Acciones

Relación 4

De Demostración automática de teoremas (2014-15)

header {* R4: Razonamiento sobre programas en Isabelle/HOL *}

theory R4
imports Main 
begin

text {* --------------------------------------------------------------- 
  Ejercicio 1. Definir la función
     sumaImpares :: nat ⇒ nat
  tal que (sumaImpares n) es la suma de los n primeros números
  impares. Por ejemplo,
     sumaImpares 5  =  25
  ------------------------------------------------------------------ *}

(*Solución M.Cumplido*)  
fun sumaImpares :: "nat ⇒ nat" where
  "sumaImpares 0  = 0"
| "sumaImpares (Suc n) = (2 * (Suc n) - 1) + sumaImpares n"

(*Con esta definición me da error al aplicar la prueba por inducción, con la de debajo de Evaristo no.*)

value "sumaImpares 5" -- "= 25"

fun sumaImpares_lecc :: "nat ⇒ nat" where
  "sumaImpares_lecc 0 = 0"
| "sumaImpares_lecc (Suc n) = 2 * n + 1 + sumaImpares_lecc n"

text {* --------------------------------------------------------------- 
  Ejercicio 2. Demostrar que 
     sumaImpares n = n*n
  ------------------------------------------------------------------- *}

lemma "sumaImpares n = n*n"
oops

lemma "sumaImpares_lecc n = n*n"
proof (induct n)
  show "sumaImpares_lecc 0 = 0*0" by simp
next
  fix n
  assume HI: "sumaImpares_lecc n = n*n"
  have "sumaImpares_lecc (Suc n) = 2 * n + 1 + sumaImpares_lecc n" by simp
  also have "... = 2 * n + 1 + n * n" using HI by simp
  also have "... = (Suc n)*(Suc n)" by simp 
  finally show "sumaImpares_lecc (Suc n) = (Suc n)*(Suc n)" by simp
qed

text {* --------------------------------------------------------------- 
  Ejercicio 3. Definir la función
     sumaPotenciasDeDosMasUno :: nat ⇒ nat
  tal que 
     (sumaPotenciasDeDosMasUno n) = 1 + 2^0 + 2^1 + 2^2 + ... + 2^n. 
  Por ejemplo, 
     sumaPotenciasDeDosMasUno 3  =  16
  ------------------------------------------------------------------ *}

fun sumaPotenciasDeDosMasUno :: "nat ⇒ nat" where
  "sumaPotenciasDeDosMasUno n = undefined"

fun sumaPotenciasDeDosMasUno_lecc :: "nat ⇒ nat" where
  "sumaPotenciasDeDosMasUno_lecc 0 = 1 + 2^0"
| "sumaPotenciasDeDosMasUno_lecc (Suc n) = 2 ^ (n + 1) + sumaPotenciasDeDosMasUno_lecc n"


(*Solución M.Cumplido*)  
fun sumaPotenciasDeDosMasUno :: "nat ⇒ nat" where
  "sumaPotenciasDeDosMasUno 0 = 2 "
  | "sumaPotenciasDeDosMasUno (Suc n) = sumaPotenciasDeDosMasUno n + 2^(Suc n)"


value "sumaPotenciasDeDosMasUno 3" -- "= 16"

text {* --------------------------------------------------------------- 
  Ejercicio 4. Demostrar que 
     sumaPotenciasDeDosMasUno n = 2^(n+1)
  ------------------------------------------------------------------- *}

lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)"
oops

lemma "sumaPotenciasDeDosMasUno_lecc n = 2^(n+1)"
proof (induct n)
  have "sumaPotenciasDeDosMasUno_lecc 0 = 1 + 2^0" by simp
  also have "... = 2^(0+1)" by simp
  finally show "sumaPotenciasDeDosMasUno_lecc 0 = 2^(0+1)" by simp
next
  fix n::nat
  assume HI: "sumaPotenciasDeDosMasUno_lecc n = 2^(n+1)"
  have "sumaPotenciasDeDosMasUno_lecc (Suc n) = 2^(n+1)+ sumaPotenciasDeDosMasUno_lecc n" by simp
  also have "... = 2^(n+1)+2^(n+1)" using HI by simp
  also have "... = 2^(n+2)" by simp
  also have "... = 2^(Suc n + 1)" by simp
  finally show "sumaPotenciasDeDosMasUno_lecc (Suc n) = 2^(Suc n + 1)" by simp
qed


(*Solución M.Cumplido*)  
lemma "sumaPotenciasDeDosMasUno n = 2^(n+1)"
proof(induct n)
  show "sumaPotenciasDeDosMasUno 0 = 2^(0+1)" by simp
next
  fix n
  assume HI: "sumaPotenciasDeDosMasUno n = 2^(n+1)"
  have "sumaPotenciasDeDosMasUno(Suc n) = sumaPotenciasDeDosMasUno n + 2^(Suc n) " by simp
  also have "... = 2^(n+1)+2^(Suc n)" using HI by simp
  also have "... = 2^(Suc n +1)" by simp
  finally show "sumaPotenciasDeDosMasUno(Suc n) = 2^(Suc n +1)" by simp
qed

text {* --------------------------------------------------------------- 
  Ejercicio 5. Definir la función
     copia :: nat ⇒ 'a ⇒ 'a list
  tal que (copia n x) es la lista formado por n copias del elemento
  x. Por ejemplo, 
     copia 3 x = [x,x,x]
  ------------------------------------------------------------------ *}

fun copia :: "nat ⇒ 'a ⇒ 'a list" where
  "copia n x = undefined"

fun copia_lecc :: "nat ⇒ 'a ⇒ 'a list" where
  "copia_lecc 0 x = []"
| "copia_lecc (Suc n) x = (x#copia_lecc n x)"

(*Solución M.Cumplido*)  
fun copia :: "nat ⇒ 'a ⇒ 'a list" where
  "copia 0 x = []"
  | "copia (Suc n) x = [x] @ copia n x"


value "copia 3 x" -- "= [x,x,x]"

text {* --------------------------------------------------------------- 
  Ejercicio 6. Definir la función
     todos :: ('a ⇒ bool) ⇒ 'a list ⇒ bool
  tal que (todos p xs) se verifica si todos los elementos de xs cumplen
  la propiedad p. Por ejemplo,
     todos (λx. x>(1::nat)) [2,6,4] = True
     todos (λx. x>(2::nat)) [2,6,4] = False
  Nota: La conjunción se representa por ∧
  ----------------------------------------------------------------- *}

fun todos :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where
  "todos p xs = undefined"

fun todos_lecc :: "('a ⇒ bool) ⇒ 'a list ⇒ bool" where
  "todos_lecc p [] = True"
| "todos_lecc p (x#xs) = (p x ∧ todos_lecc p xs)"

value "todos (λx. x>(1::nat)) [2,6,4]" -- "= True"
value "todos (λx. x>(2::nat)) [2,6,4]" -- "= False"

text {* --------------------------------------------------------------- 
  Ejercicio 7. Demostrar que todos los elementos de (copia n x) son
  iguales a x. 
  ------------------------------------------------------------------- *}

lemma "todos (λy. y=x) (copia n x)"
oops

lemma "todos_lecc (λy. y=x) (copia_lecc n x)"
proof (induct n)
  have "todos_lecc (λy. y=x) (copia_lecc 0 x) = todos_lecc (λy. y=x) []" by simp
  also have "... = True" by simp
  finally show "todos_lecc (λy. y=x) (copia_lecc 0 x)" by simp
next
  fix n::nat
  assume HI: "todos_lecc (λy. y=x) (copia_lecc n x)"
  have "todos_lecc (λy. y=x) (copia_lecc (Suc n) x) = todos_lecc (λy. y=x) (x#copia_lecc n x)" by simp
  also have "... = ((λy. y=x) x ∧ todos_lecc (λy. y=x) (copia_lecc n x))" by simp
  also have "... = (True ∧ todos_lecc (λy. y=x) (copia_lecc n x))" by simp
  also have "... = (True ∧ True)" using HI by simp
  also have "... = True" by simp
  finally show "todos_lecc (λy. y=x) (copia_lecc (Suc n) x)" by simp  
qed

 (*Solución M.Cumplido*) 
lemma "todos (λy. y=x) (copia n x)"
proof (induct n)
  show "todos (λy. y=x)(copia 0 x)" by simp
next
  fix n
  assume HI: "todos(λy. y=x)(copia n x)"
  have "todos(λy. y=x)(copia (Suc n) x) = todos(λy. y=x)([x] @ copia n x )" by simp
  also have "... = todos(λy. y=x) (x#copia n x)"  by simp
  also have "... = todos(λy. y=x) [x]"  using HI by simp
  also have "... = True"  by simp
  finally show "todos(λy. y=x)(copia (Suc n) x)" by simp 
qed

text {* --------------------------------------------------------------- 
  Ejercicio 8. Definir la función
    factR :: nat ⇒ nat
  tal que (factR n) es el factorial de n. Por ejemplo,
    factR 4 = 24
  ------------------------------------------------------------------ *}

fun factR :: "nat ⇒ nat" where
  "factR n = undefined"

fun factR_lecc :: "nat ⇒ nat" where
  "factR_lecc 0 = 1"
| "factR_lecc (Suc n) = (n+1) * factR_lecc n"


(*Solución M.Cumplido*)  
fun factR :: "nat ⇒ nat" where
  "factR 0 = 1" | "factR (Suc n) = factR n * Suc n"

value "factR 4" -- "= 24"

text {* --------------------------------------------------------------- 
  Ejercicio 9. Se considera la siguiente definición iterativa de la
  función factorial 
     factI :: "nat ⇒ nat" where
     factI n = factI' n 1
     
     factI' :: nat ⇒ nat ⇒ nat" where
     factI' 0       x = x
     factI' (Suc n) x = factI' n (Suc n)*x
  Demostrar que, para todo n y todo x, se tiene 
     factI' n x = x * factR n
  ------------------------------------------------------------------- *}

fun factI' :: "nat ⇒ nat ⇒ nat" where
  "factI' 0       x = x"
| "factI' (Suc n) x = factI' n (Suc n)*x"

fun factI :: "nat ⇒ nat" where
  "factI n = factI' n 1"

value "factI 4" -- "= 24"

(*Solución M.Cumplido*)
lemma fact: "factI' n x = x * factR n"
proof (induct n arbitrary: x)
  show "⋀x. factI' 0 x = x * factR 0" by simp
next
  fix n 
  assume HI: "⋀x. factI' n x = x * factR n"
  fix x
  have "factI' (Suc n) x = factI' n (Suc n)*x" by simp
  also have "... = x*factI' n (Suc n)" by simp
  also have "... = x*(Suc n *factR n)" using HI  by simp
  also have "... = x* factR (Suc n)" by simp
  finally show "factI' (Suc n) x = x * factR (Suc n)" by simp
qed

text {* --------------------------------------------------------------- 
  Ejercicio 10. Demostrar que
     factI n = factR n
  ------------------------------------------------------------------- *}

corollary "factI n = factR n"

(*Solución M.Cumplido*)
proof-
have "factI n= factI' n 1" by simp
also have "... = 1* factR n" by (rule fact)
also have "... = factR n" by simp
finally show "factI n = factR n" by simp
qed 

text {* --------------------------------------------------------------- 
  Ejercicio 11. Definir, recursivamente y sin usar (@), la función
     amplia :: 'a list ⇒ 'a ⇒ 'a list
  tal que (amplia xs y) es la lista obtenida añadiendo el elemento y al
  final de la lista xs. Por ejemplo,
     amplia [d,a] t = [d,a,t]
  ------------------------------------------------------------------ *}

fun amplia :: "'a list ⇒ 'a ⇒ 'a list" where
  "amplia xs y = undefined"

fun amplia_lecc :: "'a list ⇒ 'a ⇒ 'a list" where
  "amplia_lecc [] y = [y]"
| "amplia_lecc (x#xs) y = x#(amplia_lecc xs y)"

value "amplia [d,a] t" -- "= [d,a,t]"

text {* --------------------------------------------------------------- 
  Ejercicio 12. Demostrar que 
     amplia xs y = xs @ [y]
  ------------------------------------------------------------------- *}

lemma "amplia xs y = xs @ [y]"
oops

lemma "amplia_lecc xs y = xs @ [y]"
proof (induct xs)
  have 1:"amplia_lecc [] y = [y]" by simp
  have "[] @ [y] = [y]" by simp
  hence "[y] = [] @ [y]" ..
  with 1 show "amplia_lecc [] y = [] @ [y]" by simp
next
  fix x xs
  assume HI: "amplia_lecc xs y = xs @ [y]"
  have "amplia_lecc (x#xs) y = x#(amplia_lecc xs y)" by simp
  also have "... = x#(xs @ [y])" using HI by simp
  also have "... = (x#xs) @ [y]" 
    proof (induct xs)
      show "x#([]@[y]) = [x]@[y]" by simp
    next
      fix a as
      assume HI: "x#(as @ [y]) = (x#as)@[y]"
      have "x#((a#as)@[y]) = x#(a#(as @ [y]))" by simp
      also have "... = x#([a] @ as @ [y])" by simp
      also have "... = [x] @ [a] @ as @ [y]" by simp
      also have "... = (x # a # as) @ [y]" by simp
      finally show "x#((a#as)@[y]) = (x # a # as) @ [y]" by simp
    qed
  finally show "amplia_lecc (x#xs) y = (x#xs) @ [y]" by simp
qed



(*Solución M.Cumplido*)
proof(induct xs)
  show " amplia [] y = [] @ [y]" by simp
next
  fix xs x
  assume HI: "amplia xs y = xs @ [y]"
  have "amplia (x#xs) y = x#(amplia xs y)" by simp
  also have "... = x#(xs @ [y])" using HI by simp
  also have "... = (x#xs)@[y]" by simp
  finally show "amplia(x#xs) y = (x#xs)@ [y]" by simp
qed

end