
assumes "p ∨ p"
shows "p"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume p
thus p by this}
qed
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar
p ⊢ p ∨ p
------------------------------------------------------------------ *}
lemma ejercicio_30:
assumes "p"
shows "p ∨ p"
(*Solución M.Cumplido*)
proof -
show "p | p" using assms(1) by (rule disjI1)
qed
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar
p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r
------------------------------------------------------------------ *}
lemma ejercicio_31:
assumes "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume p
hence "p | q" by (rule disjI1)
thus "(p ∨ q) ∨ r" by (rule disjI1)}
next
{assume 1: "q | r"
show "(p ∨ q) ∨ r" using 1
proof (rule disjE)
{assume q
hence "p | q" by (rule disjI2)
thus "(p ∨ q) ∨ r" by (rule disjI1)}
next
{assume r
thus "(p ∨ q) ∨ r" by (rule disjI2) }
qed
}
qed
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_32:
assumes "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume r
hence "q | r" by (rule disjI2)
thus "p ∨ (q ∨ r)" by (rule disjI2)}
next
{assume 1: "p | q"
show "p ∨ (q ∨ r)" using 1
proof (rule disjE)
{assume q
hence "q | r" by (rule disjI1)
thus "p ∨ (q ∨ r)" by (rule disjI2)}
next
{assume p
thus "p ∨ (q ∨ r)" by (rule disjI1) }
qed
}
qed
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_33:
assumes "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
(*Solución M.Cumplido*)
proof -
have 1: p using assms(1) by (rule conjunct1)
have 2: "q | r" using assms(1) by (rule conjunct2)
show "(p ∧ q) ∨ (p ∧ r)" using 2
proof (rule disjE)
{assume 3: q
have 4: "p & q" using 1 3 by (rule conjI)
thus "(p ∧ q) ∨ (p ∧ r)" by (rule disjI1)}
next
{assume 5:r
have 6: "p & r" using 1 5 by (rule conjI)
thus "(p ∧ q) ∨ (p ∧ r)" by (rule disjI2)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_34:
assumes "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume 1:"p & q"
hence 2: p by (rule conjunct1)
have q using 1 by (rule conjunct2)
hence 3:"q | r" by (rule disjI1)
show "p ∧ (q ∨ r)" using 2 3 by (rule conjI)}
next
{assume 4:"p & r"
hence 5: p by (rule conjunct1)
have r using 4 by (rule conjunct2)
hence 6:"q | r" by (rule disjI2)
show "p ∧ (q ∨ r)" using 5 6 by (rule conjI)}
qed
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_35:
assumes "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume 1: p
have 2: "p | q" using 1 by (rule disjI1)
have 3: "p | r" using 1 by (rule disjI1)
show "(p ∨ q) ∧ (p ∨ r)" using 2 3 by (rule conjI) }
next
{assume 4: "q & r"
hence 5: q by (rule conjunct1)
have 6: r using 4 by (rule conjunct2)
have 7: "p | q" using 5 by (rule disjI2)
have 8: "p | r" using 6 by (rule disjI2)
show "(p ∨ q) ∧ (p ∨ r)" using 7 8 by (rule conjI)}
qed
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_36:
assumes "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
(*Solución M.Cumplido*)
proof -
have 1: "p | q" using assms(1) by (rule conjunct1)
have 2: "p | r" using assms(1) by (rule conjunct2)
have "p ∨ (q ∧ r)" using 1
proof (rule disjE)
{assume p
thus "p ∨ (q ∧ r)" by (rule disjI1)}
next
{assume 3: q
show "p ∨ (q ∧ r)" using 2
proof (rule disjE)
{assume p
thus "p ∨ (q ∧ r)" by (rule disjI1)}
next
{assume 4: r
have "q & r" using 3 4 by (rule conjI)
thus "p ∨ (q ∧ r)" by (rule disjI2)}
qed
}
qed
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_37:
assumes "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
(*Solución M.Cumplido*)
proof -
have 1: "p ⟶ r" using assms(1) by (rule conjunct1)
have 2: "q ⟶ r" using assms(1) by (rule conjunct2)
{assume 3: "p | q"
have r using 3
proof (rule disjE)
{assume 4: p
show r using 1 4 by (rule mp)}
next
{assume 5: q
show r using 2 5 by (rule mp) }
qed
}
thus "p ∨ q ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 38. Demostrar
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_38:
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume p
hence 1:"p | q" by (rule disjI1)
have r using assms(1) 1 by (rule mp)}
hence 2: "p ⟶ r" by (rule impI)
{assume q
hence 3:"p | q" by (rule disjI2)
have r using assms(1) 3 by (rule mp)}
hence 4: "q ⟶ r" by (rule impI)
show "(p ⟶ r) ∧ (q ⟶ r)" using 2 4 by (rule conjI)
qed
section {* Negaciones *}
text {* ---------------------------------------------------------------
Ejercicio 39. Demostrar
p ⊢ ¬¬p
------------------------------------------------------------------ *}
lemma ejercicio_39:
assumes "p"
shows "¬¬p"
(*Solución M.Cumplido*)
proof -
show "¬¬p" using assms(1) by (rule notnotI)
qed
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_40:
assumes "¬p"
shows "p ⟶ q"
(*Solución M.Cumplido*)
proof -
{assume 1: p
have q using assms(1) 1 by (rule notE)}
thus "p ⟶ q" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 41. Demostrar
p ⟶ q ⊢ ¬q ⟶ ¬p
------------------------------------------------------------------ *}
lemma ejercicio_41:
assumes "p ⟶ q"
shows "¬q ⟶ ¬p"
(*Solución M.Cumplido*)
proof -
{assume 1: "~q"
have "~p" using assms(1) 1 by (rule mt) }
thus "¬q ⟶ ¬p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p∨q, ¬q ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_42:
assumes "p∨q"
"¬q"
shows "p"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume p
thus p by this}
next
{assume 1:q
show p using assms(2) 1 by (rule notE)}
qed
text {* ---------------------------------------------------------------
Ejercicio 43. Demostrar
p ∨ q, ¬p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_43:
assumes "p ∨ q"
"¬p"
shows "q"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume q
thus q by this}
next
{assume 1:p
show q using assms(2) 1 by (rule notE)}
qed
text {* ---------------------------------------------------------------
Ejercicio 44. Demostrar
p ∨ q ⊢ ¬(¬p ∧ ¬q)
------------------------------------------------------------------ *}
lemma ejercicio_44:
assumes "p ∨ q"
shows "¬(¬p ∧ ¬q)"
(*Solución M.Cumplido*)
proof (rule notI)
assume 1:"¬p ∧ ¬q"
have 2: "~p" using 1 by (rule conjunct1)
have 3: "~q" using 1 by (rule conjunct2)
show False using assms(1)
proof (rule disjE)
{assume 4:p
show False using 2 4 by (rule notE)}
next
{assume 5:q
show False using 3 5 by (rule notE)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 45. Demostrar
p ∧ q ⊢ ¬(¬p ∨ ¬q)
------------------------------------------------------------------ *}
lemma ejercicio_45:
assumes "p ∧ q"
shows "¬(¬p ∨ ¬q)"
(*Solución M.Cumplido*)
proof (rule notI)
assume 1: "¬p ∨ ¬q"
show False using 1
proof (rule disjE)
{assume 2: "~p"
have 3: p using assms(1) by (rule conjunct1)
show False using 2 3 by (rule notE)}
next
{assume 4: "~q"
have 5: q using assms(1) by (rule conjunct2)
show False using 4 5 by (rule notE)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 46. Demostrar
¬(p ∨ q) ⊢ ¬p ∧ ¬q
------------------------------------------------------------------ *}
lemma ejercicio_46:
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
(*Solución M.Cumplido*)
proof -
have 1:"~~(~p & ~q)"
proof (rule notI)
assume 2: "~(~p & ~q)"
have 3:"~p"
proof (rule notI)
assume p
hence 4:"p | q" by (rule disjI1)
show False using assms(1) 4 by (rule notE)
qed
have 5:"~q"
proof (rule notI)
assume q
hence 6:"p | q" by (rule disjI2)
show False using assms(1) 6 by (rule notE)
qed
have 7: "~p & ~q" using 3 5 by (rule conjI)
show False using 2 7 by (rule notE)
qed
show "¬p ∧ ¬q" using 1 by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 47. Demostrar
¬p ∧ ¬q ⊢ ¬(p ∨ q)
------------------------------------------------------------------ *}
lemma ejercicio_47:
assumes "¬p ∧ ¬q"
shows "¬(p ∨ q)"
(*Solución M.Cumplido*)
proof(rule notI)
assume "p | q"
thus False
proof(rule disjE)
{assume 1: p
have 2:"~p" using assms(1) by (rule conjunct1)
show False using 2 1 by (rule notE)}
next
{assume 3: q
have 4: "~q" using assms(1) by (rule conjunct2)
show False using 4 3 by (rule notE)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 48. Demostrar
¬p ∨ ¬q ⊢ ¬(p ∧ q)
------------------------------------------------------------------ *}
lemma ejercicio_48:
assumes "¬p ∨ ¬q"
shows "¬(p ∧ q)"
(*Solución M.Cumplido*)
proof (rule notI)
assume 1: "p & q"
have 2: p using 1 by (rule conjunct1)
have 3: q using 1 by (rule conjunct2)
show False using assms(1)
proof (rule disjE)
{assume 4:"~p"
show False using 4 2 by (rule notE) }
next
{assume 5:"~q"
show False using 5 3 by (rule notE) }
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 49. Demostrar
⊢ ¬(p ∧ ¬p)
------------------------------------------------------------------ *}
lemma ejercicio_49:
"¬(p ∧ ¬p)"
(*Solución M.Cumplido*)
proof (rule notI)
assume 1:"p & ~p"
hence 2: p by (rule conjunct1)
have 3: "~p" using 1 by (rule conjunct2)
show False using 3 2 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 50. Demostrar
p ∧ ¬p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_50:
assumes "p ∧ ¬p"
shows "q"
(*Solución M.Cumplido*)
proof -
have 1: p using assms(1) by (rule conjunct1)
have 2: "~p" using assms(1) by (rule conjunct2)
show "q" using 2 1 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 51. Demostrar
¬¬p ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_51:
assumes "¬¬p"
shows "p"
(*Solución M.Cumplido*)
proof -
show p using assms(1) by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 52. Demostrar
⊢ p ∨ ¬p
------------------------------------------------------------------ *}
lemma ejercicio_52:
"p ∨ ¬p"
(*Solución M.Cumplido*)
proof(rule ccontr)
assume 1:"~(p | ~ p)"
hence "~p & ~~p" by (rule ejercicio_46)
hence "~p" by (rule conjunct1)
hence 2:"p | ~p" by (rule disjI2)
show False using 1 2 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 53. Demostrar
⊢ ((p ⟶ q) ⟶ p) ⟶ p
------------------------------------------------------------------ *}
lemma ejercicio_53:
"((p ⟶ q) ⟶ p) ⟶ p"
(*Solución M.Cumplido*)
proof -
{assume 1:"(p ⟶ q) ⟶ p"
have p
proof(rule ccontr)
assume 2:"~p"
{assume 3:p
have q using 2 3 by (rule notE)}
hence 4:"p⟶q" by (rule impI)
have 5: p using 1 4 by (rule mp)
show False using 2 5 by (rule notE)
qed
}
thus "((p ⟶ q) ⟶ p) ⟶ p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 54. Demostrar
¬q ⟶ ¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_54:
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
(*Solución M.Cumplido*)
proof -
{assume 1: p
hence 2: "~~p" by (rule notnotI)
have 3: "~~q" using assms(1) 2 by (rule mt)
hence q by (rule notnotD)}
thus "p⟶q" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 55. Demostrar
¬(¬p ∧ ¬q) ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_55:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
(*Solución M.Cumplido*)
proof(rule ccontr)
assume "~(p | q)"
hence 1: "~p & ~q" by (rule ejercicio_46)
show False using assms(1) 1 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 56. Demostrar
¬(¬p ∨ ¬q) ⊢ p ∧ q
------------------------------------------------------------------ *}
lemma ejercicio_56:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
(*Solución M.Cumplido*)
proof -
have 1: "~~p & ~~q" using assms(1) by (rule ejercicio_46)
have 2: "~~p" using 1 by (rule conjunct1)
have 3: "~~q" using 1 by (rule conjunct2)
have 4: p using 2 by (rule notnotD)
have 5: q using 3 by (rule notnotD)
show "p & q" using 4 5 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 57. Demostrar
¬(p ∧ q) ⊢ ¬p ∨ ¬q
------------------------------------------------------------------ *}
lemma ejercicio_57:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
(*Solución M.Cumplido*)
proof -
{assume 1: "~(¬p ∨ ¬q)"
hence 2: "p & q" by (rule ejercicio_56)}
hence 3: "¬(¬p | ¬q)⟶ (p & q)" by (rule impI)
have 4:"¬¬(¬p | ¬q)" using 3 assms(1) by (rule mt)
thus "¬p ∨ ¬q" by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 58. Demostrar
⊢ (p ⟶ q) ∨ (q ⟶ p)
------------------------------------------------------------------ *}
lemma ejercicio_58:
"(p ⟶ q) ∨ (q ⟶ p)"
(*Solución M.Cumplido*)
proof -
have "q | ¬q" by (rule ejercicio_52)
thus "(p ⟶ q) ∨ (q ⟶ p)"
proof (rule disjE)
{assume q
hence "p⟶q" by (rule ejercicio_7)
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1)}
next
{assume "¬q"
hence "¬p⟶¬q" by (rule ejercicio_7)
hence "q⟶p" by (rule ejercicio_54)
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)}
qed
qed
end