Diferencia entre revisiones de «Relación 1»
De Demostración automática de teoremas (2014-15)
(ej7) |
(Adicionando versiones distintas de algunos ejercicios) |
||
(No se muestran 18 ediciones intermedias de otro usuario) | |||
Línea 51: | Línea 51: | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | |||
lemma ejercicio_1: | lemma ejercicio_1: | ||
assumes 1:"p ⟶ q" and | assumes 1:"p ⟶ q" and | ||
2:"p" | 2:"p" | ||
shows "q" | shows "q" | ||
+ | |||
+ | |||
+ | (*Solución M.Cumplido*) | ||
+ | |||
proof - | proof - | ||
show 3: "q" using 1 2 by (rule mp) | show 3: "q" using 1 2 by (rule mp) | ||
Línea 69: | Línea 75: | ||
3:"p" | 3:"p" | ||
shows "r" | shows "r" | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
have 4: "q" using 1 3 by (rule mp) | have 4: "q" using 1 3 by (rule mp) | ||
Línea 84: | Línea 92: | ||
3:"p" | 3:"p" | ||
shows "r" | shows "r" | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
have 4:"q ⟶ r" using 1 3 by (rule mp) | have 4:"q ⟶ r" using 1 3 by (rule mp) | ||
Línea 98: | Línea 108: | ||
shows "p ⟶ r" | shows "p ⟶ r" | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 3:"p" | {assume 3:"p" | ||
Línea 113: | Línea 125: | ||
shows "q ⟶ (p ⟶ r)" | shows "q ⟶ (p ⟶ r)" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 2: q | {assume 2: q | ||
Línea 131: | Línea 144: | ||
shows "(p ⟶ q) ⟶ (p ⟶ r)" | shows "(p ⟶ q) ⟶ (p ⟶ r)" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 2:"p ⟶ q" | {assume 2:"p ⟶ q" | ||
Línea 150: | Línea 164: | ||
shows "q ⟶ p" | shows "q ⟶ p" | ||
+ | (*Solución M.Cumplido*) | ||
proof - | proof - | ||
{assume 2:q | {assume 2:q | ||
Línea 159: | Línea 174: | ||
} | } | ||
thus "q⟶p" by (rule impI) | thus "q⟶p" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_7_1: | ||
+ | assumes "p" | ||
+ | shows "q ⟶ p" | ||
+ | (*L.E. Caraballo*) | ||
+ | proof - | ||
+ | { assume "q" | ||
+ | have "p" using assms(1) by this | ||
+ | } | ||
+ | thus "q⟶p" by (rule impI) | ||
qed | qed | ||
Línea 168: | Línea 194: | ||
lemma ejercicio_8: | lemma ejercicio_8: | ||
"p ⟶ (q ⟶ p)" | "p ⟶ (q ⟶ p)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 1: p | ||
+ | {assume 2:q | ||
+ | have 3: p | ||
+ | proof (rule ccontr) | ||
+ | assume 4:"¬p" | ||
+ | show False using 4 1 by (rule notE) | ||
+ | qed} | ||
+ | hence "q⟶p" by (rule impI)} | ||
+ | thus "p ⟶ (q ⟶ p)" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 176: | Línea 214: | ||
lemma ejercicio_9: | lemma ejercicio_9: | ||
− | assumes "p ⟶ q" | + | assumes 1:"p ⟶ q" |
shows "(q ⟶ r) ⟶ (p ⟶ r)" | shows "(q ⟶ r) ⟶ (p ⟶ r)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 2:"q⟶r" | ||
+ | have 3:"p⟶r" using 1 2 by (rule ejercicio_4)} | ||
+ | thus "(q ⟶ r) ⟶ (p ⟶ r)" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 184: | Línea 228: | ||
p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s)) | p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s)) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
lemma ejercicio_10: | lemma ejercicio_10: | ||
− | assumes "p ⟶ (q ⟶ (r ⟶ s))" | + | assumes 1:"p ⟶ (q ⟶ (r ⟶ s))" |
shows "r ⟶ (q ⟶ (p ⟶ s))" | shows "r ⟶ (q ⟶ (p ⟶ s))" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 2: r | ||
+ | {assume 3: q | ||
+ | {assume 4: p | ||
+ | have 5: "q ⟶ (r ⟶ s)" using 1 4 by (rule mp) | ||
+ | have 6:"r⟶s" using 5 3 by (rule mp) | ||
+ | have s using 6 2 by (rule mp) | ||
+ | } | ||
+ | hence "p⟶ s" by (rule impI) | ||
+ | } | ||
+ | hence "q ⟶ (p ⟶ s)" by (rule impI) | ||
+ | } | ||
+ | thus "r ⟶ (q ⟶ (p ⟶ s))" by (rule impI) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 197: | Línea 258: | ||
lemma ejercicio_11: | lemma ejercicio_11: | ||
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" | ||
− | + | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | |||
+ | {assume "p ⟶ (q ⟶ r)" | ||
+ | hence "(p ⟶ q) ⟶ (p ⟶ r)" by (rule ejercicio_6) | ||
+ | } | ||
+ | thus "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 203: | Línea 273: | ||
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r) | (p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
lemma ejercicio_12: | lemma ejercicio_12: | ||
− | assumes "(p ⟶ q) ⟶ r" | + | assumes 1:"(p ⟶ q) ⟶ r" |
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 2:p | ||
+ | {assume 3:q | ||
+ | hence 4:"p⟶q" by (rule ejercicio_7) | ||
+ | have r using 1 4 by (rule mp) | ||
+ | } | ||
+ | hence "q⟶r" by (rule impI) | ||
+ | } | ||
+ | thus "p⟶(q⟶r)" by (rule impI) | ||
+ | qed | ||
section {* Conjunciones *} | section {* Conjunciones *} | ||
Línea 217: | Línea 299: | ||
lemma ejercicio_13: | lemma ejercicio_13: | ||
− | assumes "p" | + | assumes 1:"p" and |
− | "q" | + | 2:"q" |
shows "p ∧ q" | shows "p ∧ q" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | show "p ∧ q" using 1 2 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 230: | Línea 316: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "p" | shows "p" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | show p using assms(1) by (rule conjunct1) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 240: | Línea 330: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "q" | shows "q" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | show q using assms(1) by (rule conjunct2) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 250: | Línea 344: | ||
assumes "p ∧ (q ∧ r)" | assumes "p ∧ (q ∧ r)" | ||
shows "(p ∧ q) ∧ r" | shows "(p ∧ q) ∧ r" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have 1: p using assms(1) by (rule conjunct1) | ||
+ | have 2: "q & r" using assms(1) by (rule conjunct2) | ||
+ | have 3: q using 2 by (rule conjunct1) | ||
+ | have 4: r using 2 by (rule conjunct2) | ||
+ | have 5: "p & q" using 1 3 by (rule conjI) | ||
+ | show "(p ∧ q) ∧ r" using 5 4 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 260: | Línea 363: | ||
assumes "(p ∧ q) ∧ r" | assumes "(p ∧ q) ∧ r" | ||
shows "p ∧ (q ∧ r)" | shows "p ∧ (q ∧ r)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have 1: "p & q" using assms(1) by (rule conjunct1) | ||
+ | have 2: "r" using assms(1) by (rule conjunct2) | ||
+ | have 3: q using 1 by (rule conjunct2) | ||
+ | have 4: p using 1 by (rule conjunct1) | ||
+ | have 5: "q & r" using 3 2 by (rule conjI) | ||
+ | show "p ∧ (q ∧ r)" using 4 5 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 270: | Línea 382: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 1: p | ||
+ | have 2: q using assms(1) by (rule conjunct2)} | ||
+ | thus "p⟶q" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 280: | Línea 398: | ||
assumes "(p ⟶ q) ∧ (p ⟶ r)" | assumes "(p ⟶ q) ∧ (p ⟶ r)" | ||
shows "p ⟶ q ∧ r" | shows "p ⟶ q ∧ r" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have 1: "p⟶q" using assms(1) by (rule conjunct1) | ||
+ | have 2: "p⟶r" using assms(1) by (rule conjunct2) | ||
+ | {assume 3: p | ||
+ | have 4: q using 1 3 by (rule mp) | ||
+ | have 5: r using 2 3 by (rule mp) | ||
+ | have 6: "q & r" using 4 5 by (rule conjI) | ||
+ | } | ||
+ | thus "p⟶ q & r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 290: | Línea 421: | ||
assumes "p ⟶ q ∧ r" | assumes "p ⟶ q ∧ r" | ||
shows "(p ⟶ q) ∧ (p ⟶ r)" | shows "(p ⟶ q) ∧ (p ⟶ r)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 1:p | ||
+ | have 2:"q & r" using assms(1) 1 by (rule mp) | ||
+ | have 3: q using 2 by (rule conjunct1)} | ||
+ | hence 4: "p⟶q" by (rule impI) | ||
+ | |||
+ | {assume 5:p | ||
+ | have 6:"q & r" using assms(1) 5 by (rule mp) | ||
+ | have 7: r using 6 by (rule conjunct2)} | ||
+ | hence 8: "p⟶r" by (rule impI) | ||
+ | |||
+ | show "(p ⟶ q) ∧ (p ⟶ r)" using 4 8 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 300: | Línea 445: | ||
assumes "p ⟶ (q ⟶ r)" | assumes "p ⟶ (q ⟶ r)" | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | |||
+ | {assume 1:"p & q" | ||
+ | have 2: p using 1 by (rule conjunct1) | ||
+ | have 3: "q⟶r" using assms(1) 2 by (rule mp) | ||
+ | have 4: q using 1 by (rule conjunct2) | ||
+ | have 5: r using 3 4 by (rule mp) | ||
+ | } | ||
+ | thus "p & q ⟶ r" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 310: | Línea 466: | ||
assumes "p ∧ q ⟶ r" | assumes "p ∧ q ⟶ r" | ||
shows "p ⟶ (q ⟶ r)" | shows "p ⟶ (q ⟶ r)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | { assume 1: p | ||
+ | {assume 2: q | ||
+ | have 3: "p & q" using 1 2 by (rule conjI) | ||
+ | have 4: r using assms(1) 3 by (rule mp) | ||
+ | } | ||
+ | hence "q⟶r" by (rule impI) | ||
+ | } | ||
+ | thus "p⟶(q⟶r)" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_22_1: | ||
+ | assumes "p ∧ q ⟶ r" | ||
+ | shows "p ⟶ (q ⟶ r)" | ||
+ | (*L.E.Caraballo*) | ||
+ | proof (rule impI) | ||
+ | assume 1: "p" | ||
+ | show "(q⟶r)" | ||
+ | proof (rule impI) | ||
+ | assume 2: "q" | ||
+ | have 3: "p∧q" using 1 2 by (rule conjI) | ||
+ | show "r" using assms 3 by (rule mp) | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 320: | Línea 501: | ||
assumes "(p ⟶ q) ⟶ r" | assumes "(p ⟶ q) ⟶ r" | ||
shows "p ∧ q ⟶ r" | shows "p ∧ q ⟶ r" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 1: "p & q" | ||
+ | have 2: "p⟶ q" using 1 by (rule ejercicio_18) | ||
+ | have r using assms(1) 2 by (rule mp) | ||
+ | } | ||
+ | thus "p ∧ q ⟶ r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_23_1: | ||
+ | assumes "(p ⟶ q) ⟶ r" | ||
+ | shows "p ∧ q ⟶ r" | ||
+ | (*L.E.Caraballo*) | ||
+ | proof (rule impI) | ||
+ | assume 1: "p∧q" | ||
+ | have 2: "q" using 1 by (rule conjunct2) | ||
+ | have 3: "p⟶q" using 2 by (rule ejercicio_7) | ||
+ | show "r" using assms 3 by (rule mp) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 330: | Línea 530: | ||
assumes "p ∧ (q ⟶ r)" | assumes "p ∧ (q ⟶ r)" | ||
shows "(p ⟶ q) ⟶ r" | shows "(p ⟶ q) ⟶ r" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | |||
+ | have 1: p using assms(1) by (rule conjunct1) | ||
+ | have 2: "q⟶r" using assms(1) by (rule conjunct2) | ||
+ | {assume 3: "p⟶q" | ||
+ | have 4: q using 3 1 by (rule mp) | ||
+ | have r using 2 4 by (rule mp) | ||
+ | } | ||
+ | thus "(p⟶q)⟶r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_24_1: | ||
+ | assumes "p ∧ (q ⟶ r)" | ||
+ | shows "(p ⟶ q) ⟶ r" | ||
+ | (*L.E.Caraballo*) | ||
+ | proof (rule impI) | ||
+ | assume 1: "p⟶q" | ||
+ | have 2: "p" using assms by (rule conjunct1) | ||
+ | have 3: "q⟶r" using assms by (rule conjunct2) | ||
+ | have 4: "q" using 1 2 .. | ||
+ | show 5: "r" using 3 4 .. | ||
+ | qed | ||
section {* Disyunciones *} | section {* Disyunciones *} | ||
Línea 342: | Línea 565: | ||
assumes "p" | assumes "p" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | show "p | q" using assms(1) by (rule disjI1) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 352: | Línea 579: | ||
assumes "q" | assumes "q" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | show "p | q" using assms(1) by (rule disjI2) | ||
+ | qed | ||
+ | |||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 362: | Línea 595: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
shows "q ∨ p" | shows "q ∨ p" | ||
− | + | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
+ | using assms(1) | ||
+ | proof (rule disjE) | ||
+ | |||
+ | {assume 1:p | ||
+ | show 2: "q | p" using 1 by (rule disjI2)} | ||
+ | next | ||
+ | {assume 3:q | ||
+ | show 4: "q | p" using 3 by (rule disjI1)} | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 372: | Línea 617: | ||
assumes "q ⟶ r" | assumes "q ⟶ r" | ||
shows "p ∨ q ⟶ p ∨ r" | shows "p ∨ q ⟶ p ∨ r" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 1: "p | q" | ||
+ | have 2:"p | r" using 1 | ||
+ | proof (rule disjE) | ||
+ | {assume p | ||
+ | thus "p | r" by (rule disjI1)} | ||
+ | next | ||
+ | {assume 3: q | ||
+ | have r using assms(1) 3 by (rule mp) | ||
+ | thus "p | r" by (rule disjI2)} | ||
+ | qed} | ||
+ | thus "p ∨ q ⟶ p ∨ r" by (rule impI) | ||
+ | qed | ||
+ | |||
+ | lemma ejercicio_28_1: | ||
+ | assumes "q ⟶ r" | ||
+ | shows "p ∨ q ⟶ p ∨ r" | ||
+ | (*L.E.Caraballo*) | ||
+ | proof (rule impI) | ||
+ | assume 1: "p∨q" | ||
+ | show "p∨r" | ||
+ | using 1 | ||
+ | proof (rule disjE) | ||
+ | { assume "p" | ||
+ | thus "p∨r" by (rule disjI1)} | ||
+ | { assume 2: "q" | ||
+ | have "r" using assms 2 by (rule mp) | ||
+ | thus "p∨r" by (rule disjI2)} | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 382: | Línea 658: | ||
assumes "p ∨ p" | assumes "p ∨ p" | ||
shows "p" | shows "p" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | using assms(1) | ||
+ | proof (rule disjE) | ||
+ | {assume p | ||
+ | thus p by this} | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 392: | Línea 674: | ||
assumes "p" | assumes "p" | ||
shows "p ∨ p" | shows "p ∨ p" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | show "p | p" using assms(1) by (rule disjI1) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 402: | Línea 688: | ||
assumes "p ∨ (q ∨ r)" | assumes "p ∨ (q ∨ r)" | ||
shows "(p ∨ q) ∨ r" | shows "(p ∨ q) ∨ r" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | using assms(1) | ||
+ | proof (rule disjE) | ||
+ | {assume p | ||
+ | hence "p | q" by (rule disjI1) | ||
+ | thus "(p ∨ q) ∨ r" by (rule disjI1)} | ||
+ | |||
+ | next | ||
+ | {assume 1: "q | r" | ||
+ | show "(p ∨ q) ∨ r" using 1 | ||
+ | |||
+ | proof (rule disjE) | ||
+ | {assume q | ||
+ | hence "p | q" by (rule disjI2) | ||
+ | thus "(p ∨ q) ∨ r" by (rule disjI1)} | ||
+ | next | ||
+ | {assume r | ||
+ | thus "(p ∨ q) ∨ r" by (rule disjI2) } | ||
+ | qed | ||
+ | } | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 412: | Línea 719: | ||
assumes "(p ∨ q) ∨ r" | assumes "(p ∨ q) ∨ r" | ||
shows "p ∨ (q ∨ r)" | shows "p ∨ (q ∨ r)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | using assms(1) | ||
+ | proof (rule disjE) | ||
+ | {assume r | ||
+ | hence "q | r" by (rule disjI2) | ||
+ | thus "p ∨ (q ∨ r)" by (rule disjI2)} | ||
+ | |||
+ | next | ||
+ | {assume 1: "p | q" | ||
+ | show "p ∨ (q ∨ r)" using 1 | ||
+ | |||
+ | proof (rule disjE) | ||
+ | {assume q | ||
+ | hence "q | r" by (rule disjI1) | ||
+ | thus "p ∨ (q ∨ r)" by (rule disjI2)} | ||
+ | next | ||
+ | {assume p | ||
+ | thus "p ∨ (q ∨ r)" by (rule disjI1) } | ||
+ | qed | ||
+ | } | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 422: | Línea 751: | ||
assumes "p ∧ (q ∨ r)" | assumes "p ∧ (q ∨ r)" | ||
shows "(p ∧ q) ∨ (p ∧ r)" | shows "(p ∧ q) ∨ (p ∧ r)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have 1: p using assms(1) by (rule conjunct1) | ||
+ | have 2: "q | r" using assms(1) by (rule conjunct2) | ||
+ | show "(p ∧ q) ∨ (p ∧ r)" using 2 | ||
+ | proof (rule disjE) | ||
+ | {assume 3: q | ||
+ | have 4: "p & q" using 1 3 by (rule conjI) | ||
+ | thus "(p ∧ q) ∨ (p ∧ r)" by (rule disjI1)} | ||
+ | next | ||
+ | {assume 5:r | ||
+ | have 6: "p & r" using 1 5 by (rule conjI) | ||
+ | thus "(p ∧ q) ∨ (p ∧ r)" by (rule disjI2)} | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 432: | Línea 776: | ||
assumes "(p ∧ q) ∨ (p ∧ r)" | assumes "(p ∧ q) ∨ (p ∧ r)" | ||
shows "p ∧ (q ∨ r)" | shows "p ∧ (q ∨ r)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | using assms(1) | ||
+ | proof (rule disjE) | ||
+ | {assume 1:"p & q" | ||
+ | hence 2: p by (rule conjunct1) | ||
+ | have q using 1 by (rule conjunct2) | ||
+ | hence 3:"q | r" by (rule disjI1) | ||
+ | show "p ∧ (q ∨ r)" using 2 3 by (rule conjI)} | ||
+ | next | ||
+ | {assume 4:"p & r" | ||
+ | hence 5: p by (rule conjunct1) | ||
+ | have r using 4 by (rule conjunct2) | ||
+ | hence 6:"q | r" by (rule disjI2) | ||
+ | show "p ∧ (q ∨ r)" using 5 6 by (rule conjI)} | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 442: | Línea 802: | ||
assumes "p ∨ (q ∧ r)" | assumes "p ∨ (q ∧ r)" | ||
shows "(p ∨ q) ∧ (p ∨ r)" | shows "(p ∨ q) ∧ (p ∨ r)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | using assms(1) | ||
+ | proof (rule disjE) | ||
+ | {assume 1: p | ||
+ | have 2: "p | q" using 1 by (rule disjI1) | ||
+ | have 3: "p | r" using 1 by (rule disjI1) | ||
+ | show "(p ∨ q) ∧ (p ∨ r)" using 2 3 by (rule conjI) } | ||
+ | next | ||
+ | {assume 4: "q & r" | ||
+ | hence 5: q by (rule conjunct1) | ||
+ | have 6: r using 4 by (rule conjunct2) | ||
+ | have 7: "p | q" using 5 by (rule disjI2) | ||
+ | have 8: "p | r" using 6 by (rule disjI2) | ||
+ | show "(p ∨ q) ∧ (p ∨ r)" using 7 8 by (rule conjI)} | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 452: | Línea 827: | ||
assumes "(p ∨ q) ∧ (p ∨ r)" | assumes "(p ∨ q) ∧ (p ∨ r)" | ||
shows "p ∨ (q ∧ r)" | shows "p ∨ (q ∧ r)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have 1: "p | q" using assms(1) by (rule conjunct1) | ||
+ | have 2: "p | r" using assms(1) by (rule conjunct2) | ||
+ | have "p ∨ (q ∧ r)" using 1 | ||
+ | proof (rule disjE) | ||
+ | {assume p | ||
+ | thus "p ∨ (q ∧ r)" by (rule disjI1)} | ||
+ | next | ||
+ | {assume 3: q | ||
+ | show "p ∨ (q ∧ r)" using 2 | ||
+ | proof (rule disjE) | ||
+ | {assume p | ||
+ | thus "p ∨ (q ∧ r)" by (rule disjI1)} | ||
+ | next | ||
+ | {assume 4: r | ||
+ | have "q & r" using 3 4 by (rule conjI) | ||
+ | thus "p ∨ (q ∧ r)" by (rule disjI2)} | ||
+ | qed | ||
+ | } | ||
+ | qed | ||
+ | |||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 462: | Línea 860: | ||
assumes "(p ⟶ r) ∧ (q ⟶ r)" | assumes "(p ⟶ r) ∧ (q ⟶ r)" | ||
shows "p ∨ q ⟶ r" | shows "p ∨ q ⟶ r" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have 1: "p ⟶ r" using assms(1) by (rule conjunct1) | ||
+ | have 2: "q ⟶ r" using assms(1) by (rule conjunct2) | ||
+ | {assume 3: "p | q" | ||
+ | have r using 3 | ||
+ | proof (rule disjE) | ||
+ | {assume 4: p | ||
+ | show r using 1 4 by (rule mp)} | ||
+ | next | ||
+ | {assume 5: q | ||
+ | show r using 2 5 by (rule mp) } | ||
+ | qed | ||
+ | } | ||
+ | thus "p ∨ q ⟶ r" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 472: | Línea 886: | ||
assumes "p ∨ q ⟶ r" | assumes "p ∨ q ⟶ r" | ||
shows "(p ⟶ r) ∧ (q ⟶ r)" | shows "(p ⟶ r) ∧ (q ⟶ r)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume p | ||
+ | hence 1:"p | q" by (rule disjI1) | ||
+ | have r using assms(1) 1 by (rule mp)} | ||
+ | hence 2: "p ⟶ r" by (rule impI) | ||
+ | |||
+ | {assume q | ||
+ | hence 3:"p | q" by (rule disjI2) | ||
+ | have r using assms(1) 3 by (rule mp)} | ||
+ | hence 4: "q ⟶ r" by (rule impI) | ||
+ | |||
+ | show "(p ⟶ r) ∧ (q ⟶ r)" using 2 4 by (rule conjI) | ||
+ | qed | ||
+ | |||
section {* Negaciones *} | section {* Negaciones *} | ||
− | + | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 39. Demostrar | Ejercicio 39. Demostrar | ||
p ⊢ ¬¬p | p ⊢ ¬¬p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_39: | lemma ejercicio_39: | ||
assumes "p" | assumes "p" | ||
shows "¬¬p" | shows "¬¬p" | ||
− | |||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | show "¬¬p" using assms(1) by (rule notnotI) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 40. Demostrar | Ejercicio 40. Demostrar | ||
¬p ⊢ p ⟶ q | ¬p ⊢ p ⟶ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
+ | |||
+ | lemma ejercicio_40: | ||
− | |||
assumes "¬p" | assumes "¬p" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | |||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 1: p | ||
+ | have q using assms(1) 1 by (rule notE)} | ||
+ | thus "p ⟶ q" by (rule impI) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 41. Demostrar | Ejercicio 41. Demostrar | ||
p ⟶ q ⊢ ¬q ⟶ ¬p | p ⟶ q ⊢ ¬q ⟶ ¬p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_41: | lemma ejercicio_41: | ||
assumes "p ⟶ q" | assumes "p ⟶ q" | ||
shows "¬q ⟶ ¬p" | shows "¬q ⟶ ¬p" | ||
− | |||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 1: "~q" | ||
+ | have "~p" using assms(1) 1 by (rule mt) } | ||
+ | thus "¬q ⟶ ¬p" by (rule impI) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 42. Demostrar | Ejercicio 42. Demostrar | ||
p∨q, ¬q ⊢ p | p∨q, ¬q ⊢ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_42: | lemma ejercicio_42: | ||
assumes "p∨q" | assumes "p∨q" | ||
"¬q" | "¬q" | ||
shows "p" | shows "p" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | using assms(1) | ||
+ | proof (rule disjE) | ||
+ | {assume p | ||
+ | thus p by this} | ||
+ | next | ||
+ | {assume 1:q | ||
+ | show p using assms(2) 1 by (rule notE)} | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
− | Ejercicio | + | Ejercicio 43. Demostrar |
p ∨ q, ¬p ⊢ q | p ∨ q, ¬p ⊢ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_43: | lemma ejercicio_43: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
"¬p" | "¬p" | ||
shows "q" | shows "q" | ||
− | |||
+ | (*Solución M.Cumplido*) | ||
+ | using assms(1) | ||
+ | proof (rule disjE) | ||
+ | {assume q | ||
+ | thus q by this} | ||
+ | next | ||
+ | {assume 1:p | ||
+ | show q using assms(2) 1 by (rule notE)} | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
− | Ejercicio | + | Ejercicio 44. Demostrar |
p ∨ q ⊢ ¬(¬p ∧ ¬q) | p ∨ q ⊢ ¬(¬p ∧ ¬q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_44: | lemma ejercicio_44: | ||
assumes "p ∨ q" | assumes "p ∨ q" | ||
shows "¬(¬p ∧ ¬q)" | shows "¬(¬p ∧ ¬q)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof (rule notI) | ||
+ | assume 1:"¬p ∧ ¬q" | ||
+ | have 2: "~p" using 1 by (rule conjunct1) | ||
+ | have 3: "~q" using 1 by (rule conjunct2) | ||
+ | show False using assms(1) | ||
+ | proof (rule disjE) | ||
+ | {assume 4:p | ||
+ | show False using 2 4 by (rule notE)} | ||
+ | next | ||
+ | {assume 5:q | ||
+ | show False using 3 5 by (rule notE)} | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 542: | Línea 1021: | ||
p ∧ q ⊢ ¬(¬p ∨ ¬q) | p ∧ q ⊢ ¬(¬p ∨ ¬q) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_45: | lemma ejercicio_45: | ||
assumes "p ∧ q" | assumes "p ∧ q" | ||
shows "¬(¬p ∨ ¬q)" | shows "¬(¬p ∨ ¬q)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof (rule notI) | ||
+ | assume 1: "¬p ∨ ¬q" | ||
+ | show False using 1 | ||
+ | proof (rule disjE) | ||
+ | {assume 2: "~p" | ||
+ | have 3: p using assms(1) by (rule conjunct1) | ||
+ | show False using 2 3 by (rule notE)} | ||
+ | next | ||
+ | {assume 4: "~q" | ||
+ | have 5: q using assms(1) by (rule conjunct2) | ||
+ | show False using 4 5 by (rule notE)} | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 556: | Línea 1049: | ||
assumes "¬(p ∨ q)" | assumes "¬(p ∨ q)" | ||
shows "¬p ∧ ¬q" | shows "¬p ∧ ¬q" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have 1:"~~(~p & ~q)" | ||
+ | proof (rule notI) | ||
+ | assume 2: "~(~p & ~q)" | ||
+ | have 3:"~p" | ||
+ | proof (rule notI) | ||
+ | assume p | ||
+ | hence 4:"p | q" by (rule disjI1) | ||
+ | show False using assms(1) 4 by (rule notE) | ||
+ | qed | ||
+ | have 5:"~q" | ||
+ | proof (rule notI) | ||
+ | assume q | ||
+ | hence 6:"p | q" by (rule disjI2) | ||
+ | show False using assms(1) 6 by (rule notE) | ||
+ | qed | ||
+ | have 7: "~p & ~q" using 3 5 by (rule conjI) | ||
+ | show False using 2 7 by (rule notE) | ||
+ | qed | ||
+ | show "¬p ∧ ¬q" using 1 by (rule notnotD) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 566: | Línea 1081: | ||
assumes "¬p ∧ ¬q" | assumes "¬p ∧ ¬q" | ||
shows "¬(p ∨ q)" | shows "¬(p ∨ q)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | |||
+ | proof(rule notI) | ||
+ | assume "p | q" | ||
+ | thus False | ||
+ | proof(rule disjE) | ||
+ | {assume 1: p | ||
+ | have 2:"~p" using assms(1) by (rule conjunct1) | ||
+ | show False using 2 1 by (rule notE)} | ||
+ | next | ||
+ | {assume 3: q | ||
+ | have 4: "~q" using assms(1) by (rule conjunct2) | ||
+ | show False using 4 3 by (rule notE)} | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 576: | Línea 1106: | ||
assumes "¬p ∨ ¬q" | assumes "¬p ∨ ¬q" | ||
shows "¬(p ∧ q)" | shows "¬(p ∧ q)" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | |||
+ | proof (rule notI) | ||
+ | assume 1: "p & q" | ||
+ | have 2: p using 1 by (rule conjunct1) | ||
+ | have 3: q using 1 by (rule conjunct2) | ||
+ | show False using assms(1) | ||
+ | proof (rule disjE) | ||
+ | {assume 4:"~p" | ||
+ | show False using 4 2 by (rule notE) } | ||
+ | next | ||
+ | {assume 5:"~q" | ||
+ | show False using 5 3 by (rule notE) } | ||
+ | qed | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 582: | Línea 1127: | ||
⊢ ¬(p ∧ ¬p) | ⊢ ¬(p ∧ ¬p) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_49: | lemma ejercicio_49: | ||
"¬(p ∧ ¬p)" | "¬(p ∧ ¬p)" | ||
− | |||
+ | (*Solución M.Cumplido*) | ||
+ | proof (rule notI) | ||
+ | assume 1:"p & ~p" | ||
+ | hence 2: p by (rule conjunct1) | ||
+ | have 3: "~p" using 1 by (rule conjunct2) | ||
+ | show False using 3 2 by (rule notE) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 50. Demostrar | Ejercicio 50. Demostrar | ||
p ∧ ¬p ⊢ q | p ∧ ¬p ⊢ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_50: | lemma ejercicio_50: | ||
assumes "p ∧ ¬p" | assumes "p ∧ ¬p" | ||
shows "q" | shows "q" | ||
− | |||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have 1: p using assms(1) by (rule conjunct1) | ||
+ | have 2: "~p" using assms(1) by (rule conjunct2) | ||
+ | show "q" using 2 1 by (rule notE) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 51. Demostrar | Ejercicio 51. Demostrar | ||
¬¬p ⊢ p | ¬¬p ⊢ p | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_51: | lemma ejercicio_51: | ||
assumes "¬¬p" | assumes "¬¬p" | ||
shows "p" | shows "p" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | show p using assms(1) by (rule notnotD) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 614: | Línea 1177: | ||
lemma ejercicio_52: | lemma ejercicio_52: | ||
"p ∨ ¬p" | "p ∨ ¬p" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof(rule ccontr) | ||
+ | assume 1:"~(p | ~ p)" | ||
+ | hence "~p & ~~p" by (rule ejercicio_46) | ||
+ | hence "~p" by (rule conjunct1) | ||
+ | hence 2:"p | ~p" by (rule disjI2) | ||
+ | show False using 1 2 by (rule notE) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 623: | Línea 1194: | ||
lemma ejercicio_53: | lemma ejercicio_53: | ||
"((p ⟶ q) ⟶ p) ⟶ p" | "((p ⟶ q) ⟶ p) ⟶ p" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 1:"(p ⟶ q) ⟶ p" | ||
+ | have p | ||
+ | proof(rule ccontr) | ||
+ | assume 2:"~p" | ||
+ | {assume 3:p | ||
+ | have q using 2 3 by (rule notE)} | ||
+ | hence 4:"p⟶q" by (rule impI) | ||
+ | have 5: p using 1 4 by (rule mp) | ||
+ | show False using 2 5 by (rule notE) | ||
+ | qed | ||
+ | } | ||
+ | thus "((p ⟶ q) ⟶ p) ⟶ p" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 633: | Línea 1219: | ||
assumes "¬q ⟶ ¬p" | assumes "¬q ⟶ ¬p" | ||
shows "p ⟶ q" | shows "p ⟶ q" | ||
− | + | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
+ | |||
+ | proof - | ||
+ | {assume 1: p | ||
+ | hence 2: "~~p" by (rule notnotI) | ||
+ | have 3: "~~q" using assms(1) 2 by (rule mt) | ||
+ | hence q by (rule notnotD)} | ||
+ | thus "p⟶q" by (rule impI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 639: | Línea 1235: | ||
¬(¬p ∧ ¬q) ⊢ p ∨ q | ¬(¬p ∧ ¬q) ⊢ p ∨ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_55: | lemma ejercicio_55: | ||
assumes "¬(¬p ∧ ¬q)" | assumes "¬(¬p ∧ ¬q)" | ||
shows "p ∨ q" | shows "p ∨ q" | ||
− | |||
+ | (*Solución M.Cumplido*) | ||
+ | proof(rule ccontr) | ||
+ | assume "~(p | q)" | ||
+ | hence 1: "~p & ~q" by (rule ejercicio_46) | ||
+ | show False using assms(1) 1 by (rule notE) | ||
+ | qed | ||
+ | |||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Ejercicio 56. Demostrar | Ejercicio 56. Demostrar | ||
¬(¬p ∨ ¬q) ⊢ p ∧ q | ¬(¬p ∨ ¬q) ⊢ p ∧ q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_56: | lemma ejercicio_56: | ||
assumes "¬(¬p ∨ ¬q)" | assumes "¬(¬p ∨ ¬q)" | ||
shows "p ∧ q" | shows "p ∧ q" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have 1: "~~p & ~~q" using assms(1) by (rule ejercicio_46) | ||
+ | have 2: "~~p" using 1 by (rule conjunct1) | ||
+ | have 3: "~~q" using 1 by (rule conjunct2) | ||
+ | have 4: p using 2 by (rule notnotD) | ||
+ | have 5: q using 3 by (rule notnotD) | ||
+ | show "p & q" using 4 5 by (rule conjI) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 659: | Línea 1270: | ||
¬(p ∧ q) ⊢ ¬p ∨ ¬q | ¬(p ∧ q) ⊢ ¬p ∨ ¬q | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_57: | lemma ejercicio_57: | ||
assumes "¬(p ∧ q)" | assumes "¬(p ∧ q)" | ||
shows "¬p ∨ ¬q" | shows "¬p ∨ ¬q" | ||
− | + | ||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | {assume 1: "~(¬p ∨ ¬q)" | ||
+ | hence 2: "p & q" by (rule ejercicio_56)} | ||
+ | hence 3: "¬(¬p | ¬q)⟶ (p & q)" by (rule impI) | ||
+ | have 4:"¬¬(¬p | ¬q)" using 3 assms(1) by (rule mt) | ||
+ | thus "¬p ∨ ¬q" by (rule notnotD) | ||
+ | qed | ||
text {* --------------------------------------------------------------- | text {* --------------------------------------------------------------- | ||
Línea 669: | Línea 1288: | ||
⊢ (p ⟶ q) ∨ (q ⟶ p) | ⊢ (p ⟶ q) ∨ (q ⟶ p) | ||
------------------------------------------------------------------ *} | ------------------------------------------------------------------ *} | ||
− | + | ||
lemma ejercicio_58: | lemma ejercicio_58: | ||
"(p ⟶ q) ∨ (q ⟶ p)" | "(p ⟶ q) ∨ (q ⟶ p)" | ||
− | + | ||
+ | |||
+ | (*Solución M.Cumplido*) | ||
+ | proof - | ||
+ | have "q | ¬q" by (rule ejercicio_52) | ||
+ | thus "(p ⟶ q) ∨ (q ⟶ p)" | ||
+ | proof (rule disjE) | ||
+ | {assume q | ||
+ | hence "p⟶q" by (rule ejercicio_7) | ||
+ | thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1)} | ||
+ | next | ||
+ | {assume "¬q" | ||
+ | hence "¬p⟶¬q" by (rule ejercicio_7) | ||
+ | hence "q⟶p" by (rule ejercicio_54) | ||
+ | thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)} | ||
+ | qed | ||
+ | qed | ||
+ | |||
end | end | ||
</source> | </source> |
Revisión actual del 18:18 9 mar 2015
header {* R1: Deducción natural proposicional *}
theory Rel_1
imports Main
begin
text {*
---------------------------------------------------------------------
El objetivo de esta relación es demostrar cada uno de los ejercicios
usando sólo las reglas básicas de deducción natural de la lógica
proposicional (sin usar el método auto).
Las reglas básicas de la deducción natural son las siguientes:
· conjI: ⟦P; Q⟧ ⟹ P ∧ Q
· conjunct1: P ∧ Q ⟹ P
· conjunct2: P ∧ Q ⟹ Q
· notnotD: ¬¬ P ⟹ P
· notnotI: P ⟹ ¬¬ P
· mp: ⟦P ⟶ Q; P⟧ ⟹ Q
· mt: ⟦F ⟶ G; ¬G⟧ ⟹ ¬F
· impI: (P ⟹ Q) ⟹ P ⟶ Q
· disjI1: P ⟹ P ∨ Q
· disjI2: Q ⟹ P ∨ Q
· disjE: ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R
· FalseE: False ⟹ P
· notE: ⟦¬P; P⟧ ⟹ R
· notI: (P ⟹ False) ⟹ ¬P
· iffI: ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
· iffD1: ⟦Q = P; Q⟧ ⟹ P
· iffD2: ⟦P = Q; Q⟧ ⟹ P
· ccontr: (¬P ⟹ False) ⟹ P
---------------------------------------------------------------------
*}
text {*
Se usarán las reglas notnotI y mt que demostramos a continuación. *}
lemma notnotI: "P ⟹ ¬¬ P"
by auto
lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto
section {* Implicaciones *}
text {* ---------------------------------------------------------------
Ejercicio 1. Demostrar
p ⟶ q, p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_1:
assumes 1:"p ⟶ q" and
2:"p"
shows "q"
(*Solución M.Cumplido*)
proof -
show 3: "q" using 1 2 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 2. Demostrar
p ⟶ q, q ⟶ r, p ⊢ r
------------------------------------------------------------------ *}
lemma ejercicio_2:
assumes 1:"p ⟶ q" and
2:"q ⟶ r" and
3:"p"
shows "r"
(*Solución M.Cumplido*)
proof -
have 4: "q" using 1 3 by (rule mp)
show 5: "r" using 2 4 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 3. Demostrar
p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
------------------------------------------------------------------ *}
lemma ejercicio_3:
assumes 1:"p ⟶ (q ⟶ r)" and
2:"p ⟶ q" and
3:"p"
shows "r"
(*Solución M.Cumplido*)
proof -
have 4:"q ⟶ r" using 1 3 by (rule mp)
show "r" using 2 4 3 by (rule ejercicio_2)
qed
text {* ---------------------------------------------------------------
Ejercicio 4. Demostrar
p ⟶ q, q ⟶ r ⊢ p ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_4:
assumes 1:"p ⟶ q" and
2:"q ⟶ r"
shows "p ⟶ r"
(*Solución M.Cumplido*)
proof -
{assume 3:"p"
have "r" using 1 2 3 by (rule ejercicio_2)}
thus "p ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 5. Demostrar
p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_5:
assumes 1:"p ⟶ (q ⟶ r)"
shows "q ⟶ (p ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 2: q
{assume 3: p
have 4:"q ⟶ r" using 1 3 by (rule mp)
have r using 4 2 by (rule mp)}
hence "p ⟶ r" by (rule impI)}
thus "q ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 6. Demostrar
p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_6:
assumes 1:"p ⟶ (q ⟶ r)"
shows "(p ⟶ q) ⟶ (p ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 2:"p ⟶ q"
{assume 3: p
have 4: "q ⟶ r" using 1 3 by (rule mp)
have 5: "p ⟶ r" using 2 4 by (rule ejercicio_4)
have r using 5 3 by (rule mp)}
hence "p ⟶ r" by (rule impI)}
thus "(p ⟶ q) ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 7. Demostrar
p ⊢ q ⟶ p
------------------------------------------------------------------ *}
lemma ejercicio_7:
assumes 1:"p"
shows "q ⟶ p"
(*Solución M.Cumplido*)
proof -
{assume 2:q
have 3: p
proof (rule ccontr)
assume 4:"¬p"
show False using 4 1 by (rule notE)
qed
}
thus "q⟶p" by (rule impI)
qed
lemma ejercicio_7_1:
assumes "p"
shows "q ⟶ p"
(*L.E. Caraballo*)
proof -
{ assume "q"
have "p" using assms(1) by this
}
thus "q⟶p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 8. Demostrar
⊢ p ⟶ (q ⟶ p)
------------------------------------------------------------------ *}
lemma ejercicio_8:
"p ⟶ (q ⟶ p)"
(*Solución M.Cumplido*)
proof -
{assume 1: p
{assume 2:q
have 3: p
proof (rule ccontr)
assume 4:"¬p"
show False using 4 1 by (rule notE)
qed}
hence "q⟶p" by (rule impI)}
thus "p ⟶ (q ⟶ p)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 9. Demostrar
p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_9:
assumes 1:"p ⟶ q"
shows "(q ⟶ r) ⟶ (p ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 2:"q⟶r"
have 3:"p⟶r" using 1 2 by (rule ejercicio_4)}
thus "(q ⟶ r) ⟶ (p ⟶ r)" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 10. Demostrar
p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s))
------------------------------------------------------------------ *}
lemma ejercicio_10:
assumes 1:"p ⟶ (q ⟶ (r ⟶ s))"
shows "r ⟶ (q ⟶ (p ⟶ s))"
(*Solución M.Cumplido*)
proof -
{assume 2: r
{assume 3: q
{assume 4: p
have 5: "q ⟶ (r ⟶ s)" using 1 4 by (rule mp)
have 6:"r⟶s" using 5 3 by (rule mp)
have s using 6 2 by (rule mp)
}
hence "p⟶ s" by (rule impI)
}
hence "q ⟶ (p ⟶ s)" by (rule impI)
}
thus "r ⟶ (q ⟶ (p ⟶ s))" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 11. Demostrar
⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
------------------------------------------------------------------ *}
lemma ejercicio_11:
"(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
(*Solución M.Cumplido*)
proof -
{assume "p ⟶ (q ⟶ r)"
hence "(p ⟶ q) ⟶ (p ⟶ r)" by (rule ejercicio_6)
}
thus "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 12. Demostrar
(p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_12:
assumes 1:"(p ⟶ q) ⟶ r"
shows "p ⟶ (q ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 2:p
{assume 3:q
hence 4:"p⟶q" by (rule ejercicio_7)
have r using 1 4 by (rule mp)
}
hence "q⟶r" by (rule impI)
}
thus "p⟶(q⟶r)" by (rule impI)
qed
section {* Conjunciones *}
text {* ---------------------------------------------------------------
Ejercicio 13. Demostrar
p, q ⊢ p ∧ q
------------------------------------------------------------------ *}
lemma ejercicio_13:
assumes 1:"p" and
2:"q"
shows "p ∧ q"
(*Solución M.Cumplido*)
proof -
show "p ∧ q" using 1 2 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 14. Demostrar
p ∧ q ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_14:
assumes "p ∧ q"
shows "p"
(*Solución M.Cumplido*)
proof -
show p using assms(1) by (rule conjunct1)
qed
text {* ---------------------------------------------------------------
Ejercicio 15. Demostrar
p ∧ q ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_15:
assumes "p ∧ q"
shows "q"
(*Solución M.Cumplido*)
proof -
show q using assms(1) by (rule conjunct2)
qed
text {* ---------------------------------------------------------------
Ejercicio 16. Demostrar
p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r
------------------------------------------------------------------ *}
lemma ejercicio_16:
assumes "p ∧ (q ∧ r)"
shows "(p ∧ q) ∧ r"
(*Solución M.Cumplido*)
proof -
have 1: p using assms(1) by (rule conjunct1)
have 2: "q & r" using assms(1) by (rule conjunct2)
have 3: q using 2 by (rule conjunct1)
have 4: r using 2 by (rule conjunct2)
have 5: "p & q" using 1 3 by (rule conjI)
show "(p ∧ q) ∧ r" using 5 4 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 17. Demostrar
(p ∧ q) ∧ r ⊢ p ∧ (q ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_17:
assumes "(p ∧ q) ∧ r"
shows "p ∧ (q ∧ r)"
(*Solución M.Cumplido*)
proof -
have 1: "p & q" using assms(1) by (rule conjunct1)
have 2: "r" using assms(1) by (rule conjunct2)
have 3: q using 1 by (rule conjunct2)
have 4: p using 1 by (rule conjunct1)
have 5: "q & r" using 3 2 by (rule conjI)
show "p ∧ (q ∧ r)" using 4 5 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 18. Demostrar
p ∧ q ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_18:
assumes "p ∧ q"
shows "p ⟶ q"
(*Solución M.Cumplido*)
proof -
{assume 1: p
have 2: q using assms(1) by (rule conjunct2)}
thus "p⟶q" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 19. Demostrar
(p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r
------------------------------------------------------------------ *}
lemma ejercicio_19:
assumes "(p ⟶ q) ∧ (p ⟶ r)"
shows "p ⟶ q ∧ r"
(*Solución M.Cumplido*)
proof -
have 1: "p⟶q" using assms(1) by (rule conjunct1)
have 2: "p⟶r" using assms(1) by (rule conjunct2)
{assume 3: p
have 4: q using 1 3 by (rule mp)
have 5: r using 2 3 by (rule mp)
have 6: "q & r" using 4 5 by (rule conjI)
}
thus "p⟶ q & r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 20. Demostrar
p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_20:
assumes "p ⟶ q ∧ r"
shows "(p ⟶ q) ∧ (p ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume 1:p
have 2:"q & r" using assms(1) 1 by (rule mp)
have 3: q using 2 by (rule conjunct1)}
hence 4: "p⟶q" by (rule impI)
{assume 5:p
have 6:"q & r" using assms(1) 5 by (rule mp)
have 7: r using 6 by (rule conjunct2)}
hence 8: "p⟶r" by (rule impI)
show "(p ⟶ q) ∧ (p ⟶ r)" using 4 8 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 21. Demostrar
p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_21:
assumes "p ⟶ (q ⟶ r)"
shows "p ∧ q ⟶ r"
(*Solución M.Cumplido*)
proof -
{assume 1:"p & q"
have 2: p using 1 by (rule conjunct1)
have 3: "q⟶r" using assms(1) 2 by (rule mp)
have 4: q using 1 by (rule conjunct2)
have 5: r using 3 4 by (rule mp)
}
thus "p & q ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 22. Demostrar
p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_22:
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
(*Solución M.Cumplido*)
proof -
{ assume 1: p
{assume 2: q
have 3: "p & q" using 1 2 by (rule conjI)
have 4: r using assms(1) 3 by (rule mp)
}
hence "q⟶r" by (rule impI)
}
thus "p⟶(q⟶r)" by (rule impI)
qed
lemma ejercicio_22_1:
assumes "p ∧ q ⟶ r"
shows "p ⟶ (q ⟶ r)"
(*L.E.Caraballo*)
proof (rule impI)
assume 1: "p"
show "(q⟶r)"
proof (rule impI)
assume 2: "q"
have 3: "p∧q" using 1 2 by (rule conjI)
show "r" using assms 3 by (rule mp)
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 23. Demostrar
(p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_23:
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
(*Solución M.Cumplido*)
proof -
{assume 1: "p & q"
have 2: "p⟶ q" using 1 by (rule ejercicio_18)
have r using assms(1) 2 by (rule mp)
}
thus "p ∧ q ⟶ r" by (rule impI)
qed
lemma ejercicio_23_1:
assumes "(p ⟶ q) ⟶ r"
shows "p ∧ q ⟶ r"
(*L.E.Caraballo*)
proof (rule impI)
assume 1: "p∧q"
have 2: "q" using 1 by (rule conjunct2)
have 3: "p⟶q" using 2 by (rule ejercicio_7)
show "r" using assms 3 by (rule mp)
qed
text {* ---------------------------------------------------------------
Ejercicio 24. Demostrar
p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_24:
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
(*Solución M.Cumplido*)
proof -
have 1: p using assms(1) by (rule conjunct1)
have 2: "q⟶r" using assms(1) by (rule conjunct2)
{assume 3: "p⟶q"
have 4: q using 3 1 by (rule mp)
have r using 2 4 by (rule mp)
}
thus "(p⟶q)⟶r" by (rule impI)
qed
lemma ejercicio_24_1:
assumes "p ∧ (q ⟶ r)"
shows "(p ⟶ q) ⟶ r"
(*L.E.Caraballo*)
proof (rule impI)
assume 1: "p⟶q"
have 2: "p" using assms by (rule conjunct1)
have 3: "q⟶r" using assms by (rule conjunct2)
have 4: "q" using 1 2 ..
show 5: "r" using 3 4 ..
qed
section {* Disyunciones *}
text {* ---------------------------------------------------------------
Ejercicio 25. Demostrar
p ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_25:
assumes "p"
shows "p ∨ q"
(*Solución M.Cumplido*)
proof -
show "p | q" using assms(1) by (rule disjI1)
qed
text {* ---------------------------------------------------------------
Ejercicio 26. Demostrar
q ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_26:
assumes "q"
shows "p ∨ q"
(*Solución M.Cumplido*)
proof -
show "p | q" using assms(1) by (rule disjI2)
qed
text {* ---------------------------------------------------------------
Ejercicio 27. Demostrar
p ∨ q ⊢ q ∨ p
------------------------------------------------------------------ *}
lemma ejercicio_27:
assumes "p ∨ q"
shows "q ∨ p"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume 1:p
show 2: "q | p" using 1 by (rule disjI2)}
next
{assume 3:q
show 4: "q | p" using 3 by (rule disjI1)}
qed
text {* ---------------------------------------------------------------
Ejercicio 28. Demostrar
q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
------------------------------------------------------------------ *}
lemma ejercicio_28:
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
(*Solución M.Cumplido*)
proof -
{assume 1: "p | q"
have 2:"p | r" using 1
proof (rule disjE)
{assume p
thus "p | r" by (rule disjI1)}
next
{assume 3: q
have r using assms(1) 3 by (rule mp)
thus "p | r" by (rule disjI2)}
qed}
thus "p ∨ q ⟶ p ∨ r" by (rule impI)
qed
lemma ejercicio_28_1:
assumes "q ⟶ r"
shows "p ∨ q ⟶ p ∨ r"
(*L.E.Caraballo*)
proof (rule impI)
assume 1: "p∨q"
show "p∨r"
using 1
proof (rule disjE)
{ assume "p"
thus "p∨r" by (rule disjI1)}
{ assume 2: "q"
have "r" using assms 2 by (rule mp)
thus "p∨r" by (rule disjI2)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 29. Demostrar
p ∨ p ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_29:
assumes "p ∨ p"
shows "p"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume p
thus p by this}
qed
text {* ---------------------------------------------------------------
Ejercicio 30. Demostrar
p ⊢ p ∨ p
------------------------------------------------------------------ *}
lemma ejercicio_30:
assumes "p"
shows "p ∨ p"
(*Solución M.Cumplido*)
proof -
show "p | p" using assms(1) by (rule disjI1)
qed
text {* ---------------------------------------------------------------
Ejercicio 31. Demostrar
p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r
------------------------------------------------------------------ *}
lemma ejercicio_31:
assumes "p ∨ (q ∨ r)"
shows "(p ∨ q) ∨ r"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume p
hence "p | q" by (rule disjI1)
thus "(p ∨ q) ∨ r" by (rule disjI1)}
next
{assume 1: "q | r"
show "(p ∨ q) ∨ r" using 1
proof (rule disjE)
{assume q
hence "p | q" by (rule disjI2)
thus "(p ∨ q) ∨ r" by (rule disjI1)}
next
{assume r
thus "(p ∨ q) ∨ r" by (rule disjI2) }
qed
}
qed
text {* ---------------------------------------------------------------
Ejercicio 32. Demostrar
(p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_32:
assumes "(p ∨ q) ∨ r"
shows "p ∨ (q ∨ r)"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume r
hence "q | r" by (rule disjI2)
thus "p ∨ (q ∨ r)" by (rule disjI2)}
next
{assume 1: "p | q"
show "p ∨ (q ∨ r)" using 1
proof (rule disjE)
{assume q
hence "q | r" by (rule disjI1)
thus "p ∨ (q ∨ r)" by (rule disjI2)}
next
{assume p
thus "p ∨ (q ∨ r)" by (rule disjI1) }
qed
}
qed
text {* ---------------------------------------------------------------
Ejercicio 33. Demostrar
p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_33:
assumes "p ∧ (q ∨ r)"
shows "(p ∧ q) ∨ (p ∧ r)"
(*Solución M.Cumplido*)
proof -
have 1: p using assms(1) by (rule conjunct1)
have 2: "q | r" using assms(1) by (rule conjunct2)
show "(p ∧ q) ∨ (p ∧ r)" using 2
proof (rule disjE)
{assume 3: q
have 4: "p & q" using 1 3 by (rule conjI)
thus "(p ∧ q) ∨ (p ∧ r)" by (rule disjI1)}
next
{assume 5:r
have 6: "p & r" using 1 5 by (rule conjI)
thus "(p ∧ q) ∨ (p ∧ r)" by (rule disjI2)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 34. Demostrar
(p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_34:
assumes "(p ∧ q) ∨ (p ∧ r)"
shows "p ∧ (q ∨ r)"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume 1:"p & q"
hence 2: p by (rule conjunct1)
have q using 1 by (rule conjunct2)
hence 3:"q | r" by (rule disjI1)
show "p ∧ (q ∨ r)" using 2 3 by (rule conjI)}
next
{assume 4:"p & r"
hence 5: p by (rule conjunct1)
have r using 4 by (rule conjunct2)
hence 6:"q | r" by (rule disjI2)
show "p ∧ (q ∨ r)" using 5 6 by (rule conjI)}
qed
text {* ---------------------------------------------------------------
Ejercicio 35. Demostrar
p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r)
------------------------------------------------------------------ *}
lemma ejercicio_35:
assumes "p ∨ (q ∧ r)"
shows "(p ∨ q) ∧ (p ∨ r)"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume 1: p
have 2: "p | q" using 1 by (rule disjI1)
have 3: "p | r" using 1 by (rule disjI1)
show "(p ∨ q) ∧ (p ∨ r)" using 2 3 by (rule conjI) }
next
{assume 4: "q & r"
hence 5: q by (rule conjunct1)
have 6: r using 4 by (rule conjunct2)
have 7: "p | q" using 5 by (rule disjI2)
have 8: "p | r" using 6 by (rule disjI2)
show "(p ∨ q) ∧ (p ∨ r)" using 7 8 by (rule conjI)}
qed
text {* ---------------------------------------------------------------
Ejercicio 36. Demostrar
(p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
------------------------------------------------------------------ *}
lemma ejercicio_36:
assumes "(p ∨ q) ∧ (p ∨ r)"
shows "p ∨ (q ∧ r)"
(*Solución M.Cumplido*)
proof -
have 1: "p | q" using assms(1) by (rule conjunct1)
have 2: "p | r" using assms(1) by (rule conjunct2)
have "p ∨ (q ∧ r)" using 1
proof (rule disjE)
{assume p
thus "p ∨ (q ∧ r)" by (rule disjI1)}
next
{assume 3: q
show "p ∨ (q ∧ r)" using 2
proof (rule disjE)
{assume p
thus "p ∨ (q ∧ r)" by (rule disjI1)}
next
{assume 4: r
have "q & r" using 3 4 by (rule conjI)
thus "p ∨ (q ∧ r)" by (rule disjI2)}
qed
}
qed
text {* ---------------------------------------------------------------
Ejercicio 37. Demostrar
(p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
------------------------------------------------------------------ *}
lemma ejercicio_37:
assumes "(p ⟶ r) ∧ (q ⟶ r)"
shows "p ∨ q ⟶ r"
(*Solución M.Cumplido*)
proof -
have 1: "p ⟶ r" using assms(1) by (rule conjunct1)
have 2: "q ⟶ r" using assms(1) by (rule conjunct2)
{assume 3: "p | q"
have r using 3
proof (rule disjE)
{assume 4: p
show r using 1 4 by (rule mp)}
next
{assume 5: q
show r using 2 5 by (rule mp) }
qed
}
thus "p ∨ q ⟶ r" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 38. Demostrar
p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
------------------------------------------------------------------ *}
lemma ejercicio_38:
assumes "p ∨ q ⟶ r"
shows "(p ⟶ r) ∧ (q ⟶ r)"
(*Solución M.Cumplido*)
proof -
{assume p
hence 1:"p | q" by (rule disjI1)
have r using assms(1) 1 by (rule mp)}
hence 2: "p ⟶ r" by (rule impI)
{assume q
hence 3:"p | q" by (rule disjI2)
have r using assms(1) 3 by (rule mp)}
hence 4: "q ⟶ r" by (rule impI)
show "(p ⟶ r) ∧ (q ⟶ r)" using 2 4 by (rule conjI)
qed
section {* Negaciones *}
text {* ---------------------------------------------------------------
Ejercicio 39. Demostrar
p ⊢ ¬¬p
------------------------------------------------------------------ *}
lemma ejercicio_39:
assumes "p"
shows "¬¬p"
(*Solución M.Cumplido*)
proof -
show "¬¬p" using assms(1) by (rule notnotI)
qed
text {* ---------------------------------------------------------------
Ejercicio 40. Demostrar
¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_40:
assumes "¬p"
shows "p ⟶ q"
(*Solución M.Cumplido*)
proof -
{assume 1: p
have q using assms(1) 1 by (rule notE)}
thus "p ⟶ q" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 41. Demostrar
p ⟶ q ⊢ ¬q ⟶ ¬p
------------------------------------------------------------------ *}
lemma ejercicio_41:
assumes "p ⟶ q"
shows "¬q ⟶ ¬p"
(*Solución M.Cumplido*)
proof -
{assume 1: "~q"
have "~p" using assms(1) 1 by (rule mt) }
thus "¬q ⟶ ¬p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 42. Demostrar
p∨q, ¬q ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_42:
assumes "p∨q"
"¬q"
shows "p"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume p
thus p by this}
next
{assume 1:q
show p using assms(2) 1 by (rule notE)}
qed
text {* ---------------------------------------------------------------
Ejercicio 43. Demostrar
p ∨ q, ¬p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_43:
assumes "p ∨ q"
"¬p"
shows "q"
(*Solución M.Cumplido*)
using assms(1)
proof (rule disjE)
{assume q
thus q by this}
next
{assume 1:p
show q using assms(2) 1 by (rule notE)}
qed
text {* ---------------------------------------------------------------
Ejercicio 44. Demostrar
p ∨ q ⊢ ¬(¬p ∧ ¬q)
------------------------------------------------------------------ *}
lemma ejercicio_44:
assumes "p ∨ q"
shows "¬(¬p ∧ ¬q)"
(*Solución M.Cumplido*)
proof (rule notI)
assume 1:"¬p ∧ ¬q"
have 2: "~p" using 1 by (rule conjunct1)
have 3: "~q" using 1 by (rule conjunct2)
show False using assms(1)
proof (rule disjE)
{assume 4:p
show False using 2 4 by (rule notE)}
next
{assume 5:q
show False using 3 5 by (rule notE)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 45. Demostrar
p ∧ q ⊢ ¬(¬p ∨ ¬q)
------------------------------------------------------------------ *}
lemma ejercicio_45:
assumes "p ∧ q"
shows "¬(¬p ∨ ¬q)"
(*Solución M.Cumplido*)
proof (rule notI)
assume 1: "¬p ∨ ¬q"
show False using 1
proof (rule disjE)
{assume 2: "~p"
have 3: p using assms(1) by (rule conjunct1)
show False using 2 3 by (rule notE)}
next
{assume 4: "~q"
have 5: q using assms(1) by (rule conjunct2)
show False using 4 5 by (rule notE)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 46. Demostrar
¬(p ∨ q) ⊢ ¬p ∧ ¬q
------------------------------------------------------------------ *}
lemma ejercicio_46:
assumes "¬(p ∨ q)"
shows "¬p ∧ ¬q"
(*Solución M.Cumplido*)
proof -
have 1:"~~(~p & ~q)"
proof (rule notI)
assume 2: "~(~p & ~q)"
have 3:"~p"
proof (rule notI)
assume p
hence 4:"p | q" by (rule disjI1)
show False using assms(1) 4 by (rule notE)
qed
have 5:"~q"
proof (rule notI)
assume q
hence 6:"p | q" by (rule disjI2)
show False using assms(1) 6 by (rule notE)
qed
have 7: "~p & ~q" using 3 5 by (rule conjI)
show False using 2 7 by (rule notE)
qed
show "¬p ∧ ¬q" using 1 by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 47. Demostrar
¬p ∧ ¬q ⊢ ¬(p ∨ q)
------------------------------------------------------------------ *}
lemma ejercicio_47:
assumes "¬p ∧ ¬q"
shows "¬(p ∨ q)"
(*Solución M.Cumplido*)
proof(rule notI)
assume "p | q"
thus False
proof(rule disjE)
{assume 1: p
have 2:"~p" using assms(1) by (rule conjunct1)
show False using 2 1 by (rule notE)}
next
{assume 3: q
have 4: "~q" using assms(1) by (rule conjunct2)
show False using 4 3 by (rule notE)}
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 48. Demostrar
¬p ∨ ¬q ⊢ ¬(p ∧ q)
------------------------------------------------------------------ *}
lemma ejercicio_48:
assumes "¬p ∨ ¬q"
shows "¬(p ∧ q)"
(*Solución M.Cumplido*)
proof (rule notI)
assume 1: "p & q"
have 2: p using 1 by (rule conjunct1)
have 3: q using 1 by (rule conjunct2)
show False using assms(1)
proof (rule disjE)
{assume 4:"~p"
show False using 4 2 by (rule notE) }
next
{assume 5:"~q"
show False using 5 3 by (rule notE) }
qed
qed
text {* ---------------------------------------------------------------
Ejercicio 49. Demostrar
⊢ ¬(p ∧ ¬p)
------------------------------------------------------------------ *}
lemma ejercicio_49:
"¬(p ∧ ¬p)"
(*Solución M.Cumplido*)
proof (rule notI)
assume 1:"p & ~p"
hence 2: p by (rule conjunct1)
have 3: "~p" using 1 by (rule conjunct2)
show False using 3 2 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 50. Demostrar
p ∧ ¬p ⊢ q
------------------------------------------------------------------ *}
lemma ejercicio_50:
assumes "p ∧ ¬p"
shows "q"
(*Solución M.Cumplido*)
proof -
have 1: p using assms(1) by (rule conjunct1)
have 2: "~p" using assms(1) by (rule conjunct2)
show "q" using 2 1 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 51. Demostrar
¬¬p ⊢ p
------------------------------------------------------------------ *}
lemma ejercicio_51:
assumes "¬¬p"
shows "p"
(*Solución M.Cumplido*)
proof -
show p using assms(1) by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 52. Demostrar
⊢ p ∨ ¬p
------------------------------------------------------------------ *}
lemma ejercicio_52:
"p ∨ ¬p"
(*Solución M.Cumplido*)
proof(rule ccontr)
assume 1:"~(p | ~ p)"
hence "~p & ~~p" by (rule ejercicio_46)
hence "~p" by (rule conjunct1)
hence 2:"p | ~p" by (rule disjI2)
show False using 1 2 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 53. Demostrar
⊢ ((p ⟶ q) ⟶ p) ⟶ p
------------------------------------------------------------------ *}
lemma ejercicio_53:
"((p ⟶ q) ⟶ p) ⟶ p"
(*Solución M.Cumplido*)
proof -
{assume 1:"(p ⟶ q) ⟶ p"
have p
proof(rule ccontr)
assume 2:"~p"
{assume 3:p
have q using 2 3 by (rule notE)}
hence 4:"p⟶q" by (rule impI)
have 5: p using 1 4 by (rule mp)
show False using 2 5 by (rule notE)
qed
}
thus "((p ⟶ q) ⟶ p) ⟶ p" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 54. Demostrar
¬q ⟶ ¬p ⊢ p ⟶ q
------------------------------------------------------------------ *}
lemma ejercicio_54:
assumes "¬q ⟶ ¬p"
shows "p ⟶ q"
(*Solución M.Cumplido*)
proof -
{assume 1: p
hence 2: "~~p" by (rule notnotI)
have 3: "~~q" using assms(1) 2 by (rule mt)
hence q by (rule notnotD)}
thus "p⟶q" by (rule impI)
qed
text {* ---------------------------------------------------------------
Ejercicio 55. Demostrar
¬(¬p ∧ ¬q) ⊢ p ∨ q
------------------------------------------------------------------ *}
lemma ejercicio_55:
assumes "¬(¬p ∧ ¬q)"
shows "p ∨ q"
(*Solución M.Cumplido*)
proof(rule ccontr)
assume "~(p | q)"
hence 1: "~p & ~q" by (rule ejercicio_46)
show False using assms(1) 1 by (rule notE)
qed
text {* ---------------------------------------------------------------
Ejercicio 56. Demostrar
¬(¬p ∨ ¬q) ⊢ p ∧ q
------------------------------------------------------------------ *}
lemma ejercicio_56:
assumes "¬(¬p ∨ ¬q)"
shows "p ∧ q"
(*Solución M.Cumplido*)
proof -
have 1: "~~p & ~~q" using assms(1) by (rule ejercicio_46)
have 2: "~~p" using 1 by (rule conjunct1)
have 3: "~~q" using 1 by (rule conjunct2)
have 4: p using 2 by (rule notnotD)
have 5: q using 3 by (rule notnotD)
show "p & q" using 4 5 by (rule conjI)
qed
text {* ---------------------------------------------------------------
Ejercicio 57. Demostrar
¬(p ∧ q) ⊢ ¬p ∨ ¬q
------------------------------------------------------------------ *}
lemma ejercicio_57:
assumes "¬(p ∧ q)"
shows "¬p ∨ ¬q"
(*Solución M.Cumplido*)
proof -
{assume 1: "~(¬p ∨ ¬q)"
hence 2: "p & q" by (rule ejercicio_56)}
hence 3: "¬(¬p | ¬q)⟶ (p & q)" by (rule impI)
have 4:"¬¬(¬p | ¬q)" using 3 assms(1) by (rule mt)
thus "¬p ∨ ¬q" by (rule notnotD)
qed
text {* ---------------------------------------------------------------
Ejercicio 58. Demostrar
⊢ (p ⟶ q) ∨ (q ⟶ p)
------------------------------------------------------------------ *}
lemma ejercicio_58:
"(p ⟶ q) ∨ (q ⟶ p)"
(*Solución M.Cumplido*)
proof -
have "q | ¬q" by (rule ejercicio_52)
thus "(p ⟶ q) ∨ (q ⟶ p)"
proof (rule disjE)
{assume q
hence "p⟶q" by (rule ejercicio_7)
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI1)}
next
{assume "¬q"
hence "¬p⟶¬q" by (rule ejercicio_7)
hence "q⟶p" by (rule ejercicio_54)
thus "(p ⟶ q) ∨ (q ⟶ p)" by (rule disjI2)}
qed
qed
end