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Outline
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overview of recent work on concept lattices, attribute implications,
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attention paid to one particular approach, but several other
approaches are overviewed

present future directions
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PART I

An Introduction to Fuzzy Logic

Radim BELOHLAVEK

Dept. Computer Science
Palacky University, Olomouc
Czech Republic

Belohlavek (Palacky University) Formal Concept Analysis and Fuzzy Logic CLA 2010 3 / 27



Outline

motivation, brief historical overview

structures of truth degrees

basics of fuzzy sets

fuzzy logic as logic
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Basic idea of fuzzy logic

natural language expression like “normal blood pressure”
how to represent its meaning?
extensionally (common way in knowledge representation):
collection of values of “normal blood pressure”

100 120 140

1

0

“normal blood pressure”
as (ordinary) set

vs.
100 120 140

1

0

“normal blood pressure”
as fuzzy set

– technically: replace {0, 1} by [0, 1],
i.e. degrees of truth instead of false and true

– fuzzy approach (graded approach) ⇒ “paradigm shift”

– proposed by Lotfi A. Zadeh (1965)
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Graded approach to modeling

– empirical relationships, properties, and groupings are vague

– examples: x loves y , x is similar to y , x is satisfied, . . .

– modeling vague relationships, groupings, etc. using ordinary relations,
sets, etc., is not appropriate

– vague relationships cannot be avoided (they are being used in
everyday communication)

– lack of mathematical theory for dealing with vague relationships
recognized by several scientists long time ago (before Zadeh)

– Bertrand Russell: Vagueness. Austral. J. Philos. 1(1923), 84–92.
– Max Black: Vagueness: an exercise in logical analysis. Philos. Sci.

4(1937), 427–455
– . . .
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Black (Vagueness: an exercise in logical analysis, 1937):

“It is a paradox that the most developed and useful theories are
expressed in terms of objects never encountered in experience. While the
mathematician constructs a theory in terms of “perfect” objects, the
experimental scientist observes of which the properties demanded by
theory are only approximately true. As Duhem remarks, mathematical
deduction is not useful to the physicist if interpreted rigorously. It is
necessary to know that its validity is unaltered when the premise and
conclusion are only “approximately true”. But the indeterminacy thus
introduced, it is necessary to add in criticism, will invalidate the deduction
unless the permissible limits of variation are specified. To do so, however,
replaces the original mathematical deduction by a more complicated
mathematical theory whose exact nature is in any case unknown.”
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Zadeh (Fuzzy sets, 1965):

“More often than not, the classes of objects encountered in the real
physical world do not have precisely defined criteria of membership.
. . . Clearly, the “class of all real numbers which are much greater than 1”,
or “the class of beautiful women” . . . , or “the class of tall men”, do not
constitute classes or sets in the usual mathematical sense of these
terms. Yet, the fact remains that such imprecisely defined “classes”
play an important role in human thinking, particularly in the
domains of pattern recognition, communication of information, and
abstraction.”
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Historical development of fuzzy logic and fuzzy sets

– Black (1937): “consistency profiles”

– Zadeh (1965): fuzzy set
– fuzzy set in universe X : mapping A : X → [0, 1]
– A(x) ∈ [0, 1] . . . degree to which x belongs to A
– calculus of fuzzy sets

– other important contributions in 1960s and 1970s (R. Bellman,
J. A. Goguen, . . . )

– E. H. Mamdani, S. Assilian: An experiment in linguistic synthesis with
a fuzzy logic controller. Int. J. Man-Machine Studies 7(1975), 1–13.

– fuzzy controllers = commercially most successful applications of FL

fuzzy washing machines, fuzzy cameras, car transmission systems, ABS
systems, metro in Japan cities, . . . , unmanned helicopter
boom in Japan (consumer electronics) 1990s, according to MITI:
1991 world computer market (SW, HW, services) = $200bn;
1991 market with “fuzzy products” = $2bn;
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– 1970s, 1980s: contributions of theory and applications of fuzzy sets

– structures of truth degrees, fuzzy relations, foundational aspects, etc.
– fuzzy control, approximate reasoning, information retrieval, decision

making, pattern recognition, etc.

– fuzzy logic as logic?: not many contributions prior to 1990s

– late 1990s and 2000s: formal systems of fuzzy logic (plus applications
to various domains, theoretical and application-oriented)

further issues

– contributions to both theory and applications of fuzzy logic often ad
hoc (idea of FL appealing but . . . )

– confusion with probability: fuzziness (vagueness) 6= randomness

– conferences: IFSA, FUZZ-IEEE, NAFIPS, . . .

– journals: Fuzzy Sets and Systems, IEEE Trans. Fuzzy Systems, Int. J.
Approx. Reasoning, Soft Computing, IJUFKBS . . .
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Recent statistics

– patents issued (fuzzy-logic-related)

– Japan: 4,801
– US: around 1,700

– journals (“fuzzy” in title)

– 12

– publications (“fuzzy” in title, INSPEC database)

1970–1979 521
1980-1989 2,163
1990-1999 20,210
2000-present 48,627

total 71,521

– citations to papers by Zadeh

– 28,122 (Web of Science)
– 85,500 (Google Scholar)
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“Technical aspects” of fuzzy logic

basic principle: allow propositions to have intermediate truth degrees
instead of just 0 (false) and 1 (true), e.g.

||John is tall|| = 0.9
||x belongs to A|| = 0.7

as in classical case, fuzzy logic is truth functional, i.e.
truth degrees of complex propositions are computed from tr. deg. of
constituent propositions:

|| ϕ AND ψ || = || ϕ || ⊗ || ψ ||

where ⊗ is a (truth function of) conjunction connective, i.e.
⊗ : [0, 1] × [0, 1] → [0, 1]
this brings us to

– what sets of truth degrees shall we use?

– what connectives shall we use?

i.e. what structures of truth degrees for fuzzy logic?
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Structures of truth degrees

classical logic: two-element Boolean algebra, given by

set {0, 1} of truth degrees,

(truth functions of) logical connectives (conjunction, implication, . . . )

fuzzy logic: several possibilities proposed

(partially ordered) set L of truth degrees, e.g. L = [0, 1],
L = {0, 0.1, 0.2, . . . , 1}, non-linearly ordered L, . . .

(truth functions of) logical connectives (conj. ⊗, impl. →, . . . )

reasonable approach: instead of working with a fixed set of truth degrees
and fixed logical connectives

– postulate properties of sets of truth degrees and logical connectives

– any structure of truth degrees satisfying the properties is OK

– leave the choice of particular set and connectives to further
circumstances (e.g., complexity considerations)
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Structures of truth degrees: residuated lattices

Complete residuated lattice – basic structure of truth degrees

L = 〈L,∧,∨,⊗,→, 0, 1〉 , where

– 〈L,∧,∨, 0, 1〉 . . . complete lattice,

– 〈L,⊗, 1〉 . . . commutative monoid,

– 〈⊗,→〉 . . . adjoint pair (i.e., a⊗ b ≤ c iff a ≤ b → c).

Remarks

– introduced by Dilworth and Ward (Trans. AMS, 1939)

– proposed as structure of truth degrees by Goguen (Synthese, 1969)

– a ∈ L . . . truth degrees

– infs and sups needed for evaluation of quantifiers

– commutativity of ⊗: we want ||ϕ⊗ ψ|| = ||ψ ⊗ ϕ||
– adjointness results from considerations about modus ponens (Goguen)
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Examples residuated lattices

Structures on [0, 1]
L = 〈[0, 1],min,max,⊗,→, 0, 1〉 given by left-continuous (continuous) ⊗.

 Lukasiewicz: a⊗ b = max(a + b − 1, 0), a → b = min(1 − a + b, 1).

Gödel (minimum): a⊗ b = min(a, b), a → b =

{
1 if a ≤ b,
b otherwise.

Goguen (product): a⊗ b = a · b, a → b =

{
1 if a ≤ b,
b
a otherwise.

Finite structures of truth degrees
L = {a0 = 0, a1, . . . , an = 1} ⊆ [0, 1] . . . finite subset of [0, 1]
finite  Lukasiewicz chain / Gödel chain . . . restrictions of ⊗,→ on finite L

Important classes of residuated lattices
BL-algebras, Heyting algebras, MV-algebras, Boolean algebras

Belohlavek (Palacky University) Formal Concept Analysis and Fuzzy Logic CLA 2010 15 / 27



Examples residuated lattices

Structures on [0, 1]
L = 〈[0, 1],min,max,⊗,→, 0, 1〉 given by left-continuous (continuous) ⊗.

 Lukasiewicz: a⊗ b = max(a + b − 1, 0), a → b = min(1 − a + b, 1).
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Hedges: examples of additional connectives

studied by Takeuti+Titani, Baaz, Hájek, . . .

(idempotent) truth-stressing hedge . . . mapping ∗ : L → L satisfying

1∗ = 1, a∗ ≤ a, (a → b)∗ ≤ a∗ → b∗, a∗∗ = a∗,

meaning of ∗: truth function of logical connective “very true”

Two boundary hedges

identity, i.e. a∗ = a (a ∈ L);

globalization: a∗ =

{
1 if a = 1,
0 otherwise.

. . . truth function of “fully true”

Example

0

0.25

0.5

0.75

1

identity ∗1 ∗2 ∗3 globalization
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Fuzzy sets and fuzzy relations

L = 〈L,∨,∧,→,⊗, ∗, 0, 1〉 . . . residuated structure of truth degrees

Fuzzy sets (L-sets)
L-set A in universe U . . . mapping A : U → L,
interpretation of A(u): “degree to which u belongs to A”,
for U finite: A = {. . . , A(u)/u, . . . }

Fuzzy relations (L-relations)
binary L-relation R between U and V . . . mapping R : U × V → L,
R(u, v): “degree to which u ∈ U and v ∈ V are R-related”

Operations with L-sets
LU . . . collection of all L-sets in universe U,
operations are defined componentwise, e.g. (A∪B)(u) = A(u)∨B(u), . . .

Inclusion
A ⊆ B iff A(u) ≤ B(u) for each u ∈ U . . . as ordinary relation
S(A,B) =

∧
u∈U(A(u) → B(u)) . . . as fuzzy relation

A ⊆ B iff S(A,B) = 1
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Fuzzy sets representing humidity concepts

0 20 40 60 80 100 h[%]

1
moderate

M

(a)

0 30 70 100 h[%]

1
moderate

M

(b)

α1

α2

core of H

Hα1

Hα2

support of H

0 20 40 60 80 100 h[%]

1
low moderate high

ML H

(c)
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Structure L of truth degrees as parameter

when approaching something (sets, equivalence relations, attribute
implications) from FL point of view, work with L as with a parameter

example: equivalence relations

– a single theory of L-equivalence relations (uses only general properties
of residuated lattices L); L is a parameter;

– particular choices of L lead to particular theories of fuzzy equivalence
relations (covers both finite and infinite sets of truth degrees, etc.)

– ordinary equivalence relations = fuzzy equivalence relations when
L = 2 (two-element Bool. algebra)

in particular: ordinary sets = fuzzy sets for L = 2
(convention: we identify sets with their characteristic functions)

Useful general view.
As opposed to the view when fuzzy set means L = [0, 1].
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Symbolic and numerical level of FL

– symbolic level: analogous to classical logic
(symbolic formulas, can be read in natural language, clear meaning)

– numerical level: missing (trivial) in classical logic
(formulas have numerical truth values, these are manipulated using
fuzzy logic connnectives, quantitative information)

Example (transitivity of relation R):

ordinary setting:
“if 〈x , y〉 is in R and 〈y , z〉 is in R then 〈x , z〉 is in R”, i.e.
||rR(x , y) & rR(y , z) ⇒ rR(x , z)||=1 (formula is true when rR 7→ R)

fuzzy setting:
symbolic level: same formula as in ordinary setting, i.e. same meaning
numerical level: the formula for transitivity is true iff

R(x , y) ⊗ R(y , z) ≤ R(x , z), e.g. 0.7 ⊗ 0.8 ≤ R(x , z).
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Fuzzy logic as logic

Is there any logic (study of consequence, provability, etc.) in fuzzy logic?

terminological distinction (Zadeh)

– fuzzy logic in narrow sense: mathematical logic with degrees of truth

– fuzzy logic in broad sense: any application of fuzzy approach

fuzzy logic substantially developed by Hájek in late 1990s

many other prominent logicians since then (Parikh, Mundici, Gabbay, . . . ,
Baaz, Ono, . . . )

we present basics of agenda of fuzzy logic (in narrow sense)
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Ordinary style fuzzy logic

– agenda analogous to agenda of classical logic (propositional,
predicate, etc.)

– difference: intermediate truth degrees in addition to 0 and 1

basics:

– formulas ϕ, e.g. (∀x , y)(r(x , y) ⇒ r(y , x)), A ⇒ B, etc.

– semantic structures M (first-order structures, fuzzy contexts, etc.)

– assignment of truth degrees: ||ϕ||M ∈ L; L is support of L

– truth functionality: ||ϕ⇒ φ||M = ||ϕ||M → ||φ||M
– theory T : a set of formulas

– models of theories: Mod(T ) = {M | for each ϕ ∈ T : ||ϕ||M = 1}
– semantic entailment: T |= ϕ iff for each M ∈ Mod(T ): ||ϕ||M = 1

– syntactic entailment (proof): T ` ϕ iff there is a proof ϕ1, . . . , ϕ
using logical axioms, axioms from T , and deduction rules

– completeness: T |= ϕ iff T ` ϕ
– . . .
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Pavelka style fuzzy logic

– approach due to Goguen (1960s), Pavelka (1970s), further developed
by Novak, Hajek, Gerla, . . . , RB, Vychodil

– agenda different from agenda of classical logic

– difference: interest in degrees
– to which formula is present in theory,
– to which formula is entailed by theory, etc.

– i.e., not only “ϕ follows from T” but also “ϕ follows from T to
degree 0.9” (follows partially)

– more appropriate from the point of view of fuzzy approach

basics:

– formulas ϕ, e.g. (∀x , y)(r(x , y) ⇒ r(y , x)), A ⇒ B, etc.

– semantic structures M (first-order structures, fuzzy contexts, etc.)

– assignment of truth degrees: ||ϕ||M ∈ L; L is support of L

– truth functionality: ||ϕ⇒ φ||M = ||ϕ||M → ||φ||M

Belohlavek (Palacky University) Formal Concept Analysis and Fuzzy Logic CLA 2010 23 / 27



Pavelka style fuzzy logic

– approach due to Goguen (1960s), Pavelka (1970s), further developed
by Novak, Hajek, Gerla, . . . , RB, Vychodil

– agenda different from agenda of classical logic

– difference: interest in degrees
– to which formula is present in theory,
– to which formula is entailed by theory, etc.

– i.e., not only “ϕ follows from T” but also “ϕ follows from T to
degree 0.9” (follows partially)

– more appropriate from the point of view of fuzzy approach

basics:

– formulas ϕ, e.g. (∀x , y)(r(x , y) ⇒ r(y , x)), A ⇒ B, etc.

– semantic structures M (first-order structures, fuzzy contexts, etc.)

– assignment of truth degrees: ||ϕ||M ∈ L; L is support of L

– truth functionality: ||ϕ⇒ φ||M = ||ϕ||M → ||φ||M

Belohlavek (Palacky University) Formal Concept Analysis and Fuzzy Logic CLA 2010 23 / 27



Pavelka style fuzzy logic

BUT
– theory T : a fuzzy set of formulas, consider T (ϕ) = 0.9

for ϕ = “Peter loves Mary”, ϕ = “x and y are similar”, etc.
– models of theories: Mod(T ) = {M | for each ϕ : T (ϕ) ≤ ||ϕ||M}
– semantic entailment: degree ||ϕ||T to which T entails ϕ

||ϕ||T =
∧

M∈Mod(T ) ||ϕ||M
– syntactic entailment (proofs and provability):

inference uses weighted formulas 〈ϕ, a〉 . . .ϕ is valid in degree ≥ a
deduction rules: inference of weighted formulas from weighted
formulas
〈ϕ,a〉,〈ϕ⇒ψ,b〉

〈ψ,a⊗b〉 (modus ponens, becomes ordinary MP for a = b = 1)

proof: sequence 〈ϕ1, a1〉, . . . , 〈ϕn, an〉 of weighted formulas using
axioms, T , and deduction rules
degree |ϕ|T of provability of ϕ from T :

|ϕ|T = sup{a | there is a proof . . . , 〈ϕ, a〉}
– (graded) completeness: ||ϕ||T = |ϕ|T , i.e.

degree of entailment = degree of provability
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Ordinary and Pavelka style fuzzy logic

– reasonable way to approach reasoning under uncertainty

– Pavelka style: general framework, including non-truth-functional
semantics (reasoning about probability, Gerla)

– provides methodology for formal treatment of reasoning in particular
domains (e.g., attribute implications)
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Textbooks and monographs

Textbooks

– Dubois, Prade: Fuzzy Sets and Systems: Theory and Applications.
Academic Press, 1982.

– Klir, Yuan: Fuzzy Sets and Fuzzy Logic. Theory and Applications.
Prentice Hall, 1995.

– Nguyen, Walker: A First Course in Fuzzy Logic. Chapman &
Hall/CRC Press, 2000.

Monographs

– Hájek: Metamathematics of Fuzzy Logic. Kluwer, 1998.
– Gottwald: A Treatise on Many-Val. Logics. Res. Stud. Press, 2001.
– Gerla: Fuzzy Logic. Math. Tools for Appr. Reasoning. Kluwer, 2001.
– Novák, Perfilieva, Močkǒr: Mathematical Principles of Fuzzy Logic.

Kluwer, 1999.
– Belohlavek: Fuzzy Relational Systems: Foundations and Principles.

Kluwer, 2002.
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Four (personal) remarks on fuzzy logic

1. FL appealing, interesting, useful, non-trivial.

2. Caution: huge number of very-low quality papers.

3. Criticisms of FL (many of them wrong, based on technical or
conceptual flaws; some of them very good and useful).

4. Technically highly developed in some respects (algebraic and logical
aspects) but severely underdeveloped in other respects (e.g. connections
to mathematical psychology).
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