Acciones

Diferencia entre revisiones de «Relación 3»

De Demostración asistida por ordenador (2012-13)

Línea 1: Línea 1:
 
<source lang="isar">
 
<source lang="isar">
header {* Relación 3: Deducción natural proposicional *}
+
header {* R3: Deducción natural proposicional *}
  
theory DNLP
+
theory R3
 
imports Main  
 
imports Main  
 
begin
 
begin
Línea 35: Línea 35:
  
 
text {*
 
text {*
   Se usarán las reglas notnotI y mt que demostramos a continuación.
+
   Se usarán las reglas notnotI y mt que demostramos a continuación. *}
  *}
 
  
 
lemma notnotI: "P ⟹ ¬¬ P"
 
lemma notnotI: "P ⟹ ¬¬ P"
Línea 51: Línea 50:
 
   ------------------------------------------------------------------ *}
 
   ------------------------------------------------------------------ *}
  
lemma ejercicio_1:
+
lemma ejercicio_1a:
   assumes "p ⟶ q" and
+
   assumes 1: "p ⟶ q" and
 +
          2: "p"
 +
  shows "q"
 +
proof -
 +
  show 3: "q" using 1 2 by (rule mp)
 +
qed
 +
 
 +
lemma ejercicio_1b:
 +
  assumes "p ⟶ q"
 
           "p"
 
           "p"
 
   shows "q"
 
   shows "q"
oops
+
proof -
 
+
  show "q" using assms(1,2) by (rule mp)
 +
qed
 +
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
 
   Ejercicio 2. Demostrar
 
   Ejercicio 2. Demostrar
Línea 62: Línea 71:
 
   ------------------------------------------------------------------ *}
 
   ------------------------------------------------------------------ *}
  
lemma ejercicio_2:
+
-- "Pedro G. Ros"
   assumes "p ⟶ q" and  
+
lemma ejercicio_2a:
           "q ⟶ r" and  
+
   assumes 1:"p ⟶ q" and
           "p"  
+
           2:"q ⟶ r" and
 +
           3:"p"  
 
   shows "r"
 
   shows "r"
oops
+
proof -
 
+
  have 4: "q" using 1 3 by (rule mp)
 +
  show 5: "r" using 2 4 by (rule mp)
 +
qed
 +
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
 
   Ejercicio 3. Demostrar
 
   Ejercicio 3. Demostrar
 
     p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
 
     p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
 
   ------------------------------------------------------------------ *}
 
   ------------------------------------------------------------------ *}
 +
  
lemma ejercicio_3:
+
lemma ejercicio_3a:
   assumes "p ⟶ (q ⟶ r)" and  
+
   assumes 1: "p ⟶ (q ⟶ r)" and
           "p ⟶ q" and
+
           2: "p ⟶ q"       and
           "p"
+
           3: "p"          
 
   shows "r"
 
   shows "r"
oops
+
proof -
 
+
  have 4: "q ⟶ r" using 1 3 by (rule mp)
 +
  have 5: "q" using 2 3 by (rule mp)
 +
  show 6: "r" using 4 5 by (rule mp)
 +
qed
 +
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
 
   Ejercicio 4. Demostrar
 
   Ejercicio 4. Demostrar
Línea 86: Línea 104:
 
   ------------------------------------------------------------------ *}
 
   ------------------------------------------------------------------ *}
  
lemma ejercicio_4:
+
lemma ejercicio_4a:
   assumes "p ⟶ q" and  
+
  assumes 1: "p ⟶ q" and
 +
          2: "q ⟶ r"
 +
  shows "p ⟶ r"
 +
proof -
 +
  {assume 3:"p"
 +
    have 4: "q" using 1 3 by (rule mp)
 +
    have 5: "r" using 2 4 by (rule mp)}
 +
  thus "p ⟶ r" by (rule impI)
 +
qed
 +
 
 +
 
 +
lemma ejercicio_4d:
 +
   assumes "p ⟶ q" and
 
           "q ⟶ r"  
 
           "q ⟶ r"  
 
   shows "p ⟶ r"
 
   shows "p ⟶ r"
oops
+
  using assms by auto
 +
 
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 97: Línea 128:
 
   ------------------------------------------------------------------ *}
 
   ------------------------------------------------------------------ *}
  
lemma ejercicio_5:
+
-- "Isabel Duarte"
   assumes "p ⟶ (q ⟶ r)"  
+
lemma ejercicio_5a:
 +
   assumes 1: "p ⟶ (q ⟶ r)"  
 
   shows  "q ⟶ (p ⟶ r)"
 
   shows  "q ⟶ (p ⟶ r)"
oops
+
proof -
 +
  {assume 3: "q"
 +
    {assume 4: "p"
 +
      have  "q ⟶ r" using 1 4 ..
 +
      hence 5: "r" using 3 ..}
 +
    hence 6: "p ⟶ r" by (rule impI)}
 +
  thus "q ⟶ (p ⟶ r)" by (rule impI)
 +
qed
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 107: Línea 146:
 
   ------------------------------------------------------------------ *}
 
   ------------------------------------------------------------------ *}
  
lemma ejercicio_6:
+
lemma ejercicio_6a:
   assumes "p ⟶ (q ⟶ r)"  
+
   assumes 1: "p ⟶ (q ⟶ r)"  
 
   shows  "(p ⟶ q) ⟶ (p ⟶ r)"
 
   shows  "(p ⟶ q) ⟶ (p ⟶ r)"
oops
+
proof -
 +
{assume 2: "p ⟶ q"
 +
  {assume 3: "p"
 +
    have 4: "q ⟶ r" using 1 3 ..
 +
    have 5: "q" using 2 3 ..
 +
    have "r"  using 4 5 ..}
 +
  hence "p ⟶ r" by (rule impI)}
 +
thus "(p ⟶ q) ⟶ (p ⟶ r)" by (rule impI)
 +
qed
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 120: Línea 167:
 
   assumes "p"   
 
   assumes "p"   
 
   shows  "q ⟶ p"
 
   shows  "q ⟶ p"
oops
+
proof -
 +
{assume 1: "q"}
 +
  show "q⟶ p" using assms(1) by (rule impI)
 +
qed
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 135: Línea 185:
 
     p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
 
     p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
 
   ------------------------------------------------------------------ *}
 
   ------------------------------------------------------------------ *}
 +
  
 
lemma ejercicio_9:
 
lemma ejercicio_9:
   assumes "p ⟶ q"  
+
   assumes 1: "p ⟶ q"
   shows   "(q ⟶ r) ⟶ (p ⟶ r)"
+
   shows "(q ⟶ r) ⟶  (p ⟶ r)"
oops
+
proof-
 +
  {assume 2: "q ⟶ r"
 +
    {assume 3: "p"
 +
      have 4: "q" using 1 3 by (rule mp)
 +
      have 5: "r" using 2 4 by (rule mp)}
 +
    hence 6: "p ⟶ r" by (rule impI)}
 +
  thus "(q ⟶ r) ⟶ (p ⟶ r)" by (rule impI)
 +
qed
 +
 
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 176: Línea 235:
 
     p, q ⊢  p ∧ q
 
     p, q ⊢  p ∧ q
 
   ------------------------------------------------------------------ *}
 
   ------------------------------------------------------------------ *}
 +
 +
  
 
lemma ejercicio_13:
 
lemma ejercicio_13:
   assumes "p" and  
+
   assumes 1:"p" and
           "q"  
+
           2:"q"  
 
   shows "p ∧ q"
 
   shows "p ∧ q"
oops
+
proof -
 
+
show "p ∧ q" using 1 2 by (rule conjI)
 +
qed
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
 
   Ejercicio 14. Demostrar
 
   Ejercicio 14. Demostrar
Línea 191: Línea 253:
 
   assumes "p ∧ q"   
 
   assumes "p ∧ q"   
 
   shows  "p"
 
   shows  "p"
oops
+
proof -
 +
show "p" using assms by (rule conjunct1)
 +
qed
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 201: Línea 265:
 
   assumes "p ∧ q"  
 
   assumes "p ∧ q"  
 
   shows  "q"
 
   shows  "q"
oops
+
proof -
 +
show "q" using assms by (rule conjunct2)
 +
qed
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 210: Línea 276:
 
lemma ejercicio_16:
 
lemma ejercicio_16:
 
   assumes "p ∧ (q ∧ r)"
 
   assumes "p ∧ (q ∧ r)"
   shows  "(p ∧ q) ∧ r"
+
   shows  "(p ∧ q)∧ r"
oops
+
proof -
 +
have 1: "p" using assms by (rule conjunct1)
 +
have 2: "(q ∧ r)" using assms by (rule conjunct2)
 +
have 3: "q" using 2 by (rule conjunct1)
 +
have 4: "r" using 2 by (rule conjunct2)
 +
have 5: "(p∧q)" using 1 3 by (rule conjI)
 +
show 6: "(p∧q) ∧ r" using 5 4 by (rule conjI)
 +
qed
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 219: Línea 292:
  
 
lemma ejercicio_17:
 
lemma ejercicio_17:
   assumes "(p ∧ q) ∧ r"  
+
   assumes "(p∧ q) ∧ r"  
   shows  "p ∧ (q ∧ r)"
+
   shows  "p ∧ (q∧ r)"
oops
+
proof -
 +
have 1: "r" using assms by (rule conjunct2)
 +
have 2: "(p∧q)" using assms by (rule conjunct1)
 +
have 3: "p" using 2 by (rule conjunct1)
 +
have 4: "q" using 2 by (rule conjunct2)
 +
have 5: "(q∧r)" using 4 1 by (rule conjI)
 +
show 6: "p∧(q∧r)" using 3 5 by (rule conjI)
 +
qed
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 231: Línea 311:
 
   assumes "p ∧ q"  
 
   assumes "p ∧ q"  
 
   shows  "p ⟶ q"
 
   shows  "p ⟶ q"
oops
+
proof -
 +
have 1: "q" using assms by (rule conjunct2)
 +
show "p⟶ q" using 1 by (rule impI)
 +
qed
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 237: Línea 320:
 
     (p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r   
 
     (p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r   
 
   ------------------------------------------------------------------ *}
 
   ------------------------------------------------------------------ *}
 +
  
 
lemma ejercicio_19:
 
lemma ejercicio_19:
   assumes "(p ⟶ q) ∧ (p ⟶ r)"  
+
   assumes 1: "(p ⟶ q) ∧ (p ⟶ r)"  
   shows   "p ⟶ q ∧ r"
+
   shows "p ⟶ (q ∧ r)"
oops
+
proof (rule impI)
 +
  assume 2: "p"
 +
  have 3: "p ⟶ q" using assms by (rule conjunct1)
 +
  have 4: "q" using 3 2 by (rule mp)
 +
  have 5: "p ⟶ r" using assms by (rule conjunct2)
 +
  have 6: "r" using 5 2 by (rule mp)
 +
  show "q ∧ r" using 4 6 by (rule conjI)
 +
qed
 +
 
 +
 
 +
 
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 303: Línea 397:
 
   assumes "p"
 
   assumes "p"
 
   shows  "p ∨ q"
 
   shows  "p ∨ q"
oops
+
proof -
 +
show "p∨q" using assms by (rule disjI1)
 +
qed
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 313: Línea 409:
 
   assumes "q"
 
   assumes "q"
 
   shows  "p ∨ q"
 
   shows  "p ∨ q"
oops
+
proof -
 +
show "p∨q" using assms by (rule disjI2)
 +
qed
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 323: Línea 421:
 
   assumes "p ∨ q"
 
   assumes "p ∨ q"
 
   shows  "q ∨ p"
 
   shows  "q ∨ p"
oops
+
proof -
 +
have "p ∨ q" using assms by this
 +
  moreover
 +
  { assume 2: "p"
 +
    have "q ∨ p" using 2 by (rule disjI2) }
 +
  moreover
 +
  { assume 3: "q"
 +
    have "q ∨ p" using 3 by (rule disjI1) }
 +
  ultimately show "q ∨ p" by (rule disjE)
 +
qed 
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 445: Línea 552:
 
   assumes "p"
 
   assumes "p"
 
   shows  "¬¬p"
 
   shows  "¬¬p"
oops
+
proof -
 +
show "¬¬p" using assms by (rule notnotI)
 +
qed
  
 
text {* ---------------------------------------------------------------  
 
text {* ---------------------------------------------------------------  
Línea 473: Línea 582:
  
 
lemma ejercicio_42:
 
lemma ejercicio_42:
   assumes "p∨q" and
+
   assumes "p∨q"
 
           "¬q"  
 
           "¬q"  
 
   shows  "p"
 
   shows  "p"
Línea 484: Línea 593:
  
 
lemma ejercicio_43:
 
lemma ejercicio_43:
   assumes "p ∨ q" and "¬p"  
+
   assumes "p ∨ q"
   shows "q"
+
          "¬p"  
 +
   shows   "q"
 
oops
 
oops
  

Revisión del 16:46 6 mar 2013

header {* R3: Deducción natural proposicional *}

theory R3
imports Main 
begin

text {*
  --------------------------------------------------------------------- 
  El objetivo de esta relación es demostrar cada uno de los ejercicios
  usando sólo las reglas básicas de deducción natural de la lógica
  proposicional (sin usar el método auto).

  Las reglas básicas de la deducción natural son las siguientes:
  · conjI:      ⟦P; Q⟧ ⟹ P ∧ Q
  · conjunct1:  P ∧ Q ⟹ P
  · conjunct2:  P ∧ Q ⟹ Q  
  · notnotD:    ¬¬ P ⟹ P
  · notnotI:    P ⟹ ¬¬ P
  · mp:         ⟦P ⟶ Q; P⟧ ⟹ Q 
  · mt:         ⟦F ⟶ G; ¬G⟧ ⟹ ¬F 
  · impI:       (P ⟹ Q) ⟹ P ⟶ Q
  · disjI1:     P ⟹ P ∨ Q
  · disjI2:     Q ⟹ P ∨ Q
  · disjE:      ⟦P ∨ Q; P ⟹ R; Q ⟹ R⟧ ⟹ R 
  · FalseE:     False ⟹ P
  · notE:       ⟦¬P; P⟧ ⟹ R
  · notI:       (P ⟹ False) ⟹ ¬P
  · iffI:       ⟦P ⟹ Q; Q ⟹ P⟧ ⟹ P = Q
  · iffD1:      ⟦Q = P; Q⟧ ⟹ P 
  · iffD2:      ⟦P = Q; Q⟧ ⟹ P
  · ccontr:     (¬P ⟹ False) ⟹ P
  --------------------------------------------------------------------- 
*}

text {*
  Se usarán las reglas notnotI y mt que demostramos a continuación. *}

lemma notnotI: "P ⟹ ¬¬ P"
by auto

lemma mt: "⟦F ⟶ G; ¬G⟧ ⟹ ¬F"
by auto

section {* Implicaciones *}

text {* --------------------------------------------------------------- 
  Ejercicio 1. Demostrar
       p ⟶ q, p ⊢ q
  ------------------------------------------------------------------ *}

lemma ejercicio_1a:
  assumes 1: "p ⟶ q" and
          2: "p"
  shows "q"
proof -
   show 3: "q" using 1 2 by (rule mp) 
qed

lemma ejercicio_1b:
  assumes "p ⟶ q"
          "p"
  shows "q"
proof -
  show "q" using assms(1,2) by (rule mp)
qed
 
text {* --------------------------------------------------------------- 
  Ejercicio 2. Demostrar
     p ⟶ q, q ⟶ r, p ⊢ r
  ------------------------------------------------------------------ *}

-- "Pedro G. Ros"
lemma ejercicio_2a:
  assumes 1:"p ⟶ q" and
          2:"q ⟶ r" and
          3:"p" 
  shows "r"
proof -
  have 4: "q" using 1 3 by (rule mp)
  show 5: "r" using 2 4 by (rule mp) 
qed
 
text {* --------------------------------------------------------------- 
  Ejercicio 3. Demostrar
     p ⟶ (q ⟶ r), p ⟶ q, p ⊢ r
  ------------------------------------------------------------------ *}
 

lemma ejercicio_3a:
  assumes 1: "p ⟶ (q ⟶ r)" and
          2: "p ⟶ q"       and
          3: "p"           
  shows "r"
proof -
   have 4: "q ⟶ r" using 1 3 by (rule mp)
   have 5: "q" using 2 3 by (rule mp)
   show 6: "r" using 4 5 by (rule mp)
qed
 
text {* --------------------------------------------------------------- 
  Ejercicio 4. Demostrar
     p ⟶ q, q ⟶ r ⊢ p ⟶ r
  ------------------------------------------------------------------ *}

lemma ejercicio_4a:
  assumes 1: "p ⟶ q" and
          2: "q ⟶ r" 
  shows "p ⟶ r"
proof -
  {assume 3:"p" 
    have 4: "q" using 1 3 by (rule mp)
    have 5: "r" using 2 4 by (rule mp)}
  thus "p ⟶ r" by (rule impI)
qed


lemma ejercicio_4d:
  assumes "p ⟶ q" and
          "q ⟶ r" 
  shows "p ⟶ r"
  using assms by auto


text {* --------------------------------------------------------------- 
  Ejercicio 5. Demostrar
     p ⟶ (q ⟶ r) ⊢ q ⟶ (p ⟶ r)
  ------------------------------------------------------------------ *}

-- "Isabel Duarte"
lemma ejercicio_5a:
  assumes 1: "p ⟶ (q ⟶ r)" 
  shows   "q ⟶ (p ⟶ r)"
proof -
  {assume 3: "q"
    {assume 4: "p"
      have  "q ⟶ r" using 1 4 ..
      hence 5: "r" using 3 ..}
    hence 6: "p ⟶ r" by (rule impI)}
  thus "q ⟶ (p ⟶ r)" by (rule impI)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 6. Demostrar
     p ⟶ (q ⟶ r) ⊢ (p ⟶ q) ⟶ (p ⟶ r)
  ------------------------------------------------------------------ *}

lemma ejercicio_6a:
  assumes 1: "p ⟶ (q ⟶ r)" 
  shows   "(p ⟶ q) ⟶ (p ⟶ r)"
proof -
 {assume 2: "p ⟶ q"
   {assume 3: "p"
    have 4: "q ⟶ r" using 1 3 ..
    have 5: "q" using 2 3 ..
    have "r"  using 4 5 ..}
   hence "p ⟶ r" by (rule impI)}
 thus "(p ⟶ q) ⟶ (p ⟶ r)" by (rule impI)
qed 

text {* --------------------------------------------------------------- 
  Ejercicio 7. Demostrar
     p ⊢ q ⟶ p
  ------------------------------------------------------------------ *}

lemma ejercicio_7:
  assumes "p"  
  shows   "q ⟶ p"
proof -
 {assume 1: "q"}
   show "q⟶ p" using assms(1) by (rule impI)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 8. Demostrar
     ⊢ p ⟶ (q ⟶ p)
  ------------------------------------------------------------------ *}

lemma ejercicio_8:
  "p ⟶ (q ⟶ p)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 9. Demostrar
     p ⟶ q ⊢ (q ⟶ r) ⟶ (p ⟶ r)
  ------------------------------------------------------------------ *}


lemma ejercicio_9:
  assumes  1: "p ⟶ q"
  shows "(q ⟶ r) ⟶  (p ⟶ r)"
proof- 
   {assume 2: "q ⟶ r"
     {assume 3: "p"
       have 4: "q" using 1 3 by (rule mp)
       have 5: "r" using 2 4 by (rule mp)}
     hence 6: "p ⟶ r" by (rule impI)}
   thus "(q ⟶ r) ⟶ (p ⟶ r)" by (rule impI)
qed


text {* --------------------------------------------------------------- 
  Ejercicio 10. Demostrar
     p ⟶ (q ⟶ (r ⟶ s)) ⊢ r ⟶ (q ⟶ (p ⟶ s))
  ------------------------------------------------------------------ *}

lemma ejercicio_10:
  assumes "p ⟶ (q ⟶ (r ⟶ s))" 
  shows   "r ⟶ (q ⟶ (p ⟶ s))"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 11. Demostrar
     ⊢ (p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))
  ------------------------------------------------------------------ *}

lemma ejercicio_11:
  "(p ⟶ (q ⟶ r)) ⟶ ((p ⟶ q) ⟶ (p ⟶ r))"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 12. Demostrar
     (p ⟶ q) ⟶ r ⊢ p ⟶ (q ⟶ r)
  ------------------------------------------------------------------ *}

lemma ejercicio_12:
  assumes "(p ⟶ q) ⟶ r" 
  shows   "p ⟶ (q ⟶ r)"
oops

section {* Conjunciones *}

text {* --------------------------------------------------------------- 
  Ejercicio 13. Demostrar
     p, q ⊢  p ∧ q
  ------------------------------------------------------------------ *}



lemma ejercicio_13:
  assumes 1:"p" and
          2:"q" 
  shows "p ∧ q"
proof -
show "p ∧ q" using 1 2 by (rule conjI)
qed
text {* --------------------------------------------------------------- 
  Ejercicio 14. Demostrar
     p ∧ q ⊢ p
  ------------------------------------------------------------------ *}

lemma ejercicio_14:
  assumes "p ∧ q"  
  shows   "p"
proof -
show "p" using assms by (rule conjunct1)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 15. Demostrar
     p ∧ q ⊢ q
  ------------------------------------------------------------------ *}

lemma ejercicio_15:
  assumes "p ∧ q" 
  shows   "q"
proof -
show "q" using assms by (rule conjunct2)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 16. Demostrar
     p ∧ (q ∧ r) ⊢ (p ∧ q) ∧ r
  ------------------------------------------------------------------ *}

lemma ejercicio_16:
  assumes "p ∧ (q ∧ r)"
  shows   "(p ∧ q)∧ r"
proof -
have 1: "p" using assms by (rule conjunct1)
have 2: "(q ∧ r)" using assms by (rule conjunct2)
have 3: "q" using 2 by (rule conjunct1)
have 4: "r" using 2 by (rule conjunct2)
have 5: "(p∧q)" using 1 3 by (rule conjI)
show 6: "(p∧q) ∧ r" using 5 4 by (rule conjI)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 17. Demostrar
     (p ∧ q) ∧ r ⊢ p ∧ (q ∧ r)
  ------------------------------------------------------------------ *}

lemma ejercicio_17:
  assumes "(p∧ q) ∧ r" 
  shows   "p ∧ (q∧ r)"
proof -
have 1: "r" using assms by (rule conjunct2)
have 2: "(p∧q)" using assms by (rule conjunct1)
have 3: "p" using 2 by (rule conjunct1)
have 4: "q" using 2 by (rule conjunct2)
have 5: "(q∧r)" using 4 1 by (rule conjI)
show 6: "p∧(q∧r)" using 3 5 by (rule conjI)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 18. Demostrar
     p ∧ q ⊢ p ⟶ q
  ------------------------------------------------------------------ *}

lemma ejercicio_18:
  assumes "p ∧ q" 
  shows   "p ⟶ q"
proof -
have 1: "q" using assms by (rule conjunct2)
show "p⟶ q" using 1 by (rule impI)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 19. Demostrar
     (p ⟶ q) ∧ (p ⟶ r) ⊢ p ⟶ q ∧ r   
  ------------------------------------------------------------------ *}


lemma ejercicio_19:
  assumes  1: "(p ⟶ q) ∧ (p ⟶ r)" 
  shows "p ⟶  (q ∧ r)"
proof (rule impI)
   assume 2: "p"
   have 3: "p ⟶ q" using assms by (rule conjunct1)
   have 4: "q" using 3 2 by (rule mp)
   have 5: "p ⟶ r" using assms by (rule conjunct2)
   have 6: "r" using 5 2 by (rule mp)
   show "q ∧ r" using 4 6 by (rule conjI)
qed




text {* --------------------------------------------------------------- 
  Ejercicio 20. Demostrar
     p ⟶ q ∧ r ⊢ (p ⟶ q) ∧ (p ⟶ r)
  ------------------------------------------------------------------ *}

lemma ejercicio_20:
  assumes "p ⟶ q ∧ r" 
  shows   "(p ⟶ q) ∧ (p ⟶ r)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 21. Demostrar
     p ⟶ (q ⟶ r) ⊢ p ∧ q ⟶ r
  ------------------------------------------------------------------ *}

lemma ejercicio_21:
  assumes "p ⟶ (q ⟶ r)" 
  shows   "p ∧ q ⟶ r"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 22. Demostrar
     p ∧ q ⟶ r ⊢ p ⟶ (q ⟶ r)
  ------------------------------------------------------------------ *}

lemma ejercicio_22:
  assumes "p ∧ q ⟶ r" 
  shows   "p ⟶ (q ⟶ r)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 23. Demostrar
     (p ⟶ q) ⟶ r ⊢ p ∧ q ⟶ r
  ------------------------------------------------------------------ *}

lemma ejercicio_23:
  assumes "(p ⟶ q) ⟶ r" 
  shows   "p ∧ q ⟶ r"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 24. Demostrar
     p ∧ (q ⟶ r) ⊢ (p ⟶ q) ⟶ r
  ------------------------------------------------------------------ *}

lemma ejercicio_24:
  assumes "p ∧ (q ⟶ r)" 
  shows   "(p ⟶ q) ⟶ r"
oops

section {* Disyunciones *}

text {* --------------------------------------------------------------- 
  Ejercicio 25. Demostrar
     p ⊢ p ∨ q
  ------------------------------------------------------------------ *}

lemma ejercicio_25:
  assumes "p"
  shows   "p ∨ q"
proof -
show "p∨q" using assms by (rule disjI1)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 26. Demostrar
     q ⊢ p ∨ q
  ------------------------------------------------------------------ *}

lemma ejercicio_26:
  assumes "q"
  shows   "p ∨ q"
proof -
show "p∨q" using assms by (rule disjI2)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 27. Demostrar
     p ∨ q ⊢ q ∨ p
  ------------------------------------------------------------------ *}

lemma ejercicio_27:
  assumes "p ∨ q"
  shows   "q ∨ p"
proof - 
have "p ∨ q" using assms by this
  moreover
  { assume 2: "p"
    have "q ∨ p" using 2 by (rule disjI2) }
  moreover
  { assume 3: "q"
    have "q ∨ p" using 3 by (rule disjI1) }
  ultimately show "q ∨ p" by (rule disjE) 
qed  

text {* --------------------------------------------------------------- 
  Ejercicio 28. Demostrar
     q ⟶ r ⊢ p ∨ q ⟶ p ∨ r
  ------------------------------------------------------------------ *}

lemma ejercicio_28:
  assumes "q ⟶ r" 
  shows   "p ∨ q ⟶ p ∨ r"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 29. Demostrar
     p ∨ p ⊢ p
  ------------------------------------------------------------------ *}

lemma ejercicio_29:
  assumes "p ∨ p"
  shows   "p"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 30. Demostrar
     p ⊢ p ∨ p
  ------------------------------------------------------------------ *}

lemma ejercicio_30:
  assumes "p" 
  shows   "p ∨ p"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 31. Demostrar
     p ∨ (q ∨ r) ⊢ (p ∨ q) ∨ r
  ------------------------------------------------------------------ *}

lemma ejercicio_31:
  assumes "p ∨ (q ∨ r)" 
  shows   "(p ∨ q) ∨ r"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 32. Demostrar
     (p ∨ q) ∨ r ⊢ p ∨ (q ∨ r)
  ------------------------------------------------------------------ *}

lemma ejercicio_32:
  assumes "(p ∨ q) ∨ r" 
  shows   "p ∨ (q ∨ r)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 33. Demostrar
     p ∧ (q ∨ r) ⊢ (p ∧ q) ∨ (p ∧ r)
  ------------------------------------------------------------------ *}

lemma ejercicio_33:
  assumes "p ∧ (q ∨ r)" 
  shows   "(p ∧ q) ∨ (p ∧ r)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 34. Demostrar
     (p ∧ q) ∨ (p ∧ r) ⊢ p ∧ (q ∨ r)
  ------------------------------------------------------------------ *}

lemma ejercicio_34:
  assumes "(p ∧ q) ∨ (p ∧ r)" 
  shows   "p ∧ (q ∨ r)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 35. Demostrar
     p ∨ (q ∧ r) ⊢ (p ∨ q) ∧ (p ∨ r)
  ------------------------------------------------------------------ *}

lemma ejercicio_35:
  assumes "p ∨ (q ∧ r)" 
  shows   "(p ∨ q) ∧ (p ∨ r)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 36. Demostrar
     (p ∨ q) ∧ (p ∨ r) ⊢ p ∨ (q ∧ r)
  ------------------------------------------------------------------ *}

lemma ejercicio_36:
  assumes "(p ∨ q) ∧ (p ∨ r)"
  shows   "p ∨ (q ∧ r)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 37. Demostrar
     (p ⟶ r) ∧ (q ⟶ r) ⊢ p ∨ q ⟶ r
  ------------------------------------------------------------------ *}

lemma ejercicio_37:
  assumes "(p ⟶ r) ∧ (q ⟶ r)" 
  shows   "p ∨ q ⟶ r"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 38. Demostrar
     p ∨ q ⟶ r ⊢ (p ⟶ r) ∧ (q ⟶ r)
  ------------------------------------------------------------------ *}

lemma ejercicio_38:
  assumes "p ∨ q ⟶ r" 
  shows   "(p ⟶ r) ∧ (q ⟶ r)"
oops

section {* Negaciones *}

text {* --------------------------------------------------------------- 
  Ejercicio 39. Demostrar
     p ⊢ ¬¬p
  ------------------------------------------------------------------ *}

lemma ejercicio_39:
  assumes "p"
  shows   "¬¬p"
proof -
show "¬¬p" using assms by (rule notnotI)
qed

text {* --------------------------------------------------------------- 
  Ejercicio 40. Demostrar
     ¬p ⊢ p ⟶ q
  ------------------------------------------------------------------ *}

lemma ejercicio_40:
  assumes "¬p" 
  shows   "p ⟶ q"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 41. Demostrar
     p ⟶ q ⊢ ¬q ⟶ ¬p
  ------------------------------------------------------------------ *}

lemma ejercicio_41:
  assumes "p ⟶ q"
  shows   "¬q ⟶ ¬p"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 42. Demostrar
     p∨q, ¬q ⊢ p
  ------------------------------------------------------------------ *}

lemma ejercicio_42:
  assumes "p∨q"
          "¬q" 
  shows   "p"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 42. Demostrar
     p ∨ q, ¬p ⊢ q
  ------------------------------------------------------------------ *}

lemma ejercicio_43:
  assumes "p ∨ q"
          "¬p" 
  shows   "q"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 40. Demostrar
     p ∨ q ⊢ ¬(¬p ∧ ¬q)
  ------------------------------------------------------------------ *}

lemma ejercicio_44:
  assumes "p ∨ q" 
  shows   "¬(¬p ∧ ¬q)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 45. Demostrar
     p ∧ q ⊢ ¬(¬p ∨ ¬q)
  ------------------------------------------------------------------ *}

lemma ejercicio_45:
  assumes "p ∧ q" 
  shows   "¬(¬p ∨ ¬q)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 46. Demostrar
     ¬(p ∨ q) ⊢ ¬p ∧ ¬q
  ------------------------------------------------------------------ *}

lemma ejercicio_46:
  assumes "¬(p ∨ q)" 
  shows   "¬p ∧ ¬q"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 47. Demostrar
     ¬p ∧ ¬q ⊢ ¬(p ∨ q)
  ------------------------------------------------------------------ *}

lemma ejercicio_47:
  assumes "¬p ∧ ¬q" 
  shows   "¬(p ∨ q)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 48. Demostrar
     ¬p ∨ ¬q ⊢ ¬(p ∧ q)
  ------------------------------------------------------------------ *}

lemma ejercicio_48:
  assumes "¬p ∨ ¬q"
  shows   "¬(p ∧ q)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 49. Demostrar
     ⊢ ¬(p ∧ ¬p)
  ------------------------------------------------------------------ *}

lemma ejercicio_49:
  "¬(p ∧ ¬p)"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 50. Demostrar
     p ∧ ¬p ⊢ q
  ------------------------------------------------------------------ *}

lemma ejercicio_50:
  assumes "p ∧ ¬p" 
  shows   "q"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 51. Demostrar
     ¬¬p ⊢ p
  ------------------------------------------------------------------ *}

lemma ejercicio_51:
  assumes "¬¬p"
  shows   "p"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 52. Demostrar
     ⊢ p ∨ ¬p
  ------------------------------------------------------------------ *}

lemma ejercicio_52:
  "p ∨ ¬p"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 53. Demostrar
     ⊢ ((p ⟶ q) ⟶ p) ⟶ p
  ------------------------------------------------------------------ *}

lemma ejercicio_53:
  "((p ⟶ q) ⟶ p) ⟶ p"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 54. Demostrar
     ¬q ⟶ ¬p ⊢ p ⟶ q
  ------------------------------------------------------------------ *}

lemma ejercicio_54:
  assumes "¬q ⟶ ¬p"
  shows   "p ⟶ q"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 55. Demostrar
     ¬(¬p ∧ ¬q) ⊢ p ∨ q
  ------------------------------------------------------------------ *}

lemma ejercicio_55:
  assumes "¬(¬p ∧ ¬q)"
  shows   "p ∨ q"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 56. Demostrar
     ¬(¬p ∨ ¬q) ⊢ p ∧ q
  ------------------------------------------------------------------ *}

lemma ejercicio_56:
  assumes "¬(¬p ∨ ¬q)" 
  shows   "p ∧ q"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 57. Demostrar
     ¬(p ∧ q) ⊢ ¬p ∨ ¬q
  ------------------------------------------------------------------ *}

lemma ejercicio_57:
  assumes "¬(p ∧ q)"
  shows   "¬p ∨ ¬q"
oops

text {* --------------------------------------------------------------- 
  Ejercicio 58. Demostrar
     ⊢ (p ⟶ q) ∨ (q ⟶ p)
  ------------------------------------------------------------------ *}

lemma ejercicio_58:
  "(p ⟶ q) ∨ (q ⟶ p)"
oops

end