Tema 5: Razonamiento sobre programas
De DAO (Demostración asistida por ordenador)
Revisión del 13:40 11 abr 2013 de Jalonso (discusión | contribuciones)
header {* Tema 5: Razonamiento sobre programas *}
theory T5
imports Main
begin
text {*
En este tema se demuestra con Isabelle las propiedades de los
programas funcionales como se expone en el tema 8 del curso
"Informática" que puede leerse en http://goo.gl/Imvyt *}
section {* Razonamiento ecuacional *}
text {* ----------------------------------------------------------------
Ejemplo 1. Definir, por recursión, la función
longitud :: 'a list ⇒ nat
tal que (longitud xs) es la longitud de la listas xs. Por ejemplo,
longitud [4,2,5] = 3
------------------------------------------------------------------- *}
fun longitud :: "'a list ⇒ nat" where
"longitud [] = 0"
| "longitud (x#xs) = 1 + longitud xs"
value "longitud [4,2,5]" -- "= 3"
text {* ---------------------------------------------------------------
Ejemplo 2. Demostrar que
longitud [4,2,5] = 3
------------------------------------------------------------------- *}
lemma "longitud [4,2,5] = 3"
by simp
text {* ---------------------------------------------------------------
Ejemplo 3. Definir la función
fun intercambia :: 'a × 'b ⇒ 'b × 'a
tal que (intercambia p) es el par obtenido intercambiando las
componentes del par p. Por ejemplo,
intercambia (u,v) = (v,u)
------------------------------------------------------------------ *}
fun intercambia :: "'a × 'b ⇒ 'b × 'a" where
"intercambia (x,y) = (y,x)"
value "intercambia (u,v)" -- "= (v,u)"
text {* ---------------------------------------------------------------
Ejemplo 4. (p.6) Demostrar que
intercambia (intercambia (x,y)) = (x,y)
------------------------------------------------------------------- *}
-- "La demostración detallada es"
lemma "intercambia (intercambia (x,y)) = (x,y)"
proof -
have "intercambia (intercambia (x,y)) = intercambia (y,x)"
by (simp only: intercambia.simps)
also have "... = (x,y)"
by (simp only: intercambia.simps)
finally show "intercambia (intercambia (x,y)) = (x,y)" by simp
qed
text {*
El razonamiento ecuacional se realiza usando la combinación de "also"
(además) y "finally" (finalmente). *}
-- "La demostración estructurada es"
lemma "intercambia (intercambia (x,y)) = (x,y)"
proof -
have "intercambia (intercambia (x,y)) = intercambia (y,x)" by simp
also have "... = (x,y)" by simp
finally show "intercambia (intercambia (x,y)) = (x,y)" by simp
qed
-- "La demostración automática es"
lemma "intercambia (intercambia (x,y)) = (x,y)"
by simp
text {* ---------------------------------------------------------------
Ejemplo 5. Definir, por recursión, la función
inversa :: 'a list ⇒ 'a list
tal que (inversa xs) es la lista obtenida invirtiendo el orden de los
elementos de xs. Por ejemplo,
inversa [a,d,c] = [c,d,a]
------------------------------------------------------------------ *}
fun inversa :: "'a list ⇒ 'a list" where
"inversa [] = []"
| "inversa (x#xs) = inversa xs @ [x]"
value "inversa [a,d,c]" -- "= [c,d,a]"
text {* ---------------------------------------------------------------
Ejemplo 6. (p. 9) Demostrar que
inversa [x] = [x]
------------------------------------------------------------------- *}
-- "La demostración detallada es"
lemma "inversa [x] = [x]"
proof -
have "inversa [x] = inversa (x#[])" by simp
also have "... = (inversa []) @ [x]" by (simp only: inversa.simps(2))
also have "... = [] @ [x]" by (simp only: inversa.simps(1))
also have "... = [x]" by (simp only: append_Nil)
finally show "inversa [x] = [x]" by simp
qed
-- "La demostración estructurada es"
lemma "inversa [x] = [x]"
proof -
have "inversa [x] = inversa (x#[])" by simp
also have "... = (inversa []) @ [x]" by simp
also have "... = [] @ [x]" by simp
also have "... = [x]" by simp
finally show "inversa [x] = [x]" by simp
qed
-- "La demostración automática es"
lemma "inversa [x] = [x]"
by simp
section {* Razonamiento por inducción sobre los naturales *}
text {*
[Principio de inducción sobre los naturales] Para demostrar una
propiedad P para todos los números naturales basta probar que el 0
tiene la propiedad P y que si n tiene la propiedad P, entonces n+1
también la tiene.
⟦P 0; ⋀n. P n ⟹ P (Suc n)⟧ ⟹ P m
En Isabelle el principio de inducción sobre los naturales está
formalizado en el teorema nat.induct y puede verse con
thm nat.induct
*}
text {* ---------------------------------------------------------------
Ejemplo 7. Definir la función
repite :: nat ⇒ 'a ⇒ 'a list
tal que (repite n x) es la lista formada por n copias del elemento
x. Por ejemplo,
repite 3 a = [a,a,a]
------------------------------------------------------------------ *}
fun repite :: "nat ⇒ 'a ⇒ 'a list" where
"repite 0 x = []"
| "repite (Suc n) x = x # (repite n x)"
value "repite 3 a" -- "= [a,a,a]"
text {* ---------------------------------------------------------------
Ejemplo 8. (p. 18) Demostrar que
longitud (repite n x) = n
------------------------------------------------------------------- *}
-- "La demostración estructurada es"
lemma "longitud (repite n x) = n"
proof (induct n)
show "longitud (repite 0 x) = 0" by simp
next
fix n
assume HI: "longitud (repite n x) = n"
have "longitud (repite (Suc n) x) = longitud (x # (repite n x))"
by simp
also have "... = 1 + longitud (repite n x)" by simp
also have "... = 1 + n" using HI by simp
finally show "longitud (repite (Suc n) x) = Suc n" by simp
qed
-- "La demostración automática es"
lemma "longitud (repite n x) = n"
by (induct n) auto
section {* Razonamiento por inducción sobre listas *}
text {*
Para demostrar una propiedad para todas las listas basta demostrar
que la lista vacía tiene la propiedad y que al añadir un elemento a una
lista que tiene la propiedad se obtiene otra lista que también tiene la
propiedad.
En Isabelle el principio de inducción sobre listas está formalizado
mediante el teorema list.induct que puede verse con
thm list.induct
*}
text {* ---------------------------------------------------------------
Ejemplo 9. Definir la función
conc :: 'a list ⇒ 'a list ⇒ 'a list
tal que (conc xs ys) es la concatención de las listas xs e ys. Por
ejemplo,
conc [a,d] [b,d,a,c] = [a,d,b,d,a,c]
------------------------------------------------------------------ *}
fun conc :: "'a list ⇒ 'a list ⇒ 'a list" where
"conc [] ys = ys"
| "conc (x#xs) ys = x # (conc xs ys)"
value "conc [a,d] [b,d,a,c]" -- "= [a,d,b,d,a,c]"
text {* ---------------------------------------------------------------
Ejemplo 10. (p. 24) Demostrar que
conc xs (conc ys zs) = (conc xs ys) zs
------------------------------------------------------------------- *}
-- "La demostración estructurada es"
lemma "conc xs (conc ys zs) = conc (conc xs ys) zs"
proof (induct xs)
show "conc [] (conc ys zs) = conc (conc [] ys) zs" by simp
next
fix x xs
assume HI: "conc xs (conc ys zs) = conc (conc xs ys) zs"
have "conc (x # xs) (conc ys zs) = x # (conc xs (conc ys zs))" by simp
also have "... = x # (conc (conc xs ys) zs)" using HI by simp
also have "... = conc (conc (x # xs) ys) zs" by simp
finally show "conc (x # xs) (conc ys zs) = conc (conc (x # xs) ys) zs" by simp
qed
-- "La demostración automática es"
lemma "conc xs (conc ys zs) = conc (conc xs ys) zs"
by (induct xs) auto
text {* ---------------------------------------------------------------
Ejemplo 11. Refutar que
conc xs ys = conc ys xs
------------------------------------------------------------------- *}
lemma "conc xs ys = conc ys xs"
quickcheck
oops
text {* Encuentra el contraejemplo,
xs = [a\<^isub>2]
ys = [a\<^isub>1] *}
text {* ---------------------------------------------------------------
Ejemplo 12. (p. 28) Demostrar que
conc xs [] = xs
------------------------------------------------------------------- *}
-- "La demostración estructurada es"
lemma "conc xs [] = xs"
proof (induct xs)
show "conc [] [] = []" by simp
next
fix x xs
assume HI: "conc xs [] = xs"
have "conc (x # xs) [] = x # (conc xs [])" by simp
also have "... = x # xs" using HI by simp
finally show "conc (x # xs) [] = x # xs" by simp
qed
-- "La demostración automática es"
lemma "conc xs [] = xs"
by (induct xs) auto
text {* ---------------------------------------------------------------
Ejemplo 13. (p. 30) Demostrar que
longitud (conc xs ys) = longitud xs + longitud ys
------------------------------------------------------------------- *}
-- "La demostración automática es"
lemma "longitud (conc xs ys) = longitud xs + longitud ys"
proof (induct xs)
show "longitud (conc [] ys) = longitud [] + longitud ys" by simp
next
fix x xs
assume HI: "longitud (conc xs ys) = longitud xs + longitud ys"
have "longitud (conc (x # xs) ys) = longitud (x # (conc xs ys))"
by simp
also have "... = 1 + longitud (conc xs ys)" by simp
also have "... = 1 + longitud xs + longitud ys" using HI by simp
also have "... = longitud (x # xs) + longitud ys" by simp
finally show "longitud (conc (x # xs) ys) =
longitud (x # xs) + longitud ys" by simp
qed
-- "La demostración automática es"
lemma "longitud (conc xs ys) = longitud xs + longitud ys"
by (induct xs) auto
section {* Inducción correspondiente a la definición recursiva *}
text {* ---------------------------------------------------------------
Ejemplo 14. Definir la función
coge :: nat ⇒ 'a list ⇒ 'a list
tal que (coge n xs) es la lista de los n primeros elementos de xs. Por
ejemplo,
coge 2 [a,c,d,b,e] = [a,c]
------------------------------------------------------------------ *}
fun coge :: "nat ⇒ 'a list ⇒ 'a list" where
"coge n [] = []"
| "coge 0 xs = []"
| "coge (Suc n) (x#xs) = x # (coge n xs)"
value "coge 2 [a,c,d,b,e]" -- "= [a,c]"
text {* ---------------------------------------------------------------
Ejemplo 15. Definir la función
elimina :: nat ⇒ 'a list ⇒ 'a list
tal que (elimina n xs) es la lista obtenida eliminando los n primeros
elementos de xs. Por ejemplo,
elimina 2 [a,c,d,b,e] = [d,b,e]
------------------------------------------------------------------ *}
fun elimina :: "nat ⇒ 'a list ⇒ 'a list" where
"elimina n [] = []"
| "elimina 0 xs = xs"
| "elimina (Suc n) (x#xs) = elimina n xs"
value "elimina 2 [a,c,d,b,e]" -- "= [d,b,e]"
text {*
La definición coge genera el esquema de inducción coge.induct:
⟦⋀n. P n [];
⋀x xs. P 0 (x#xs);
⋀n x xs. P n xs ⟹ P (Suc n) (x#xs)⟧
⟹ P n x
Puede verse usando "thm coge.induct". *}
text {* ---------------------------------------------------------------
Ejemplo 16. (p. 35) Demostrar que
conc (coge n xs) (elimina n xs) = xs
------------------------------------------------------------------- *}
-- "La demostración estructurada es"
lemma "conc (coge n xs) (elimina n xs) = xs"
proof (induct rule: coge.induct)
fix n
show "conc (coge n []) (elimina n []) = []" by simp
next
fix x xs
show "conc (coge 0 (x#xs)) (elimina 0 (x#xs)) = x#xs" by simp
next
fix n x xs
assume HI: "conc (coge n xs) (elimina n xs) = xs"
have "conc (coge (Suc n) (x#xs)) (elimina (Suc n) (x#xs)) =
conc (x#(coge n xs)) (elimina n xs)" by simp
also have "... = x#(conc (coge n xs) (elimina n xs))" by simp
also have "... = x#xs" using HI by simp
finally show "conc (coge (Suc n) (x#xs)) (elimina (Suc n) (x#xs)) = x#xs"
by simp
qed
-- "La demostración automática es"
lemma "conc (coge n xs) (elimina n xs) = xs"
by (induct rule: coge.induct) auto
section {* Razonamiento por casos *}
text {*
Distinción de casos sobre listas:
· El método de distinción de casos se activa con (cases xs) donde xs
es del tipo lista.
· "case Nil" es una abreviatura de
"assume Nil: xs =[]".
· "case Cons" es una abreviatura de
"fix ? ?? assume Cons: xs = ? # ??"
donde ? y ?? son variables anónimas. *}
text {* ---------------------------------------------------------------
Ejemplo 17. Definir la función
esVacia :: 'a list ⇒ bool
tal que (esVacia xs) se verifica si xs es la lista vacía. Por ejemplo,
esVacia [] = True
esVacia [1] = False
------------------------------------------------------------------ *}
fun esVacia :: "'a list ⇒ bool" where
"esVacia [] = True"
| "esVacia (x#xs) = False"
value "esVacia []" -- "= True"
value "esVacia [1]" -- "= False"
text {* ---------------------------------------------------------------
Ejemplo 18 (p. 39) . Demostrar que
esVacia xs = esVacia (conc xs xs)
------------------------------------------------------------------- *}
-- "La demostración estructurada es"
lemma "esVacia xs = esVacia (conc xs xs)"
proof (cases xs)
assume "xs = []"
thus "esVacia xs = esVacia (conc xs xs)" by simp
next
fix y ys
assume "xs = y#ys"
thus "esVacia xs = esVacia (conc xs xs)" by simp
qed
-- "La demostración estructurada simplificad es"
lemma "esVacia xs = esVacia (conc xs xs)"
proof (cases xs)
case Nil
thus "esVacia xs = esVacia (conc xs xs)" by simp
next
case Cons
thus "esVacia xs = esVacia (conc xs xs)" by simp
qed
-- "La demostración automática es"
lemma "esVacia xs = esVacia (conc xs xs)"
by (cases xs) auto
section {* Heurística de generalización *}
text {*
Heurística de generalización: Cuando se use demostración estructural,
cuantificar universalmente las variables libres (o, equivalentemente,
considerar las variables libres como variables arbitrarias). *}
text {* ---------------------------------------------------------------
Ejemplo 19. Definir la función
inversaAc :: 'a list ⇒ 'a list
tal que (inversaAc xs) es a inversa de xs calculada usando
acumuladores. Por ejemplo,
inversaAc [a,c,b,e] = [e,b,c,a]
------------------------------------------------------------------ *}
fun inversaAcAux :: "'a list ⇒ 'a list ⇒ 'a list" where
"inversaAcAux [] ys = ys"
| "inversaAcAux (x#xs) ys = inversaAcAux xs (x#ys)"
fun inversaAc :: "'a list ⇒ 'a list" where
"inversaAc xs = inversaAcAux xs []"
value "inversaAc [a,c,b,e]" -- "= [e,b,c,a]"
text {* ---------------------------------------------------------------
Ejemplo 20. (p. 44) Demostrar que
inversaAcAux xs ys = (inversa xs) @ ys
------------------------------------------------------------------- *}
-- "La demostración estructurada es"
lemma inversaAcAux_es_inversa:
"inversaAcAux xs ys = (inversa xs) @ ys"
proof (induct xs arbitrary: ys)
show "⋀ys. inversaAcAux [] ys = inversa [] @ ys" by simp
next
fix a xs
assume HI: "⋀ys. inversaAcAux xs ys = inversa xs@ys"
show "⋀ys. inversaAcAux (a#xs) ys = inversa (a#xs)@ys"
proof -
fix ys
have "inversaAcAux (a#xs) ys = inversaAcAux xs (a#ys)" by simp
also have "… = inversa xs@(a#ys)" using HI by simp
also have "… = inversa (a#xs)@ys" by simp
finally show "inversaAcAux (a#xs) ys = inversa (a#xs)@ys" by simp
qed
qed
-- "La demostración automática es"
lemma "inversaAcAux xs ys = (inversa xs)@ys"
by (induct xs arbitrary: ys) auto
text {* ---------------------------------------------------------------
Ejemplo 21. (p. 43) Demostrar que
inversaAc xs = inversa xs
------------------------------------------------------------------- *}
-- "La demostración automática es"
corollary "inversaAc xs = inversa xs"
by (simp add: inversaAcAux_es_inversa)
section {* Demostración por inducción para funciones de orden superior *}
text {* ---------------------------------------------------------------
Ejemplo 22. Definir la función
sum :: nat list ⇒ nat
tal que (sum xs) es la suma de los elementos de xs. Por ejemplo,
sum [3,2,5] = 10
------------------------------------------------------------------ *}
fun sum :: "nat list ⇒ nat" where
"sum [] = 0"
| "sum (x#xs) = x + sum xs"
value "sum [3,2,5]" -- "= 10"
text {* ---------------------------------------------------------------
Ejemplo 23. Definir la función
map :: ('a ⇒ 'b) ⇒ 'a list ⇒ 'b list
tal que (map f xs) es la lista obtenida aplicando la función f a los
elementos de xs. Por ejemplo,
map (λx. 2*x) [3,2,5] = [6,4,10]
------------------------------------------------------------------ *}
fun map :: "('a ⇒ 'b) ⇒ 'a list ⇒ 'b list" where
"map f [] = []"
| "map f (x#xs) = (f x) # map f xs"
value "map (λx. 2*x) [3::nat,2,5]" -- "= [6,4,10]"
text {* ---------------------------------------------------------------
Ejemplo 24. (p. 45) Demostrar que
sum (map (λx. 2*x) xs) = 2 * (sum xs)
------------------------------------------------------------------- *}
-- "La demostración estructurada es"
lemma "sum (map (λx. 2*x) xs) = 2 * (sum xs)"
proof (induct xs)
show "sum (map (λx. 2*x) []) = 2 * (sum [])" by simp
next
fix a xs
assume HI: "sum (map (λx. 2*x) xs) = 2 * (sum xs)"
have "sum (map (λx. 2*x) (a#xs)) = sum ((2*a)#(map (λx. 2*x) xs))"
by simp
also have "... = 2*a + sum (map (λx. 2*x) xs)" by simp
also have "... = 2*a + 2*(sum xs)" using HI by simp
also have "... = 2*(a + sum xs)" by simp
also have "... = 2*(sum (a#xs))" by simp
finally show "sum (map (λx. 2*x) (a#xs)) = 2*(sum (a#xs))" by simp
qed
-- "La demostración automática es"
lemma "sum (map (λx. 2*x) xs) = 2 * (sum xs)"
by (induct xs) auto
text {* ---------------------------------------------------------------
Ejemplo 25. (p. 48) Demostrar que
longitud (map f xs) = longitud xs
------------------------------------------------------------------- *}
-- "La demostración estructurada es"
lemma "longitud (map f xs) = longitud xs"
proof (induct xs)
show "longitud (map f []) = longitud []" by simp
next
fix a xs
assume HI: "longitud (map f xs) = longitud xs"
have "longitud (map f (a#xs)) = longitud (f a # (map f xs))" by simp
also have "... = 1 + longitud (map f xs)" by simp
also have "... = 1 + longitud xs" using HI by simp
also have "... = longitud (a#xs)" by simp
finally show "longitud (map f (a#xs)) = longitud (a#xs)" by simp
qed
-- "La demostración automática es"
lemma "longitud (map f xs) = longitud xs"
by (induct xs) auto
section {* Referencias *}
text {*
· J.A. Alonso. "Razonamiento sobre programas" http://goo.gl/R06O3
· G. Hutton. "Programming in Haskell". Cap. 13 "Reasoning about
programms".
· S. Thompson. "Haskell: the Craft of Functional Programming, 3rd
Edition. Cap. 8 "Reasoning about programms".
· L. Paulson. "ML for the Working Programmer, 2nd Edition". Cap. 6.
"Reasoning about functional programs".
*}
end